Robust Low-Rank Tensor Minimization via a New Tensor Spectral k -Support Norm

Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank definition have shed new light on low-rank tensor modeling. Its applications to robust image/video recovery and background modeling show promisin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 29; s. 2314 - 2327
Hlavní autori: Lou, Jian, Cheung, Yiu-Ming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2020
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank definition have shed new light on low-rank tensor modeling. Its applications to robust image/video recovery and background modeling show promising performance due to its superior capability in modeling cross-channel/frame information. Under the t-SVD framework, we propose a new tensor norm called tensor spectral k-support norm (TSP-k) by an alternative convex relaxation. As an interpolation between the existing tensor nuclear norm (TNN) and tensor Frobenius norm (TFN), it is able to simultaneously drive minor singular values to zero to induce low-rankness, and to capture more global information for better preserving intrinsic structure. We provide the proximal operator and the polar operator for the TSP-k norm as key optimization blocks, along with two showcase optimization algorithms for mediumand large-size tensors. Experiments on synthetic, image and video datasets in medium and large sizes, all verify the superiority of the TSP-k norm and the effectiveness of both optimization methods in comparison with the existing counterparts.
AbstractList Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank definition have shed new light on low-rank tensor modeling. Its applications to robust image/video recovery and background modeling show promising performance due to its superior capability in modeling cross-channel/frame information. Under the t-SVD framework, we propose a new tensor norm called tensor spectral k-support norm (TSP-k) by an alternative convex relaxation. As an interpolation between the existing tensor nuclear norm (TNN) and tensor Frobenius norm (TFN), it is able to simultaneously drive minor singular values to zero to induce low-rankness, and to capture more global information for better preserving intrinsic structure. We provide the proximal operator and the polar operator for the TSP-k norm as key optimization blocks, along with two showcase optimization algorithms for medium-and large-size tensors. Experiments on synthetic, image and video datasets in medium and large sizes, all verify the superiority of the TSP-k norm and the effectiveness of both optimization methods in comparison with the existing counterparts.
Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank definition have shed new light on low-rank tensor modeling. Its applications to robust image/video recovery and background modeling show promising performance due to its superior capability in modeling cross-channel/frame information. Under the t-SVD framework, we propose a new tensor norm called tensor spectral k-support norm (TSP-k) by an alternative convex relaxation. As an interpolation between the existing tensor nuclear norm (TNN) and tensor Frobenius norm (TFN), it is able to simultaneously drive minor singular values to zero to induce low-rankness, and to capture more global information for better preserving intrinsic structure. We provide the proximal operator and the polar operator for the TSP-k norm as key optimization blocks, along with two showcase optimization algorithms for medium-and large-size tensors. Experiments on synthetic, image and video datasets in medium and large sizes, all verify the superiority of the TSP-k norm and the effectiveness of both optimization methods in comparison with the existing counterparts.Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank definition have shed new light on low-rank tensor modeling. Its applications to robust image/video recovery and background modeling show promising performance due to its superior capability in modeling cross-channel/frame information. Under the t-SVD framework, we propose a new tensor norm called tensor spectral k-support norm (TSP-k) by an alternative convex relaxation. As an interpolation between the existing tensor nuclear norm (TNN) and tensor Frobenius norm (TFN), it is able to simultaneously drive minor singular values to zero to induce low-rankness, and to capture more global information for better preserving intrinsic structure. We provide the proximal operator and the polar operator for the TSP-k norm as key optimization blocks, along with two showcase optimization algorithms for medium-and large-size tensors. Experiments on synthetic, image and video datasets in medium and large sizes, all verify the superiority of the TSP-k norm and the effectiveness of both optimization methods in comparison with the existing counterparts.
Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank definition have shed new light on low-rank tensor modeling. Its applications to robust image/video recovery and background modeling show promising performance due to its superior capability in modeling cross-channel/frame information. Under the t-SVD framework, we propose a new tensor norm called tensor spectral k-support norm (TSP-k) by an alternative convex relaxation. As an interpolation between the existing tensor nuclear norm (TNN) and tensor Frobenius norm (TFN), it is able to simultaneously drive minor singular values to zero to induce low-rankness, and to capture more global information for better preserving intrinsic structure. We provide the proximal operator and the polar operator for the TSP-k norm as key optimization blocks, along with two showcase optimization algorithms for mediumand large-size tensors. Experiments on synthetic, image and video datasets in medium and large sizes, all verify the superiority of the TSP-k norm and the effectiveness of both optimization methods in comparison with the existing counterparts.
Author Lou, Jian
Cheung, Yiu-Ming
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-4110-2068
  surname: Lou
  fullname: Lou, Jian
  email: jian.lou@emory.edu
  organization: Department of Computer Science, Emory University, Atlanta, GA, USA
– sequence: 2
  givenname: Yiu-Ming
  orcidid: 0000-0001-7629-4648
  surname: Cheung
  fullname: Cheung, Yiu-Ming
  email: ymc@comp.hkbu.edu.hk
  organization: Department of Computer Science, Hong Kong Baptist University, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31634129$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9LwzAUgINMdJveBUFy9NKZ1yRtcpThL5hTdJ5L1iYQbZuatA796-3c5sGDpzzI970H3wgNaldrhE6ATACIvFjcPU5iAnISS5YwxvfQECSDiBAWD_qZ8DRKgclDNArhlRBgHJIDdEghoQxiOUT3T27ZhRbP3Cp6UvUbXug6OI_vbW0r-6Va62r8YRVWeK5Xu9_nRuetVyV-w9Fz1zTOt3jufHWE9o0qgz7evmP0cn21mN5Gs4ebu-nlLMqp4G20LFQiKC1AJUQKo5ZGgcmTVFNpDOGy0IVSWuZSAIt5kSpphBCcpIbRXFKgY3S-2dt4997p0GaVDbkuS1Vr14UspiRNGXDGe_Rsi3bLShdZ422l_Ge2S9ADZAPk3oXgtflFgGTryllfOVtXzraVeyX5o-S2_UnVR7Hlf-LpRrRa6987QqQ9xOg3avCIag
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3186364
crossref_primary_10_1109_TAES_2022_3209638
crossref_primary_10_1109_TKDE_2022_3218846
crossref_primary_10_1007_s10915_021_01679_6
crossref_primary_10_1109_TGRS_2023_3277848
crossref_primary_10_1109_TIP_2022_3155949
crossref_primary_10_1016_j_sigpro_2024_109407
crossref_primary_10_1109_JSTSP_2021_3058763
crossref_primary_10_1109_LGRS_2022_3186877
crossref_primary_10_1109_TCSVT_2024_3442295
crossref_primary_10_1109_ACCESS_2020_3024635
crossref_primary_10_1109_LCOMM_2021_3097158
crossref_primary_10_1109_JIOT_2024_3451713
crossref_primary_10_1109_TETCI_2024_3425329
crossref_primary_10_1109_TIP_2024_3385284
crossref_primary_10_1080_10618600_2025_2500977
crossref_primary_10_1109_TSP_2025_3569861
crossref_primary_10_1016_j_ymeth_2024_09_015
crossref_primary_10_1109_JBHI_2022_3231908
Cites_doi 10.1007/s10851-010-0251-1
10.1109/TIP.2014.2305840
10.1109/TNNLS.2016.2611525
10.1561/2400000003
