An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm
Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution...
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 79; číslo 25-26; s. 18839 - 18858 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise. |
|---|---|
| AbstractList | Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise. |
| Author | Dhanachandra, Nameirakpam Chanu, Yambem Jina |
| Author_xml | – sequence: 1 givenname: Nameirakpam surname: Dhanachandra fullname: Dhanachandra, Nameirakpam email: dhana.namei@gmail.com organization: National Institute of Technology Manipur – sequence: 2 givenname: Yambem Jina surname: Chanu fullname: Chanu, Yambem Jina organization: National Institute of Technology Manipur |
| BookMark | eNp9kMtKAzEUhoMoeH0BVwHX0ZPLNOmyiDcQ3Og6nJkmY0onMyZTpH16oyMILrpKCP_355zvlBzGPjpCLjlccwB9kzkHJRgIYGBm8zkzB-SEV1oyrQU_LHdpgOkK-DE5zXkFwGeVUCekXUQaOmwdza7tXBxxDH2kOAypx-ad1pjdkpYXv9nttrRhncOYKcYlXW4jdqGhA6YxNOvS8Impo_0whi7sfnvWbZ_C-N6dkyOP6-wufs8z8nZ_93r7yJ5fHp5uF8-skaYaWe2kUxoNGqiEFyi08q6ujJmhqjVf1jMQHivZ1HoOHoypveROY228kuikPCNXU2-Z_2Pj8mhX_SbF8qUVSsAcpFLfKTOlmtTnnJy3TZg2HxOGteVgv7XaSastWu2PVmsKKv6hQyoC03Y_JCcol3BsXfqbag_1BXIsjj0 |
| CitedBy_id | crossref_primary_10_1134_S1054661821040118 crossref_primary_10_3390_s20143903 crossref_primary_10_1007_s42001_024_00315_1 crossref_primary_10_1007_s11042_023_17719_2 crossref_primary_10_1007_s11548_021_02497_9 crossref_primary_10_1080_02726351_2023_2217651 crossref_primary_10_1155_2021_3159968 crossref_primary_10_3390_rs15245773 crossref_primary_10_1155_2021_2295920 crossref_primary_10_1016_j_sasc_2025_200344 crossref_primary_10_1007_s42452_023_05365_0 crossref_primary_10_1080_23270012_2025_2454674 crossref_primary_10_1007_s11042_022_14045_x crossref_primary_10_1007_s11831_021_09629_z crossref_primary_10_1038_s41598_020_71294_2 crossref_primary_10_3390_s21082695 crossref_primary_10_1007_s00371_021_02126_1 crossref_primary_10_3390_sym13020239 crossref_primary_10_1016_j_eswa_2024_126239 crossref_primary_10_1155_2021_5544742 crossref_primary_10_1155_2021_8834917 crossref_primary_10_3233_IDT_230773 crossref_primary_10_3390_biomimetics10050282 crossref_primary_10_4018_IJSDA_302632 crossref_primary_10_1016_j_apm_2020_09_008 crossref_primary_10_1002_cpe_7610 crossref_primary_10_1007_s11042_022_13044_2 crossref_primary_10_1007_s12351_025_00899_0 crossref_primary_10_1016_j_ecoinf_2022_101649 crossref_primary_10_1155_2022_4254932 crossref_primary_10_3389_fnbot_2022_845858 crossref_primary_10_1007_s12652_021_03430_3 crossref_primary_10_1007_s11042_023_14593_w crossref_primary_10_33889_IJMEMS_2021_6_5_076 crossref_primary_10_1016_j_eswa_2020_114121 crossref_primary_10_1007_s11042_021_11547_y crossref_primary_10_1007_s12652_020_02762_w crossref_primary_10_1007_s11227_022_04769_w crossref_primary_10_3390_app11073032 crossref_primary_10_3390_info16060456 crossref_primary_10_1007_s40435_022_01086_1 crossref_primary_10_3233_JIFS_237994 crossref_primary_10_3390_s22113966 crossref_primary_10_1155_2022_9572395 crossref_primary_10_1007_s11548_021_02522_x crossref_primary_10_1038_s41598_023_47089_6 |
| Cites_doi | 10.13005/bpj/1484 10.1016/j.cviu.2007.08.003 10.1007/978-3-642-24282-3_76 10.1016/j.cmpb.2015.08.001 10.1109/ICCIC.2014.7238446 10.1109/ACCESS.2019.2907043 10.1109/ICNN.1995.488968 10.1016/j.asoc.2010.05.005 10.1155/2013/716952 10.1109/TMI.2004.832656 10.1016/j.ijleo.2015.09.127 10.2991/ifsa-eusflat-15.2015.150 10.1109/TCSVT.2017.2726580 10.1142/S0218001405004083 10.1007/11526018_15 10.1016/j.eij.2015.01.003 10.1146/annurev.bioeng.2.1.315 10.3906/elk-1111-29 10.1007/978-1-4757-0450-1 10.1109/TIP.2017.2762588 10.1016/j.eswa.2015.04.032 10.1109/TFUZZ.2018.2796074 10.1109/TNNLS.2018.2850823 10.1109/TNNLS.2018.2836969 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-020-08699-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 18858 |
| ExternalDocumentID | 10_1007_s11042_020_08699_8 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c385t-be3e47a8a8052f2a274feb5886a4b71db602fa53cb790f088bf31e7ab8f43ae33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587677800070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 01:35:01 EST 2025 Tue Nov 18 22:24:01 EST 2025 Sat Nov 29 03:26:16 EST 2025 Fri Feb 21 02:37:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25-26 |
| Keywords | Image segmentation Dynamic particle swarm optimization Clustering MRI image Fuzzy c-means |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-be3e47a8a8052f2a274feb5886a4b71db602fa53cb790f088bf31e7ab8f43ae33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2420903443 |
| PQPubID | 54626 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2420903443 crossref_citationtrail_10_1007_s11042_020_08699_8 crossref_primary_10_1007_s11042_020_08699_8 springer_journals_10_1007_s11042_020_08699_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Tao D, Gua Y, Boasheng Y, Pan J, Zhengtao Y (2018) Deep multi-view feature learning for person re-identification. IEEE Trans Circuit Syst Video Technol, 28, 10 SiddiquiFUMet IsaNAYahyaAOutlier rejection fuzzy c-means (ORFCM) algorithm for image segmentationTurkish J Electr Eng Comput Sci20132161801181910.3906/elk-1111-29 MekhmoukhAMokraniKImproved Fuzzy c-means base Particle Swarm Optimization initialization with level set method for MR brain image segmentationComput Method Program Biomed2015122226628110.1016/j.cmpb.2015.08.001 WangX-DChenR-CYanFZengQZHongC-QRobust dimension reduction for clustering with local adaptive learningIEEE Trans Neural Netw Learn Syst2019303657669392017010.1109/TNNLS.2018.2850823 DunnJCA fuzzy relative of the ISODATA process and its use in detecting compact well-seperated clustersCybern Syst19733332570291.68033 GoyalBDograAAgrawalSSohiBSNoise issue prevailing in various types of medical imagesBiomed Pharmacology J20181131227123710.13005/bpj/1484 EmanA-MElmogyMAl-AwadiRBrain tumor segmentation based on a hybrid clustering techniqueEgypt Inform J201516718110.1016/j.eij.2015.01.003 TelmoMFilhoSPimentelBASouzaRMCROliveiraALIHybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimizationExperts Syst Appl20154217-186315632810.1016/j.eswa.2015.04.032 Haiyang L, He H, Yongge W (2015) Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation, 126, 4817–4822 PhamDzungLChenyangXPrinceJLCurrent methods in medical image segmentationAnnual Rev Biomed Eng2000231533710.1146/annurev.bioeng.2.1.315 HuiZhangJEGoldmanSAFritts image segmentation evaluation: a survey of unsupervised methodsComput Vis Image Underst2008110226028010.1016/j.cviu.2007.08.003 OmranMSalmanAEngelbrechtAPParticle swarm optimization for image clusteringIntern J Pattern Recogn Artificial Intell200519329731110.1142/S0218001405004083 Chaudhuri A (2015) Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithm, Advances in FUzzy System, vol. 2015(238237) TaoDchungJZhengtaoTYueKWangLDomain-weighted majority voting for crowdsourcingIEEE Trans Neural Netw Learn Syst2019301163174390140210.1109/TNNLS.2018.2836969 Tao D, Gua Y, Li Y, Gao X (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans Image Process, 27, 1 PantofaruCHebertMA comparison of image segmentation algorithm, The Robotics Institute, Carnegie Mellon University2005PennsylvaniaPittsburgh ChairaTA novel intuitionistic fuzzy c-means clustering algorithm and its application to medical imagesAppl Soft Comput2011111711171710.1016/j.asoc.2010.05.005 Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization, Evolutionary Computation, CEC 99. In: Proceedings of the 1999 Congress, Washington, DC, USA, p 1999 BezdekJCPattern recognition with fuzzy objective function algorithm1981New YorkPlenum Press0503.6806910.1007/978-1-4757-0450-1 Pan D, Liu Z (2011) An improved particle swarm optimization, Communication in Computer and Information Science, 237 Mizutani K, Miamoto S (2005) Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization. In: Proceeding of the Second International Conference on Modelling Decisions for Artificial Intelligence, Springer-Verlag, Tsukuba, Japan, pp 144–155 Omran M, Salman A, Engelbrecht AP (2002) Image classification using particle swarm optimization. In: Proceeding 4th Asia-Pacific conference on simulated evolution and Learning, Singapore, pp 370–374 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding IEEE International Conference on Neural Networks, Peerth, Australia, vol 4, pp 1942–1948 Triphathy BK, Basan A, Govel S (2014) Image segmentation intuitionistic fuzzy c means clustering. In: IEEE international conference on computational intelligence and computing research Gravel P, Beaudoin G, De Guise JA (2004) A method for Modelling noise Medical Images, IEEE Trans Med Imag, 23(10) Wang X-D, Chen R-C, Yan F, Zeng Z-Q, Hong C-Q Fast Adaptive k-means Subspace Clustering for High-dimensional Data, IEEE Access, 7, 42639–42651 Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy C-Means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Systems, 26, 5 Zhang YC, Xiong X, Zhang QD (2013) An improved Self-Adaptive PSO Algorithm with Detection Function for Multimodal Function Optimization Problems, Mathematical Problems in Engineering, vol. 2013(716952) M Omran (8699_CR15) 2005; 19 8699_CR19 C Pantofaru (8699_CR17) 2005 JE HuiZhang (8699_CR9) 2008; 110 JC Bezdek (8699_CR1) 1981 8699_CR11 8699_CR14 8699_CR13 8699_CR16 X-D Wang (8699_CR26) 2019; 30 M Telmo (8699_CR24) 2015; 42 FU Siddiqui (8699_CR20) 2013; 21 8699_CR10 B Goyal (8699_CR6) 2018; 11 JC Dunn (8699_CR4) 1973; 3 A Mekhmoukh (8699_CR12) 2015; 122 8699_CR7 8699_CR3 8699_CR23 D Tao (8699_CR21) 2019; 30 8699_CR22 8699_CR25 8699_CR27 A-M Eman (8699_CR5) 2015; 16 8699_CR8 T Chaira (8699_CR2) 2011; 11 8699_CR28 DzungL Pham (8699_CR18) 2000; 2 |
| References_xml | – reference: Chaudhuri A (2015) Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithm, Advances in FUzzy System, vol. 2015(238237) – reference: Tao D, Gua Y, Li Y, Gao X (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans Image Process, 27, 1 – reference: Tao D, Gua Y, Boasheng Y, Pan J, Zhengtao Y (2018) Deep multi-view feature learning for person re-identification. IEEE Trans Circuit Syst Video Technol, 28, 10 – reference: HuiZhangJEGoldmanSAFritts image segmentation evaluation: a survey of unsupervised methodsComput Vis Image Underst2008110226028010.1016/j.cviu.2007.08.003 – reference: Mizutani K, Miamoto S (2005) Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization. In: Proceeding of the Second International Conference on Modelling Decisions for Artificial Intelligence, Springer-Verlag, Tsukuba, Japan, pp 144–155 – reference: Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization, Evolutionary Computation, CEC 99. In: Proceedings of the 1999 Congress, Washington, DC, USA, p 1999 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding IEEE International Conference on Neural Networks, Peerth, Australia, vol 4, pp 1942–1948 – reference: MekhmoukhAMokraniKImproved Fuzzy c-means base Particle Swarm Optimization initialization with level set method for MR brain image segmentationComput Method Program Biomed2015122226628110.1016/j.cmpb.2015.08.001 – reference: WangX-DChenR-CYanFZengQZHongC-QRobust dimension reduction for clustering with local adaptive learningIEEE Trans Neural Netw Learn Syst2019303657669392017010.1109/TNNLS.2018.2850823 – reference: Gravel P, Beaudoin G, De Guise JA (2004) A method for Modelling noise Medical Images, IEEE Trans Med Imag, 23(10) – reference: Haiyang L, He H, Yongge W (2015) Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation, 126, 4817–4822 – reference: GoyalBDograAAgrawalSSohiBSNoise issue prevailing in various types of medical imagesBiomed Pharmacology J20181131227123710.13005/bpj/1484 – reference: SiddiquiFUMet IsaNAYahyaAOutlier rejection fuzzy c-means (ORFCM) algorithm for image segmentationTurkish J Electr Eng Comput Sci20132161801181910.3906/elk-1111-29 – reference: PhamDzungLChenyangXPrinceJLCurrent methods in medical image segmentationAnnual Rev Biomed Eng2000231533710.1146/annurev.bioeng.2.1.315 – reference: Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy C-Means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Systems, 26, 5 – reference: ChairaTA novel intuitionistic fuzzy c-means clustering algorithm and its application to medical imagesAppl Soft Comput2011111711171710.1016/j.asoc.2010.05.005 – reference: PantofaruCHebertMA comparison of image segmentation algorithm, The Robotics Institute, Carnegie Mellon University2005PennsylvaniaPittsburgh – reference: Pan D, Liu Z (2011) An improved particle swarm optimization, Communication in Computer and Information Science, 237 – reference: EmanA-MElmogyMAl-AwadiRBrain tumor segmentation based on a hybrid clustering techniqueEgypt Inform J201516718110.1016/j.eij.2015.01.003 – reference: Omran M, Salman A, Engelbrecht AP (2002) Image classification using particle swarm optimization. In: Proceeding 4th Asia-Pacific conference on simulated evolution and Learning, Singapore, pp 370–374 – reference: Wang X-D, Chen R-C, Yan F, Zeng Z-Q, Hong C-Q Fast Adaptive k-means Subspace Clustering for High-dimensional Data, IEEE Access, 7, 42639–42651 – reference: Zhang YC, Xiong X, Zhang QD (2013) An improved Self-Adaptive PSO Algorithm with Detection Function for Multimodal Function Optimization Problems, Mathematical Problems in Engineering, vol. 2013(716952) – reference: DunnJCA fuzzy relative of the ISODATA process and its use in detecting compact well-seperated clustersCybern Syst19733332570291.68033 – reference: TaoDchungJZhengtaoTYueKWangLDomain-weighted majority voting for crowdsourcingIEEE Trans Neural Netw Learn Syst2019301163174390140210.1109/TNNLS.2018.2836969 – reference: TelmoMFilhoSPimentelBASouzaRMCROliveiraALIHybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimizationExperts Syst Appl20154217-186315632810.1016/j.eswa.2015.04.032 – reference: BezdekJCPattern recognition with fuzzy objective function algorithm1981New YorkPlenum Press0503.6806910.1007/978-1-4757-0450-1 – reference: Triphathy BK, Basan A, Govel S (2014) Image segmentation intuitionistic fuzzy c means clustering. In: IEEE international conference on computational intelligence and computing research – reference: OmranMSalmanAEngelbrechtAPParticle swarm optimization for image clusteringIntern J Pattern Recogn Artificial Intell200519329731110.1142/S0218001405004083 – volume: 11 start-page: 1227 issue: 3 year: 2018 ident: 8699_CR6 publication-title: Biomed Pharmacology J doi: 10.13005/bpj/1484 – volume: 110 start-page: 260 issue: 2 year: 2008 ident: 8699_CR9 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.08.003 – ident: 8699_CR16 doi: 10.1007/978-3-642-24282-3_76 – volume: 122 start-page: 266 issue: 2 year: 2015 ident: 8699_CR12 publication-title: Comput Method Program Biomed doi: 10.1016/j.cmpb.2015.08.001 – ident: 8699_CR25 doi: 10.1109/ICCIC.2014.7238446 – ident: 8699_CR27 doi: 10.1109/ACCESS.2019.2907043 – ident: 8699_CR10 doi: 10.1109/ICNN.1995.488968 – volume: 11 start-page: 1711 year: 2011 ident: 8699_CR2 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.05.005 – ident: 8699_CR28 doi: 10.1155/2013/716952 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 8699_CR4 publication-title: Cybern Syst – ident: 8699_CR7 doi: 10.1109/TMI.2004.832656 – ident: 8699_CR8 doi: 10.1016/j.ijleo.2015.09.127 – ident: 8699_CR19 – ident: 8699_CR3 doi: 10.2991/ifsa-eusflat-15.2015.150 – ident: 8699_CR22 doi: 10.1109/TCSVT.2017.2726580 – volume: 19 start-page: 297 issue: 3 year: 2005 ident: 8699_CR15 publication-title: Intern J Pattern Recogn Artificial Intell doi: 10.1142/S0218001405004083 – ident: 8699_CR13 doi: 10.1007/11526018_15 – volume: 16 start-page: 71 year: 2015 ident: 8699_CR5 publication-title: Egypt Inform J doi: 10.1016/j.eij.2015.01.003 – volume: 2 start-page: 315 year: 2000 ident: 8699_CR18 publication-title: Annual Rev Biomed Eng doi: 10.1146/annurev.bioeng.2.1.315 – volume: 21 start-page: 1801 issue: 6 year: 2013 ident: 8699_CR20 publication-title: Turkish J Electr Eng Comput Sci doi: 10.3906/elk-1111-29 – volume-title: Pattern recognition with fuzzy objective function algorithm year: 1981 ident: 8699_CR1 doi: 10.1007/978-1-4757-0450-1 – volume-title: A comparison of image segmentation algorithm, The Robotics Institute, Carnegie Mellon University year: 2005 ident: 8699_CR17 – ident: 8699_CR23 doi: 10.1109/TIP.2017.2762588 – volume: 42 start-page: 6315 issue: 17-18 year: 2015 ident: 8699_CR24 publication-title: Experts Syst Appl doi: 10.1016/j.eswa.2015.04.032 – ident: 8699_CR11 doi: 10.1109/TFUZZ.2018.2796074 – volume: 30 start-page: 657 issue: 3 year: 2019 ident: 8699_CR26 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2850823 – ident: 8699_CR14 – volume: 30 start-page: 163 issue: 1 year: 2019 ident: 8699_CR21 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2836969 |
| SSID | ssj0016524 |
| Score | 2.4662862 |
| Snippet | Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18839 |
| SubjectTerms | Algorithms Clustering Computer Communication Networks Computer Science Data Structures and Information Theory Global optimization Image enhancement Image processing Image segmentation Inertia Learning Literature reviews Magnetic resonance imaging Multimedia Information Systems Noise Noise reduction Noise sensitivity Optimization Parameters Particle swarm optimization Special Purpose and Application-Based Systems Weight |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMBAoYAoFOSBDSzycBJ7QlVFxQAVA6BukeNHQWrS0qQg-uuxU6cFJLqwxrFl6Tvfd37cfQCcu5qUjbw08hTFCAcSI8akh7hwQyqUoLxUa3i-i3o90u_TB3vglttnlZVPLB21GHFzRn6lqcQcKWDsX4_fkFGNMrerVkJjHWyYyMY86bt3OotbhDCworbEQZoZXZs0M0-dc01iitk86aCeUkR-EtMy2vx1QVryTrf-3xnvgh0bccL23ET2wJrMGqBeqTlAu7gbYPtbacJ9MGhn8DXVzgbmcpDaBKUMViXIoWE_AfUXNZ3NPiFHqdSkB1kmoJiL3MOxtUqYf7BJCkfaOaU26xOy4UBPtXhJD8BT9-axc4usKAPiPgkKlEhf4ogRZrQQlMf0rlbJJCAkZDiJXJGEjqdY4PMkoo7SPixRvisjlhCFfSZ9_xDUslEmjwD0tG8Lpd7ASomxxwUTmIYi5AkNJXcFaQK3QiTmtmK5Ec4YxstaywbFWKMYlyjGus_Fos94Xq9j5d-tCrrYrt08XuLWBJcV-Mvmv0c7Xj3aCdjySnszb31boFZMpvIUbPL34jWfnJWW-wVF0vP1 priority: 102 providerName: ProQuest |
| Title | An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s11042-020-08699-8 https://www.proquest.com/docview/2420903443 |
| Volume | 79 |
| WOSCitedRecordID | wos000587677800070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOpQDFCji1ZUP3IqlTeIk9hEQqFLbZQUt0F4ix49lpU0WbRYQ_HrGWYelVUGCi6UkthXZ4_lmbM98ALsBgrKjl6ahFYyy2DAqpQmp0kEitNVC1WwN59_TTodfXoquDwqrmtvuzZFkramnwW6BCyVx7g6a4UJQPgvzCHfcETacnp0_nR0ksaey5W2KeBj4UJn_9_E3HE1tzH-ORWu0OV5-339-hCVvXZL9iTiswIwpV2G5YW4gfiGvwuKzNIRr0NsvSb9AxUIq0yt8MFJJmnTjxCGdJvjG3jw83BNFC4MAR2SpiZ4Q2pNrL4GkupOjggxRERU-wpPIQW846o-vik_w6_jo5-FX6gkYqIp4PKa5iQxLJZeO98CGEj1Ya_KY80SyPA10nrRDK-NI5aloW9RXuY0Ck8qcWxZJE0XrMFcOS7MBJEQ9lhh0Vo1hLFRaaiYSnahcJEYFmm9C0MxDpnx2ckeSMcimeZXduGY4rlk9rhm2-fLU5nqSm-PV2jvN9GZ-nVYZGihuo4qxaBP2mumcfn65t623Vd-GD2EtEe6e7w7MjUc35jMsqNtxvxq1YDa9-N2C-YOjTvcUn76lFMsf7UNXhidYduM_rVrKHwFS9PCM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH4hSKIcBFEDCtiDnrRxp9OZaQ-GEIRAdt14QMNt7PTHugkzu-4skuWP8m_kdbbDKgncOHidmTaZ9nvf62v73gfwNkKn7OWlKXOSU55YTpWyjGoTpdI4I3Wj1vC9l_X74uxMfl2CP20ujL9W2XJiQ9RmpP0e-Ud0JX5LgfN4b_yLetUof7raSmjMYdG1s0sM2epPJ59xft8xdnR4enBMg6oA1bFIprSwseWZEsoX83dMYVjmbJEIkSpeZJEp0g5zKol1kcmOQyMsXBzZTBXC8VhZvwGKlP-IxyLzdtXN6M2pRZoEEV3RoeiJo5CkM0_Vi3wijA_WMIiQkop_HeFidXvrQLbxc0dr_9sIrcPTsKIm-3MTeAZLttqAtVatggTy2oDVv0ovPofBfkWGJZIpqe2gDAlYFWlLrBPv3Q3BJ-7i6mpGNC0tOnWiKkPMrFLlUJNxsDpSX6pJSUZIvmXIaiXqfIBDM_1ZvoBvD_LzL2G5GlV2EwhD7k4tBujWcs60UYbL1KS6kKnVkRFbELUIyHWoyO6FQc7zRS1pj5ocUZM3qMmxzfubNuN5PZJ7v95uoZIHbqrzBU624EMLtsXru3t7dX9vb-Dx8emXXt476XdfwxPWYN3fa96G5enkwu7Aiv49HdaT3cZqCPx4aBBeA6qoUjg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFH4haIwcQFEiCDgHPemE7XTazhyMIcIGAtnsQQ3xUqfzY92EdpftIln-NP8633SnLJLIjYPXtjNJ2-99b97Me-8DeBuhU_by0pQ5ySlPLKdKWUa1iVJpnJG6UWv4dpr1euLsTPaX4HdbC-PTKltObIjajLTfI99DV-K3FDiP91xIi-gfdD-NL6hXkPInra2cxhwiJ3Z2heFb_fH4AP_1O8a6h18-H9GgMEB1LJIpLWxseaaE8o39HVMYojlbJEKkihdZZIq0w5xKYl1ksuPQIAsXRzZThXA8VtZvhiL9P8owxvTphP3k-80JRpoEQV3RoeiVo1CwMy_bi3xRjA_cMKCQkoq_neJipXvncLbxed21__lrPYPVsNIm-3PTeA5LtlqHtVbFggRSW4eVWy0ZX8BgvyLDEkmW1HZQhsKsirSt14n3-obgFXd5fT0jmpYWnT1RlSFmVqlyqMk4WCOpr9SkJCMk5TJUuxJ1PsBPM_1ZvoSvD_LyG7BcjSr7CghDTk8tBu7Wcs60UYbL1KS6kKnVkRGbELVoyHXo1O4FQ87zRY9pj6AcEZQ3CMpxzPubMeN5n5J7n95uYZMHzqrzBWY24UMLvMXtf8-2df9sb-AJYi8_Pe6dvIanrIG9T3fehuXp5NLuwGP9azqsJ7uNARH48dAY_AOTcVtc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image+segmentation+approach+based+on+fuzzy+c-means+and+dynamic+particle+swarm+optimization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dhanachandra%2C+Nameirakpam&rft.au=Chanu%2C+Yambem+Jina&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=25-26&rft.spage=18839&rft.epage=18858&rft_id=info:doi/10.1007%2Fs11042-020-08699-8&rft.externalDocID=10_1007_s11042_020_08699_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |