Aliasing instabilities in the numerical evolution of the Einstein field equations

The Einstein field equations of gravitation are characterized by cross-scale, high-order nonlinear terms, representing a challenge for numerical modeling. In an exact spectral decomposition, high-order nonlinearities correspond to a convolution that numerically might lead to aliasing instabilities....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:General relativity and gravitation Ročník 53; číslo 10
Hlavní autoři: Meringolo, C., Servidio, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2021
Springer Nature B.V
Témata:
ISSN:0001-7701, 1572-9532
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Einstein field equations of gravitation are characterized by cross-scale, high-order nonlinear terms, representing a challenge for numerical modeling. In an exact spectral decomposition, high-order nonlinearities correspond to a convolution that numerically might lead to aliasing instabilities. We present a study of this problem, in vacuum conditions, based on the 3 + 1 Baumgarte–Shibata–Shapiro–Nakamura (BSSN) formalism. We inspect the emergence of numerical artifacts, in a variety of conditions, by using the Spectral-FIltered Numerical Gravity codE (SFINGE)—a pseudo-spectral algorithm, based on a classical (Cartesian) Fourier decomposition. By monitoring the highest k - modes of the dynamical fields, we identify the culprits of the aliasing and propose procedures that cure such instabilities, based on the suppression of the aliased wavelengths. This simple algorithm, together with appropriate treatment of the boundary conditions, can be applied to a variety of gravitational problems, including those related to massive objects dynamics.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-7701
1572-9532
DOI:10.1007/s10714-021-02865-5