10.1007/s10107-014-0790-0
10.1109/CVPR.2017.419
10.1137/110837711
10.1561/2200000016
10.1109/TPAMI.2017.2689021
10.1109/TKDE.2013.48
10.1073/pnas.0709146104
10.1109/TIP.2016.2627803
10.1137/090771806
10.1109/TSP.2016.2639466
10.1137/130905010
10.1137/0716071
10.1137/07070111X
10.1007/s10957-012-0245-9
10.1109/CVPR.2016.567
10.1109/CVPR.2014.485
10.1137/15M101628X
10.1109/ICCV.2001.937655
10.1137/110836936
10.7146/dpb.v27i537.7070
10.1007/s10994-013-5366-3
10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
10.1515/9781400873173
10.1109/TGRS.2017.2786718
10.1007/BF02310791
10.1137/1.9781611972795.91
10.1109/TPAMI.2012.39
10.1109/TPAMI.2015.2465956
10.1002/nav.3800030109
10.1007/BF02289464
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2019.2946445
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1941-0042
EndPage 2327
ExternalDocumentID 31634129
10_1109_TIP_2019_2946445
8870194
Genre orig-research
Journal Article
GrantInformation_xml – fundername: SZSTI
  grantid: JCYJ20160531194006833
– fundername: National Natural Science Foundation of China
  grantid: 61672444; 61272366
  funderid: 10.13039/501100001809
– fundername: Faculty Research Grant of HKBU
  grantid: FRG2/17-18/082
– fundername: Hong Kong Baptist University
  grantid: RC-FNRA-IG/18-19/SCI/03
  funderid: 10.13039/501100001747
– fundername: Innovation and Technology Fund
  grantid: ITS/339/18
  funderid: 10.13039/501100010428
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
Z5M
7X8
ID FETCH-LOGICAL-c385t-bda6833d1a6098fabfa1fc67e39ff059dedaae9c981425d7a9f888507f43c9313
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507869900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 19:01:19 EDT 2025
Wed Feb 19 02:09:35 EST 2025
Tue Nov 18 22:35:26 EST 2025
Sat Nov 29 03:21:11 EST 2025
Wed Aug 27 02:40:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-bda6833d1a6098fabfa1fc67e39ff059dedaae9c981425d7a9f888507f43c9313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4110-2068
0000-0001-7629-4648
PMID 31634129
PQID 2307741545
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_31634129
crossref_primary_10_1109_TIP_2019_2946445
crossref_citationtrail_10_1109_TIP_2019_2946445
proquest_miscellaneous_2307741545
ieee_primary_8870194
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
jaggi (ref38) 2013
ref14
aravkin (ref46) 2016
ref11
ref10
ref17
ref18
dabov (ref49) 2007
ref45
ref48
ref47
ref42
ref41
ref44
ref43
mcdonald (ref26) 2014
ref8
boumal (ref5) 2011
ref7
ref9
ref4
ref3
ref6
yurtsever (ref31) 2015
ref40
mu (ref16) 2014
ref35
eriksson (ref25) 2015
ref34
lu (ref20) 2018
ref37
ref36
ref30
ref33
ref2
ref1
argyriou (ref24) 2012
yu (ref39) 2017; 18
ref23
ref22
hillar (ref15) 2009; 60
ref21
ref28
ref29
jiang (ref32) 2017
romera-paredes (ref19) 2013
mcdonald (ref27) 2016; 17
References_xml – ident: ref42
  doi: 10.1007/s10851-010-0251-1
– year: 2016
  ident: ref46
  article-title: Level-set methods for convex optimization
  publication-title: arXiv 1602 01506
– ident: ref33
  doi: 10.1109/TIP.2014.2305840
– start-page: 145
  year: 2007
  ident: ref49
  article-title: Video denoising by sparse 3d transform-domain collaborative filtering
  publication-title: Proc 15th Eur Signal Process Conf
– year: 2018
  ident: ref20
  article-title: Tensor robust principal component analysis with a new tensor nuclear norm
  publication-title: arXiv 1804 03728
– year: 2017
  ident: ref32
  article-title: Exact tensor completion from sparsely corrupted observations via convex optimization
  publication-title: arXiv 1708 00601
– start-page: 3150
  year: 2015
  ident: ref31
  article-title: A universal primal-dual convex optimization framework
  publication-title: Proc NIPS
– ident: ref21
  doi: 10.1109/TNNLS.2016.2611525
– ident: ref36
  doi: 10.1561/2400000003
– ident: ref30
  doi: 10.1007/s10107-014-0790-0
– ident: ref4
  doi: 10.1109/CVPR.2017.419
– ident: ref14
  doi: 10.1137/110837711
– volume: 60
  start-page: 45
  year: 2009
  ident: ref15
  article-title: Most tensor problems are NP-hard
  publication-title: J ACM
– ident: ref29
  doi: 10.1561/2200000016
– ident: ref45
  doi: 10.1109/TPAMI.2017.2689021
– ident: ref7
  doi: 10.1109/TKDE.2013.48
– ident: ref10
  doi: 10.1073/pnas.0709146104
– ident: ref23
  doi: 10.1109/TIP.2016.2627803
– ident: ref35
  doi: 10.1137/090771806
– ident: ref8
  doi: 10.1109/TSP.2016.2639466
– ident: ref9
  doi: 10.1137/130905010
– ident: ref44
  doi: 10.1137/0716071
– start-page: 3349
  year: 2015
  ident: ref25
  article-title: The $\kappa$ -support norm and convex envelopes of cardinality and rank
  publication-title: Proc CVPR
– ident: ref17
  doi: 10.1137/07070111X
– start-page: 2967
  year: 2013
  ident: ref19
  article-title: A new convex relaxation for tensor completion
  publication-title: Proc NIPS
– start-page: 406
  year: 2011
  ident: ref5
  article-title: RTRMC: A Riemannian trust-region method for low-rank matrix completion
  publication-title: Proc NIPS
– ident: ref43
  doi: 10.1007/s10957-012-0245-9
– ident: ref2
  doi: 10.1109/CVPR.2016.567
– ident: ref1
  doi: 10.1109/CVPR.2014.485
– start-page: 427
  year: 2013
  ident: ref38
  article-title: Revisiting Frank-Wolfe: Projection-free sparse convex optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref40
  doi: 10.1137/15M101628X
– ident: ref47
  doi: 10.1109/ICCV.2001.937655
– ident: ref28
  doi: 10.1137/110836936
– ident: ref34
  doi: 10.7146/dpb.v27i537.7070
– ident: ref18
  doi: 10.1007/s10994-013-5366-3
– volume: 18
  start-page: 5279
  year: 2017
  ident: ref39
  article-title: Generalized conditional gradient for sparse estimation
  publication-title: J Mach Learn Res
– volume: 17
  start-page: 1
  year: 2016
  ident: ref27
  article-title: New perspectives on $\kappa$ -support and cluster norms
  publication-title: J Mach Learn Res
– start-page: 1457
  year: 2012
  ident: ref24
  article-title: Sparse prediction with the $\kappa$ -support norm
  publication-title: Proc NIPS
– ident: ref12
  doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
– ident: ref41
  doi: 10.1515/9781400873173
– ident: ref22
  doi: 10.1109/TGRS.2017.2786718
– ident: ref11
  doi: 10.1007/BF02310791
– ident: ref6
  doi: 10.1137/1.9781611972795.91
– ident: ref3
  doi: 10.1109/TPAMI.2012.39
– start-page: 73
  year: 2014
  ident: ref16
  article-title: Square deal: Lower bounds and improved relaxations for tensor recovery
  publication-title: Proc Int Conf Mach Learn
– ident: ref48
  doi: 10.1109/TPAMI.2015.2465956
– ident: ref37
  doi: 10.1002/nav.3800030109
– start-page: 3644
  year: 2014
  ident: ref26
  article-title: Spectral $\kappa$ -support norm regularization
  publication-title: Proc NIPS
– ident: ref13
  doi: 10.1007/BF02289464
SSID ssj0014516
Score 2.4728894
Snippet Recently, based on a new tensor algebraic framework for third-order tensors, the tensor singular value decomposition (t-SVD) and its associated tubal rank...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2314
SubjectTerms alternating direction method of multipliers
Computational modeling
Computer science
Computer vision
conditional gradient descent
Minimization
Optimization
proximal algorithm
Robust low-rank tensor minimization
Task analysis
tensor robust principal component analysis
tensor singular value decomposition (t-SVD)
Title Robust Low-Rank Tensor Minimization via a New Tensor Spectral k -Support Norm
URI https://ieeexplore.ieee.org/document/8870194
https://www.ncbi.nlm.nih.gov/pubmed/31634129
https://www.proquest.com/docview/2307741545
Volume 29
WOSCitedRecordID wos000507869900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60eNCD9W19EcGLYGxr0s3mKKIoaBGp0Nsym2ShVHelD_37TvaFggreljyWJV9m881Mkg_ghCiq7DkT8ljGmksMDNfaOp4oaVGRdXVEITah-v1wONSPC3BWn4VxzuWbz9y5f8xz-TYzcx8qa5NBECORi7CoVFCc1aozBl5wNs9s9hRXRPurlGRHtwd3j34Plz6_0JKW_963JSjXVPmdXubLzE3zfx-4BqslnWSXBf7rsODSDWiW1JKVhjulokq9oSrbgJUvVxFuwsNTFs-nM3afffAnTMdsQP5tNmEPo3T0Wp7VZO8jZMjov1jVevV6HyphY8a9PihxedYnFrwFzzfXg6tbXkotcCPC3ozHFoNQCNvFoKPDBOMEu4kJlBM6SYiBWWcRnTY67JKRW4U6IdeZuGQihdGiK7ahkWap2wUWo8BAUTViIA3G5NBZY7WMQ-m5jmxBuxr9yJT3kHs5jJco90c6OiK8Io9XVOLVgtO6x1txB8cfbTc9LHW7EpEWHFcAR2Q_PimCqcvm08hvhPesynfdKZCvOwsiq5II0d7PL92H5QvvfecBmQNozCZzdwhL5n02mk6OaJIOw6N8kn4Cc1Th-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS-QwEMcH9QTPB3-ft96dRvBFMO6uybbN43GcKLe7iKzgW5kmKSzetbI_vH_fmW5aPFDh3kqalNLJNJ_JJPkCnBCi6p63icx0ZqTGyEpjnJd5rB3G5F0dtRCbiIfD5P7e3CzBWbMXxntfLT7z53xZ5fJdaec8VdYmhyAi0cvwgZWzwm6tJmfAkrNVbrMXy5jAv05Kdkx7dH3Dq7jM-YXRBAC9fwahSlXlbcCsBprLzf97xS3YCEApvi96wDYs-WIHNgNciuC6Uyqq9Rvqsh1Yf3EY4S4MbstsPp2JfvlX3mLxIEYU4ZYTMRgX4z9ht6Z4GqNAQX_G-i7r1_NkiXgQkhVCiebFkDh4D-4uf45-XMkgtiCtSnozmTmMEqVcF6OOSXLMcuzmNoq9MnlODOa8Q_TGmqRLbu5iNDkFz0STuVbWqK76BCtFWfjPIDJUGMV0GzHSFjMK6Zx1RmeJZtrRLWjXXz-14SRyFsT4nVYRScekZK-U7ZUGe7XgtGnxuDiF4526u2yWpl6wSAuOawOn5EGcFsHCl_Npykvhmau46f7C8k1jRbiqCYkOXn_oEaxdjQb9tH89_PUFPl5wLF5Nz3yFldlk7r_Bqn2ajaeTw6qrPgML-uRb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Low-Rank+Tensor+Minimization+via+a+New+Tensor+Spectral+k-Support+Norm&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Lou%2C+Jian&rft.au=Cheung%2C+Yiu-Ming&rft.date=2020-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2019.2946445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon