An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm

Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 79; číslo 25-26; s. 18839 - 18858
Hlavní autoři: Dhanachandra, Nameirakpam, Chanu, Yambem Jina
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2020
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise.
AbstractList Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise.
Author Dhanachandra, Nameirakpam
Chanu, Yambem Jina
Author_xml – sequence: 1
  givenname: Nameirakpam
  surname: Dhanachandra
  fullname: Dhanachandra, Nameirakpam
  email: dhana.namei@gmail.com
  organization: National Institute of Technology Manipur
– sequence: 2
  givenname: Yambem Jina
  surname: Chanu
  fullname: Chanu, Yambem Jina
  organization: National Institute of Technology Manipur
BookMark eNp9kMtKAzEUhoMoeH0BVwHX0ZPLNOmyiDcQ3Og6nJkmY0onMyZTpH16oyMILrpKCP_355zvlBzGPjpCLjlccwB9kzkHJRgIYGBm8zkzB-SEV1oyrQU_LHdpgOkK-DE5zXkFwGeVUCekXUQaOmwdza7tXBxxDH2kOAypx-ad1pjdkpYXv9nttrRhncOYKcYlXW4jdqGhA6YxNOvS8Impo_0whi7sfnvWbZ_C-N6dkyOP6-wufs8z8nZ_93r7yJ5fHp5uF8-skaYaWe2kUxoNGqiEFyi08q6ujJmhqjVf1jMQHivZ1HoOHoypveROY228kuikPCNXU2-Z_2Pj8mhX_SbF8qUVSsAcpFLfKTOlmtTnnJy3TZg2HxOGteVgv7XaSastWu2PVmsKKv6hQyoC03Y_JCcol3BsXfqbag_1BXIsjj0
CitedBy_id crossref_primary_10_1134_S1054661821040118
crossref_primary_10_3390_s20143903
crossref_primary_10_1007_s42001_024_00315_1
crossref_primary_10_1007_s11042_023_17719_2
crossref_primary_10_1007_s11548_021_02497_9
crossref_primary_10_1080_02726351_2023_2217651
crossref_primary_10_1155_2021_3159968
crossref_primary_10_3390_rs15245773
crossref_primary_10_1155_2021_2295920
crossref_primary_10_1016_j_sasc_2025_200344
crossref_primary_10_1007_s42452_023_05365_0
crossref_primary_10_1080_23270012_2025_2454674
crossref_primary_10_1007_s11042_022_14045_x
crossref_primary_10_1007_s11831_021_09629_z
crossref_primary_10_1038_s41598_020_71294_2
crossref_primary_10_3390_s21082695
crossref_primary_10_1007_s00371_021_02126_1
crossref_primary_10_3390_sym13020239
crossref_primary_10_1016_j_eswa_2024_126239
crossref_primary_10_1155_2021_5544742
crossref_primary_10_1155_2021_8834917
crossref_primary_10_3233_IDT_230773
crossref_primary_10_3390_biomimetics10050282
crossref_primary_10_4018_IJSDA_302632
crossref_primary_10_1016_j_apm_2020_09_008
crossref_primary_10_1002_cpe_7610
crossref_primary_10_1007_s11042_022_13044_2
crossref_primary_10_1007_s12351_025_00899_0
crossref_primary_10_1016_j_ecoinf_2022_101649
crossref_primary_10_1155_2022_4254932
crossref_primary_10_3389_fnbot_2022_845858
crossref_primary_10_1007_s12652_021_03430_3
crossref_primary_10_1007_s11042_023_14593_w
crossref_primary_10_33889_IJMEMS_2021_6_5_076
crossref_primary_10_1016_j_eswa_2020_114121
crossref_primary_10_1007_s11042_021_11547_y
crossref_primary_10_1007_s12652_020_02762_w
crossref_primary_10_1007_s11227_022_04769_w
crossref_primary_10_3390_app11073032
crossref_primary_10_3390_info16060456
crossref_primary_10_1007_s40435_022_01086_1
crossref_primary_10_3233_JIFS_237994
crossref_primary_10_3390_s22113966
crossref_primary_10_1155_2022_9572395
crossref_primary_10_1007_s11548_021_02522_x
crossref_primary_10_1038_s41598_023_47089_6
Cites_doi 10.13005/bpj/1484
10.1016/j.cviu.2007.08.003
10.1007/978-3-642-24282-3_76
10.1016/j.cmpb.2015.08.001
10.1109/ICCIC.2014.7238446
10.1109/ACCESS.2019.2907043
10.1109/ICNN.1995.488968
10.1016/j.asoc.2010.05.005
10.1155/2013/716952
10.1109/TMI.2004.832656
10.1016/j.ijleo.2015.09.127
10.2991/ifsa-eusflat-15.2015.150
10.1109/TCSVT.2017.2726580
10.1142/S0218001405004083
10.1007/11526018_15
10.1016/j.eij.2015.01.003
10.1146/annurev.bioeng.2.1.315
10.3906/elk-1111-29
10.1007/978-1-4757-0450-1
10.1109/TIP.2017.2762588
10.1016/j.eswa.2015.04.032
10.1109/TFUZZ.2018.2796074
10.1109/TNNLS.2018.2850823
10.1109/TNNLS.2018.2836969
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-08699-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 18858
ExternalDocumentID 10_1007_s11042_020_08699_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-be3e47a8a8052f2a274feb5886a4b71db602fa53cb790f088bf31e7ab8f43ae33
IEDL.DBID RSV
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587677800070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 01:35:01 EST 2025
Tue Nov 18 22:24:01 EST 2025
Sat Nov 29 03:26:16 EST 2025
Fri Feb 21 02:37:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25-26
Keywords Image segmentation
Dynamic particle swarm optimization
Clustering
MRI image
Fuzzy c-means
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-be3e47a8a8052f2a274feb5886a4b71db602fa53cb790f088bf31e7ab8f43ae33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2420903443
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2420903443
crossref_citationtrail_10_1007_s11042_020_08699_8
crossref_primary_10_1007_s11042_020_08699_8
springer_journals_10_1007_s11042_020_08699_8
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tao D, Gua Y, Boasheng Y, Pan J, Zhengtao Y (2018) Deep multi-view feature learning for person re-identification. IEEE Trans Circuit Syst Video Technol, 28, 10
SiddiquiFUMet IsaNAYahyaAOutlier rejection fuzzy c-means (ORFCM) algorithm for image segmentationTurkish J Electr Eng Comput Sci20132161801181910.3906/elk-1111-29
MekhmoukhAMokraniKImproved Fuzzy c-means base Particle Swarm Optimization initialization with level set method for MR brain image segmentationComput Method Program Biomed2015122226628110.1016/j.cmpb.2015.08.001
WangX-DChenR-CYanFZengQZHongC-QRobust dimension reduction for clustering with local adaptive learningIEEE Trans Neural Netw Learn Syst2019303657669392017010.1109/TNNLS.2018.2850823
DunnJCA fuzzy relative of the ISODATA process and its use in detecting compact well-seperated clustersCybern Syst19733332570291.68033
GoyalBDograAAgrawalSSohiBSNoise issue prevailing in various types of medical imagesBiomed Pharmacology J20181131227123710.13005/bpj/1484
EmanA-MElmogyMAl-AwadiRBrain tumor segmentation based on a hybrid clustering techniqueEgypt Inform J201516718110.1016/j.eij.2015.01.003
TelmoMFilhoSPimentelBASouzaRMCROliveiraALIHybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimizationExperts Syst Appl20154217-186315632810.1016/j.eswa.2015.04.032
Haiyang L, He H, Yongge W (2015) Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation, 126, 4817–4822
PhamDzungLChenyangXPrinceJLCurrent methods in medical image segmentationAnnual Rev Biomed Eng2000231533710.1146/annurev.bioeng.2.1.315
HuiZhangJEGoldmanSAFritts image segmentation evaluation: a survey of unsupervised methodsComput Vis Image Underst2008110226028010.1016/j.cviu.2007.08.003
OmranMSalmanAEngelbrechtAPParticle swarm optimization for image clusteringIntern J Pattern Recogn Artificial Intell200519329731110.1142/S0218001405004083
Chaudhuri A (2015) Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithm, Advances in FUzzy System, vol. 2015(238237)
TaoDchungJZhengtaoTYueKWangLDomain-weighted majority voting for crowdsourcingIEEE Trans Neural Netw Learn Syst2019301163174390140210.1109/TNNLS.2018.2836969
Tao D, Gua Y, Li Y, Gao X (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans Image Process, 27, 1
PantofaruCHebertMA comparison of image segmentation algorithm, The Robotics Institute, Carnegie Mellon University2005PennsylvaniaPittsburgh
ChairaTA novel intuitionistic fuzzy c-means clustering algorithm and its application to medical imagesAppl Soft Comput2011111711171710.1016/j.asoc.2010.05.005
Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization, Evolutionary Computation, CEC 99. In: Proceedings of the 1999 Congress, Washington, DC, USA, p 1999
BezdekJCPattern recognition with fuzzy objective function algorithm1981New YorkPlenum Press0503.6806910.1007/978-1-4757-0450-1
Pan D, Liu Z (2011) An improved particle swarm optimization, Communication in Computer and Information Science, 237
Mizutani K, Miamoto S (2005) Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization. In: Proceeding of the Second International Conference on Modelling Decisions for Artificial Intelligence, Springer-Verlag, Tsukuba, Japan, pp 144–155
Omran M, Salman A, Engelbrecht AP (2002) Image classification using particle swarm optimization. In: Proceeding 4th Asia-Pacific conference on simulated evolution and Learning, Singapore, pp 370–374
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding IEEE International Conference on Neural Networks, Peerth, Australia, vol 4, pp 1942–1948
Triphathy BK, Basan A, Govel S (2014) Image segmentation intuitionistic fuzzy c means clustering. In: IEEE international conference on computational intelligence and computing research
Gravel P, Beaudoin G, De Guise JA (2004) A method for Modelling noise Medical Images, IEEE Trans Med Imag, 23(10)
Wang X-D, Chen R-C, Yan F, Zeng Z-Q, Hong C-Q Fast Adaptive k-means Subspace Clustering for High-dimensional Data, IEEE Access, 7, 42639–42651
Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy C-Means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Systems, 26, 5
Zhang YC, Xiong X, Zhang QD (2013) An improved Self-Adaptive PSO Algorithm with Detection Function for Multimodal Function Optimization Problems, Mathematical Problems in Engineering, vol. 2013(716952)
M Omran (8699_CR15) 2005; 19
8699_CR19
C Pantofaru (8699_CR17) 2005
JE HuiZhang (8699_CR9) 2008; 110
JC Bezdek (8699_CR1) 1981
8699_CR11
8699_CR14
8699_CR13
8699_CR16
X-D Wang (8699_CR26) 2019; 30
M Telmo (8699_CR24) 2015; 42
FU Siddiqui (8699_CR20) 2013; 21
8699_CR10
B Goyal (8699_CR6) 2018; 11
JC Dunn (8699_CR4) 1973; 3
A Mekhmoukh (8699_CR12) 2015; 122
8699_CR7
8699_CR3
8699_CR23
D Tao (8699_CR21) 2019; 30
8699_CR22
8699_CR25
8699_CR27
A-M Eman (8699_CR5) 2015; 16
8699_CR8
T Chaira (8699_CR2) 2011; 11
8699_CR28
DzungL Pham (8699_CR18) 2000; 2
References_xml – reference: Chaudhuri A (2015) Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithm, Advances in FUzzy System, vol. 2015(238237)
– reference: Tao D, Gua Y, Li Y, Gao X (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans Image Process, 27, 1
– reference: Tao D, Gua Y, Boasheng Y, Pan J, Zhengtao Y (2018) Deep multi-view feature learning for person re-identification. IEEE Trans Circuit Syst Video Technol, 28, 10
– reference: HuiZhangJEGoldmanSAFritts image segmentation evaluation: a survey of unsupervised methodsComput Vis Image Underst2008110226028010.1016/j.cviu.2007.08.003
– reference: Mizutani K, Miamoto S (2005) Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization. In: Proceeding of the Second International Conference on Modelling Decisions for Artificial Intelligence, Springer-Verlag, Tsukuba, Japan, pp 144–155
– reference: Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization, Evolutionary Computation, CEC 99. In: Proceedings of the 1999 Congress, Washington, DC, USA, p 1999
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding IEEE International Conference on Neural Networks, Peerth, Australia, vol 4, pp 1942–1948
– reference: MekhmoukhAMokraniKImproved Fuzzy c-means base Particle Swarm Optimization initialization with level set method for MR brain image segmentationComput Method Program Biomed2015122226628110.1016/j.cmpb.2015.08.001
– reference: WangX-DChenR-CYanFZengQZHongC-QRobust dimension reduction for clustering with local adaptive learningIEEE Trans Neural Netw Learn Syst2019303657669392017010.1109/TNNLS.2018.2850823
– reference: Gravel P, Beaudoin G, De Guise JA (2004) A method for Modelling noise Medical Images, IEEE Trans Med Imag, 23(10)
– reference: Haiyang L, He H, Yongge W (2015) Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation, 126, 4817–4822
– reference: GoyalBDograAAgrawalSSohiBSNoise issue prevailing in various types of medical imagesBiomed Pharmacology J20181131227123710.13005/bpj/1484
– reference: SiddiquiFUMet IsaNAYahyaAOutlier rejection fuzzy c-means (ORFCM) algorithm for image segmentationTurkish J Electr Eng Comput Sci20132161801181910.3906/elk-1111-29
– reference: PhamDzungLChenyangXPrinceJLCurrent methods in medical image segmentationAnnual Rev Biomed Eng2000231533710.1146/annurev.bioeng.2.1.315
– reference: Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy C-Means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Systems, 26, 5
– reference: ChairaTA novel intuitionistic fuzzy c-means clustering algorithm and its application to medical imagesAppl Soft Comput2011111711171710.1016/j.asoc.2010.05.005
– reference: PantofaruCHebertMA comparison of image segmentation algorithm, The Robotics Institute, Carnegie Mellon University2005PennsylvaniaPittsburgh
– reference: Pan D, Liu Z (2011) An improved particle swarm optimization, Communication in Computer and Information Science, 237
– reference: EmanA-MElmogyMAl-AwadiRBrain tumor segmentation based on a hybrid clustering techniqueEgypt Inform J201516718110.1016/j.eij.2015.01.003
– reference: Omran M, Salman A, Engelbrecht AP (2002) Image classification using particle swarm optimization. In: Proceeding 4th Asia-Pacific conference on simulated evolution and Learning, Singapore, pp 370–374
– reference: Wang X-D, Chen R-C, Yan F, Zeng Z-Q, Hong C-Q Fast Adaptive k-means Subspace Clustering for High-dimensional Data, IEEE Access, 7, 42639–42651
– reference: Zhang YC, Xiong X, Zhang QD (2013) An improved Self-Adaptive PSO Algorithm with Detection Function for Multimodal Function Optimization Problems, Mathematical Problems in Engineering, vol. 2013(716952)
– reference: DunnJCA fuzzy relative of the ISODATA process and its use in detecting compact well-seperated clustersCybern Syst19733332570291.68033
– reference: TaoDchungJZhengtaoTYueKWangLDomain-weighted majority voting for crowdsourcingIEEE Trans Neural Netw Learn Syst2019301163174390140210.1109/TNNLS.2018.2836969
– reference: TelmoMFilhoSPimentelBASouzaRMCROliveiraALIHybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimizationExperts Syst Appl20154217-186315632810.1016/j.eswa.2015.04.032
– reference: BezdekJCPattern recognition with fuzzy objective function algorithm1981New YorkPlenum Press0503.6806910.1007/978-1-4757-0450-1
– reference: Triphathy BK, Basan A, Govel S (2014) Image segmentation intuitionistic fuzzy c means clustering. In: IEEE international conference on computational intelligence and computing research
– reference: OmranMSalmanAEngelbrechtAPParticle swarm optimization for image clusteringIntern J Pattern Recogn Artificial Intell200519329731110.1142/S0218001405004083
– volume: 11
  start-page: 1227
  issue: 3
  year: 2018
  ident: 8699_CR6
  publication-title: Biomed Pharmacology J
  doi: 10.13005/bpj/1484
– volume: 110
  start-page: 260
  issue: 2
  year: 2008
  ident: 8699_CR9
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2007.08.003
– ident: 8699_CR16
  doi: 10.1007/978-3-642-24282-3_76
– volume: 122
  start-page: 266
  issue: 2
  year: 2015
  ident: 8699_CR12
  publication-title: Comput Method Program Biomed
  doi: 10.1016/j.cmpb.2015.08.001
– ident: 8699_CR25
  doi: 10.1109/ICCIC.2014.7238446
– ident: 8699_CR27
  doi: 10.1109/ACCESS.2019.2907043
– ident: 8699_CR10
  doi: 10.1109/ICNN.1995.488968
– volume: 11
  start-page: 1711
  year: 2011
  ident: 8699_CR2
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.05.005
– ident: 8699_CR28
  doi: 10.1155/2013/716952
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 8699_CR4
  publication-title: Cybern Syst
– ident: 8699_CR7
  doi: 10.1109/TMI.2004.832656
– ident: 8699_CR8
  doi: 10.1016/j.ijleo.2015.09.127
– ident: 8699_CR19
– ident: 8699_CR3
  doi: 10.2991/ifsa-eusflat-15.2015.150
– ident: 8699_CR22
  doi: 10.1109/TCSVT.2017.2726580
– volume: 19
  start-page: 297
  issue: 3
  year: 2005
  ident: 8699_CR15
  publication-title: Intern J Pattern Recogn Artificial Intell
  doi: 10.1142/S0218001405004083
– ident: 8699_CR13
  doi: 10.1007/11526018_15
– volume: 16
  start-page: 71
  year: 2015
  ident: 8699_CR5
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2015.01.003
– volume: 2
  start-page: 315
  year: 2000
  ident: 8699_CR18
  publication-title: Annual Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.2.1.315
– volume: 21
  start-page: 1801
  issue: 6
  year: 2013
  ident: 8699_CR20
  publication-title: Turkish J Electr Eng Comput Sci
  doi: 10.3906/elk-1111-29
– volume-title: Pattern recognition with fuzzy objective function algorithm
  year: 1981
  ident: 8699_CR1
  doi: 10.1007/978-1-4757-0450-1
– volume-title: A comparison of image segmentation algorithm, The Robotics Institute, Carnegie Mellon University
  year: 2005
  ident: 8699_CR17
– ident: 8699_CR23
  doi: 10.1109/TIP.2017.2762588
– volume: 42
  start-page: 6315
  issue: 17-18
  year: 2015
  ident: 8699_CR24
  publication-title: Experts Syst Appl
  doi: 10.1016/j.eswa.2015.04.032
– ident: 8699_CR11
  doi: 10.1109/TFUZZ.2018.2796074
– volume: 30
  start-page: 657
  issue: 3
  year: 2019
  ident: 8699_CR26
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2850823
– ident: 8699_CR14
– volume: 30
  start-page: 163
  issue: 1
  year: 2019
  ident: 8699_CR21
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2836969
SSID ssj0016524
Score 2.4662862
Snippet Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18839
SubjectTerms Algorithms
Clustering
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Global optimization
Image enhancement
Image processing
Image segmentation
Inertia
Learning
Literature reviews
Magnetic resonance imaging
Multimedia Information Systems
Noise
Noise reduction
Noise sensitivity
Optimization
Parameters
Particle swarm optimization
Special Purpose and Application-Based Systems
Weight
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMBAoYAoFOSBDSzycBJ7QlVFxQAVA6BukeNHQWrS0qQg-uuxU6cFJLqwxrFl6Tvfd37cfQCcu5qUjbw08hTFCAcSI8akh7hwQyqUoLxUa3i-i3o90u_TB3vglttnlZVPLB21GHFzRn6lqcQcKWDsX4_fkFGNMrerVkJjHWyYyMY86bt3OotbhDCworbEQZoZXZs0M0-dc01iitk86aCeUkR-EtMy2vx1QVryTrf-3xnvgh0bccL23ET2wJrMGqBeqTlAu7gbYPtbacJ9MGhn8DXVzgbmcpDaBKUMViXIoWE_AfUXNZ3NPiFHqdSkB1kmoJiL3MOxtUqYf7BJCkfaOaU26xOy4UBPtXhJD8BT9-axc4usKAPiPgkKlEhf4ogRZrQQlMf0rlbJJCAkZDiJXJGEjqdY4PMkoo7SPixRvisjlhCFfSZ9_xDUslEmjwD0tG8Lpd7ASomxxwUTmIYi5AkNJXcFaQK3QiTmtmK5Ec4YxstaywbFWKMYlyjGus_Fos94Xq9j5d-tCrrYrt08XuLWBJcV-Mvmv0c7Xj3aCdjySnszb31boFZMpvIUbPL34jWfnJWW-wVF0vP1
  priority: 102
  providerName: ProQuest
Title An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm
URI https://link.springer.com/article/10.1007/s11042-020-08699-8
https://www.proquest.com/docview/2420903443
Volume 79
WOSCitedRecordID wos000587677800070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOpQDFCji1ZUP3IqlTeIk9hEQqFLbZQUt0F4ix49lpU0WbRYQ_HrGWYelVUGCi6UkthXZ4_lmbM98ALsBgrKjl6ahFYyy2DAqpQmp0kEitNVC1WwN59_TTodfXoquDwqrmtvuzZFkramnwW6BCyVx7g6a4UJQPgvzCHfcETacnp0_nR0ksaey5W2KeBj4UJn_9_E3HE1tzH-ORWu0OV5-339-hCVvXZL9iTiswIwpV2G5YW4gfiGvwuKzNIRr0NsvSb9AxUIq0yt8MFJJmnTjxCGdJvjG3jw83BNFC4MAR2SpiZ4Q2pNrL4GkupOjggxRERU-wpPIQW846o-vik_w6_jo5-FX6gkYqIp4PKa5iQxLJZeO98CGEj1Ya_KY80SyPA10nrRDK-NI5aloW9RXuY0Ck8qcWxZJE0XrMFcOS7MBJEQ9lhh0Vo1hLFRaaiYSnahcJEYFmm9C0MxDpnx2ckeSMcimeZXduGY4rlk9rhm2-fLU5nqSm-PV2jvN9GZ-nVYZGihuo4qxaBP2mumcfn65t623Vd-GD2EtEe6e7w7MjUc35jMsqNtxvxq1YDa9-N2C-YOjTvcUn76lFMsf7UNXhidYduM_rVrKHwFS9PCM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH4hSKIcBFEDCtiDnrRxp9OZaQ-GEIRAdt14QMNt7PTHugkzu-4skuWP8m_kdbbDKgncOHidmTaZ9nvf62v73gfwNkKn7OWlKXOSU55YTpWyjGoTpdI4I3Wj1vC9l_X74uxMfl2CP20ujL9W2XJiQ9RmpP0e-Ud0JX5LgfN4b_yLetUof7raSmjMYdG1s0sM2epPJ59xft8xdnR4enBMg6oA1bFIprSwseWZEsoX83dMYVjmbJEIkSpeZJEp0g5zKol1kcmOQyMsXBzZTBXC8VhZvwGKlP-IxyLzdtXN6M2pRZoEEV3RoeiJo5CkM0_Vi3wijA_WMIiQkop_HeFidXvrQLbxc0dr_9sIrcPTsKIm-3MTeAZLttqAtVatggTy2oDVv0ovPofBfkWGJZIpqe2gDAlYFWlLrBPv3Q3BJ-7i6mpGNC0tOnWiKkPMrFLlUJNxsDpSX6pJSUZIvmXIaiXqfIBDM_1ZvoBvD_LzL2G5GlV2EwhD7k4tBujWcs60UYbL1KS6kKnVkRFbELUIyHWoyO6FQc7zRS1pj5ocUZM3qMmxzfubNuN5PZJ7v95uoZIHbqrzBU624EMLtsXru3t7dX9vb-Dx8emXXt476XdfwxPWYN3fa96G5enkwu7Aiv49HdaT3cZqCPx4aBBeA6qoUjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFH4haIwcQFEiCDgHPemE7XTazhyMIcIGAtnsQQ3xUqfzY92EdpftIln-NP8633SnLJLIjYPXtjNJ2-99b97Me-8DeBuhU_by0pQ5ySlPLKdKWUa1iVJpnJG6UWv4dpr1euLsTPaX4HdbC-PTKltObIjajLTfI99DV-K3FDiP91xIi-gfdD-NL6hXkPInra2cxhwiJ3Z2heFb_fH4AP_1O8a6h18-H9GgMEB1LJIpLWxseaaE8o39HVMYojlbJEKkihdZZIq0w5xKYl1ksuPQIAsXRzZThXA8VtZvhiL9P8owxvTphP3k-80JRpoEQV3RoeiVo1CwMy_bi3xRjA_cMKCQkoq_neJipXvncLbxed21__lrPYPVsNIm-3PTeA5LtlqHtVbFggRSW4eVWy0ZX8BgvyLDEkmW1HZQhsKsirSt14n3-obgFXd5fT0jmpYWnT1RlSFmVqlyqMk4WCOpr9SkJCMk5TJUuxJ1PsBPM_1ZvoSvD_LyG7BcjSr7CghDTk8tBu7Wcs60UYbL1KS6kKnVkRGbELVoyHXo1O4FQ87zRY9pj6AcEZQ3CMpxzPubMeN5n5J7n95uYZMHzqrzBWY24UMLvMXtf8-2df9sb-AJYi8_Pe6dvIanrIG9T3fehuXp5NLuwGP9azqsJ7uNARH48dAY_AOTcVtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image+segmentation+approach+based+on+fuzzy+c-means+and+dynamic+particle+swarm+optimization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dhanachandra%2C+Nameirakpam&rft.au=Chanu%2C+Yambem+Jina&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=25-26&rft.spage=18839&rft.epage=18858&rft_id=info:doi/10.1007%2Fs11042-020-08699-8&rft.externalDocID=10_1007_s11042_020_08699_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon