Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles

The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature energy Ročník 6; číslo 2; s. 176 - 185
Hlavní autoři: Yang, Xiao-Guang, Liu, Teng, Wang, Chao-Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.02.2021
Nature Publishing Group
Témata:
ISSN:2058-7546, 2058-7546
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and cobalt-free nature. Here we demonstrate a thermally modulated LFP battery to offer an adequate cruise range per charge that is extendable by 10 min recharge in all climates, essentially guaranteeing EVs that are free of range anxiety. Such a thermally modulated LFP battery designed to operate at a working temperature around 60 °C in any ambient condition promises to be a well-rounded powertrain for mass-market EVs. Furthermore, we reveal that the limited working time at the high temperature presents an opportunity to use graphite of low surface areas, thereby prospectively prolonging the EV lifespan to greater than two million miles. Ternary layered oxides dominate the current automobile batteries but suffer from material scarcity and operational safety. Here the authors report that, when operating at around 60 °C, a low-cost lithium iron phosphate-based battery exhibits ultra-safe, fast rechargeable and long-lasting properties.
AbstractList The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and cobalt-free nature. Here we demonstrate a thermally modulated LFP battery to offer an adequate cruise range per charge that is extendable by 10 min recharge in all climates, essentially guaranteeing EVs that are free of range anxiety. Such a thermally modulated LFP battery designed to operate at a working temperature around 60 °C in any ambient condition promises to be a well-rounded powertrain for mass-market EVs. Furthermore, we reveal that the limited working time at the high temperature presents an opportunity to use graphite of low surface areas, thereby prospectively prolonging the EV lifespan to greater than two million miles.Ternary layered oxides dominate the current automobile batteries but suffer from material scarcity and operational safety. Here the authors report that, when operating at around 60 °C, a low-cost lithium iron phosphate-based battery exhibits ultra-safe, fast rechargeable and long-lasting properties.
The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and cobalt-free nature. Here we demonstrate a thermally modulated LFP battery to offer an adequate cruise range per charge that is extendable by 10 min recharge in all climates, essentially guaranteeing EVs that are free of range anxiety. Such a thermally modulated LFP battery designed to operate at a working temperature around 60 °C in any ambient condition promises to be a well-rounded powertrain for mass-market EVs. Furthermore, we reveal that the limited working time at the high temperature presents an opportunity to use graphite of low surface areas, thereby prospectively prolonging the EV lifespan to greater than two million miles. Ternary layered oxides dominate the current automobile batteries but suffer from material scarcity and operational safety. Here the authors report that, when operating at around 60 °C, a low-cost lithium iron phosphate-based battery exhibits ultra-safe, fast rechargeable and long-lasting properties.
Author Yang, Xiao-Guang
Liu, Teng
Wang, Chao-Yang
Author_xml – sequence: 1
  givenname: Xiao-Guang
  orcidid: 0000-0002-9880-3682
  surname: Yang
  fullname: Yang, Xiao-Guang
  organization: Department of Mechanical Engineering and Electrochemical Engine Center, The Pennsylvania State University
– sequence: 2
  givenname: Teng
  surname: Liu
  fullname: Liu, Teng
  organization: Department of Mechanical Engineering and Electrochemical Engine Center, The Pennsylvania State University
– sequence: 3
  givenname: Chao-Yang
  orcidid: 0000-0003-0650-0025
  surname: Wang
  fullname: Wang, Chao-Yang
  email: cxw31@psu.edu
  organization: Department of Mechanical Engineering and Electrochemical Engine Center, The Pennsylvania State University, EC Power
BookMark eNp9kE1LxDAQhoOs4LruH_AU8FydpB_pHmXxCxa8rF5DkqY2a9vUJBX235u1guJhD8MMw_vMx3uOZr3tNUKXBK4JpOWNz0heQAI0BrCcJewEzSnkZcLyrJj9qc_Q0vsdANAVpXlJ5uh122jXibbd485WYyuCrnBrQmPGDhtnezw01g9N7GMpQtDOaI9r63AnvE864d51wLrVKjij8KdujGq1v0CntWi9Xv7kBXq5v9uuH5PN88PT-naTqLTMQyJVKos0U7ICArJiVMuCSKZBVEySglEBBYNVFb8EWZeVklktopykVAgm8nSBrqa5g7Mfo_aB7-zo-riS02xFspSVcFDRSaWc9d7pmg_OxNP3nAA_WMgnC3m0kH9byFmEyn-QMkEEY_vghGmPo-mE-rinf9Pu96oj1BeCnokz
CitedBy_id crossref_primary_10_3390_batteries9030176
crossref_primary_10_1016_j_ijhydene_2024_02_063
crossref_primary_10_1016_j_cclet_2024_110041
crossref_primary_10_1016_j_jallcom_2021_160643
crossref_primary_10_1016_j_electacta_2023_141983
crossref_primary_10_1021_jacs_1c08425
crossref_primary_10_1038_s41467_023_38823_9
crossref_primary_10_1007_s11708_023_0900_x
crossref_primary_10_1016_j_est_2024_114859
crossref_primary_10_1109_TCE_2024_3482101
crossref_primary_10_1039_D1QI00590A
crossref_primary_10_1016_j_jpowsour_2024_234412
crossref_primary_10_1039_D4QI02572E
crossref_primary_10_1016_j_pmatsci_2024_101388
crossref_primary_10_1016_j_est_2023_108453
crossref_primary_10_20517_energymater_2025_57
crossref_primary_10_1002_adma_202501185
crossref_primary_10_1039_D5NJ01427A
crossref_primary_10_1016_j_jpowsour_2022_231943
crossref_primary_10_1016_j_ensm_2025_104417
crossref_primary_10_1016_j_jpowsour_2022_231705
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122184
crossref_primary_10_1016_j_cec_2024_100087
crossref_primary_10_1007_s11426_023_1705_9
crossref_primary_10_1016_j_applthermaleng_2022_118503
crossref_primary_10_1016_j_jechem_2025_01_046
crossref_primary_10_1016_j_est_2022_105471
crossref_primary_10_1038_s41467_022_35393_0
crossref_primary_10_1093_ijlct_ctad095
crossref_primary_10_1051_e3sconf_202346900005
crossref_primary_10_3390_batteries10080280
crossref_primary_10_1016_j_ccr_2022_214715
crossref_primary_10_1016_j_est_2023_108324
crossref_primary_10_1002_adma_202405956
crossref_primary_10_1002_adma_202510237
crossref_primary_10_1021_acsanm_5c01998
crossref_primary_10_1039_D1EE03292E
crossref_primary_10_1016_j_ensm_2025_104402
crossref_primary_10_1002_anie_202314457
crossref_primary_10_1016_j_chempr_2023_09_007
crossref_primary_10_1016_j_joule_2021_05_001
crossref_primary_10_1016_j_jhazmat_2022_130160
crossref_primary_10_1007_s11581_025_06114_6
crossref_primary_10_1016_j_jpowsour_2023_232775
crossref_primary_10_1039_D1EE01530C
crossref_primary_10_1016_j_oneear_2024_06_017
crossref_primary_10_1016_j_energy_2023_127378
crossref_primary_10_1016_j_jelechem_2024_118661
crossref_primary_10_1038_s41467_023_43808_9
crossref_primary_10_1002_anie_202418198
crossref_primary_10_1039_D4SC08244C
crossref_primary_10_1016_j_etran_2023_100242
crossref_primary_10_3390_batteries8100185
crossref_primary_10_1016_j_jpowsour_2024_235728
crossref_primary_10_1016_j_est_2021_103891
crossref_primary_10_1016_j_est_2023_108905
crossref_primary_10_1002_adma_202301881
crossref_primary_10_1016_j_electacta_2024_145353
crossref_primary_10_1109_ACCESS_2021_3114785
crossref_primary_10_1002_smtd_202300125
crossref_primary_10_3390_pr13030756
crossref_primary_10_1016_j_ensm_2025_104094
crossref_primary_10_1039_D5TA01871D
crossref_primary_10_3390_app13106286
crossref_primary_10_1016_j_electacta_2025_146864
crossref_primary_10_1016_j_jechem_2024_06_020
crossref_primary_10_5796_electrochemistry_25_00103
crossref_primary_10_1016_j_etran_2022_100199
crossref_primary_10_1016_j_seppur_2024_130674
crossref_primary_10_1039_D5CS00358J
crossref_primary_10_3390_ma16062240
crossref_primary_10_3390_wevj16070346
crossref_primary_10_1016_j_mtcomm_2024_108765
crossref_primary_10_3390_electronics14183643
crossref_primary_10_1039_D4EE05509H
crossref_primary_10_1002_smll_202309523
crossref_primary_10_1080_15325008_2023_2239238
crossref_primary_10_1038_s41467_024_49389_5
crossref_primary_10_1002_ange_202304581
crossref_primary_10_1007_s12034_023_02997_1
crossref_primary_10_1016_j_seppur_2022_122640
crossref_primary_10_1002_advs_202104145
crossref_primary_10_1038_s41467_023_41226_5
crossref_primary_10_1016_j_chemphys_2023_111891
crossref_primary_10_1016_j_jcis_2023_05_007
crossref_primary_10_1016_j_isci_2023_108419
crossref_primary_10_1016_j_nxmate_2025_100964
crossref_primary_10_1016_j_mser_2024_100797
crossref_primary_10_1002_adfm_202102765
crossref_primary_10_3390_batteries9110529
crossref_primary_10_1007_s12034_022_02877_0
crossref_primary_10_1016_j_jechem_2022_03_006
crossref_primary_10_1016_j_jechem_2023_05_011
crossref_primary_10_1021_jacs_2c03549
crossref_primary_10_1016_j_etran_2023_100305
crossref_primary_10_1016_j_etran_2023_100302
crossref_primary_10_1016_j_jallcom_2024_176516
crossref_primary_10_1016_j_solener_2024_112910
crossref_primary_10_1016_j_est_2024_112070
crossref_primary_10_1016_j_seppur_2024_128469
crossref_primary_10_1002_anie_202213416
crossref_primary_10_1016_j_apenergy_2022_119200
crossref_primary_10_1016_j_jpowsour_2021_230935
crossref_primary_10_1109_TIM_2022_3199253
crossref_primary_10_3390_batteries10110379
crossref_primary_10_1016_j_energy_2025_136648
crossref_primary_10_1016_j_ensm_2025_104236
crossref_primary_10_1007_s11581_021_04412_3
crossref_primary_10_1007_s40820_022_00939_w
crossref_primary_10_1038_s41467_023_36197_6
crossref_primary_10_1016_j_ensm_2025_104479
crossref_primary_10_1016_j_oneear_2022_02_012
crossref_primary_10_1002_smll_202102894
crossref_primary_10_1051_smdo_2024008
crossref_primary_10_1002_aenm_202404368
crossref_primary_10_1002_batt_202300284
crossref_primary_10_1007_s10098_022_02407_w
crossref_primary_10_1021_acsaem_5c00475
crossref_primary_10_1016_j_nanoen_2025_111014
crossref_primary_10_1016_j_rser_2022_112579
crossref_primary_10_1002_anie_202503109
crossref_primary_10_1016_j_cej_2024_159108
crossref_primary_10_1016_j_energy_2022_124653
crossref_primary_10_1016_j_apenergy_2024_123665
crossref_primary_10_1016_j_cej_2025_161969
crossref_primary_10_3390_batteries9070379
crossref_primary_10_3390_molecules27185845
crossref_primary_10_1016_j_applthermaleng_2025_127319
crossref_primary_10_1038_s41467_024_48867_0
crossref_primary_10_1002_ange_202418198
crossref_primary_10_1142_S1793604721300061
crossref_primary_10_1016_j_surfcoat_2024_130548
crossref_primary_10_1002_batt_202400280
crossref_primary_10_1016_j_compscitech_2023_110256
crossref_primary_10_1002_aenm_202404391
crossref_primary_10_12677_AEPE_2021_92006
crossref_primary_10_1016_j_jclepro_2022_134260
crossref_primary_10_1016_j_resconrec_2025_108523
crossref_primary_10_1109_TTE_2021_3136126
crossref_primary_10_1557_s43579_024_00644_2
crossref_primary_10_1002_cnl2_70001
crossref_primary_10_1016_j_cej_2025_161928
crossref_primary_10_1016_j_rser_2024_114786
crossref_primary_10_1038_s44359_025_00067_9
crossref_primary_10_1007_s10008_023_05545_3
crossref_primary_10_1038_s41560_023_01215_w
crossref_primary_10_1038_s44287_025_00181_7
crossref_primary_10_1002_cjce_24923
crossref_primary_10_1016_j_cej_2025_161931
crossref_primary_10_1016_j_energy_2021_122881
crossref_primary_10_1016_j_energy_2023_127698
crossref_primary_10_1016_j_jcis_2024_01_122
crossref_primary_10_1002_ange_202307868
crossref_primary_10_1002_advs_202101646
crossref_primary_10_1002_cssc_202401432
crossref_primary_10_1038_s44286_024_00105_6
crossref_primary_10_1038_s41596_025_01234_9
crossref_primary_10_1007_s43939_025_00291_x
crossref_primary_10_1002_adfm_202414384
crossref_primary_10_1016_j_apenergy_2025_125443
crossref_primary_10_1016_j_resconrec_2025_108519
crossref_primary_10_1016_j_cej_2024_158235
crossref_primary_10_1016_j_egyr_2022_03_016
crossref_primary_10_1063_5_0159269
crossref_primary_10_1002_smm2_1185
crossref_primary_10_1016_j_apenergy_2023_122132
crossref_primary_10_1002_adma_202417796
crossref_primary_10_1016_j_jclepro_2023_136504
crossref_primary_10_3390_coatings11080932
crossref_primary_10_1002_adma_202104763
crossref_primary_10_1002_adma_202309722
crossref_primary_10_1002_ange_202213416
crossref_primary_10_1002_adma_202410482
crossref_primary_10_1016_j_jallcom_2023_171570
crossref_primary_10_1016_j_ensm_2025_104269
crossref_primary_10_1016_j_jallcom_2025_183920
crossref_primary_10_3390_wevj15060268
crossref_primary_10_1002_anie_202307868
crossref_primary_10_1016_j_apenergy_2022_118832
crossref_primary_10_1016_j_cej_2025_164985
crossref_primary_10_1002_adma_202412871
crossref_primary_10_3390_en14175565
crossref_primary_10_1002_adma_202109282
crossref_primary_10_1002_ange_202503109
crossref_primary_10_1007_s10098_023_02629_6
crossref_primary_10_1002_aenm_202403002
crossref_primary_10_1016_j_jpowsour_2023_233688
crossref_primary_10_1002_anie_202409409
crossref_primary_10_1007_s43069_025_00461_w
crossref_primary_10_1016_j_sctalk_2022_100039
crossref_primary_10_1016_j_wasman_2024_05_010
crossref_primary_10_1002_anie_202304581
crossref_primary_10_1002_adfm_202507097
crossref_primary_10_1002_aenm_202406064
crossref_primary_10_1016_j_measurement_2024_115148
crossref_primary_10_1002_adfm_202409403
crossref_primary_10_1016_j_apenergy_2024_123183
crossref_primary_10_1038_s41467_024_54454_0
crossref_primary_10_1002_ange_202314457
crossref_primary_10_1007_s12274_023_5427_7
crossref_primary_10_1002_smll_202201808
crossref_primary_10_1016_j_jclepro_2022_133756
crossref_primary_10_1002_adfm_202514172
crossref_primary_10_1002_ente_202201398
crossref_primary_10_1016_j_tre_2023_103362
crossref_primary_10_1038_s41467_023_35933_2
crossref_primary_10_1039_D5TA00166H
crossref_primary_10_1002_anie_202505212
crossref_primary_10_1016_j_jpowsour_2023_232805
crossref_primary_10_1016_j_resourpol_2022_102866
crossref_primary_10_1039_D5TA00679A
crossref_primary_10_1002_adfm_202405055
crossref_primary_10_1016_j_jhazmat_2023_133349
crossref_primary_10_1002_celc_202100927
crossref_primary_10_1002_adfm_202406966
crossref_primary_10_1016_j_jechem_2024_12_026
crossref_primary_10_1016_j_energy_2024_133385
crossref_primary_10_1021_acsaem_5c00664
crossref_primary_10_1039_D5EB00131E
crossref_primary_10_1039_D4NR04671D
crossref_primary_10_1016_j_colsurfa_2023_133110
crossref_primary_10_3390_su14106064
crossref_primary_10_1016_j_ensm_2025_104363
crossref_primary_10_1021_acsenergylett_5c00612
crossref_primary_10_1016_j_rser_2025_115677
crossref_primary_10_3390_batteries9070367
crossref_primary_10_1016_j_jpowsour_2022_231441
crossref_primary_10_3390_batteries11060209
crossref_primary_10_1007_s10008_024_05858_x
crossref_primary_10_1002_smll_202205086
crossref_primary_10_1039_D2SC05723A
crossref_primary_10_1038_s44286_024_00103_8
crossref_primary_10_3390_s22072634
crossref_primary_10_1016_j_electacta_2024_144780
crossref_primary_10_1002_ente_202300826
crossref_primary_10_3390_en15113884
crossref_primary_10_1016_j_jpowsour_2023_233484
crossref_primary_10_1016_j_jcis_2023_01_138
crossref_primary_10_1039_D2NR04140E
crossref_primary_10_1002_adma_202502766
crossref_primary_10_1002_aenm_202201834
crossref_primary_10_1016_j_ijthermalsci_2025_110193
crossref_primary_10_1016_j_jechem_2024_08_011
crossref_primary_10_1016_j_jpowsour_2025_237240
crossref_primary_10_1016_j_nanoen_2025_111396
crossref_primary_10_1002_adfm_202423719
crossref_primary_10_1016_j_jclepro_2022_134748
crossref_primary_10_1038_s41467_022_33666_2
crossref_primary_10_1016_j_nanoen_2022_107874
crossref_primary_10_1007_s10163_023_01681_0
crossref_primary_10_1016_j_nanoen_2024_109337
crossref_primary_10_1016_j_partic_2022_05_009
crossref_primary_10_1016_j_apenergy_2022_118758
crossref_primary_10_1016_j_wasman_2024_03_037
crossref_primary_10_1016_j_ceramint_2023_12_339
crossref_primary_10_1016_j_scitotenv_2024_177748
crossref_primary_10_1016_j_apenergy_2021_118116
crossref_primary_10_1016_j_resconrec_2023_107015
crossref_primary_10_1149_1945_7111_ad570b
crossref_primary_10_1007_s11426_021_1111_2
crossref_primary_10_1002_batt_202400348
crossref_primary_10_1016_j_jclepro_2024_141452
crossref_primary_10_1016_j_resconrec_2022_106606
crossref_primary_10_3390_cryst15040308
crossref_primary_10_1002_aenm_202304097
crossref_primary_10_1016_j_jpowsour_2022_231105
crossref_primary_10_1002_smll_202205142
crossref_primary_10_3390_s22051966
crossref_primary_10_1016_j_est_2022_104854
crossref_primary_10_1002_adma_202109356
crossref_primary_10_1002_ange_202505212
crossref_primary_10_1016_j_jclepro_2025_145306
crossref_primary_10_1002_cssc_202202158
crossref_primary_10_1002_smtd_202201390
crossref_primary_10_1002_bte2_20230028
crossref_primary_10_1002_ange_202409409
crossref_primary_10_1016_j_ijthermalsci_2025_109900
crossref_primary_10_1016_j_est_2023_107275
crossref_primary_10_1016_j_ccr_2022_214879
crossref_primary_10_1002_aenm_202203283
crossref_primary_10_3390_wevj14040088
crossref_primary_10_1016_j_jpowsour_2023_232965
crossref_primary_10_3390_batteries9050261
crossref_primary_10_3390_en14196006
crossref_primary_10_1016_j_cej_2024_149923
crossref_primary_10_1016_j_est_2025_116469
crossref_primary_10_1016_j_ces_2025_121964
crossref_primary_10_1109_ACCESS_2022_3182726
crossref_primary_10_1002_aenm_202400621
crossref_primary_10_1021_acsenergylett_5c02528
crossref_primary_10_1016_j_jechem_2023_09_050
crossref_primary_10_1016_j_applthermaleng_2023_122235
crossref_primary_10_1016_j_jpowsour_2022_231129
crossref_primary_10_5796_electrochemistry_25_71009
crossref_primary_10_1016_j_etran_2024_100364
crossref_primary_10_3390_pr13051478
crossref_primary_10_1002_aenm_202201190
crossref_primary_10_1038_s41467_024_45091_8
crossref_primary_10_1016_j_mtchem_2024_102159
crossref_primary_10_1002_ente_202301277
crossref_primary_10_1016_j_nanoen_2024_110249
crossref_primary_10_1002_adma_202202848
crossref_primary_10_1002_advs_202504683
crossref_primary_10_1039_D5TA02392K
crossref_primary_10_1021_acsenergylett_5c02530
crossref_primary_10_1002_batt_202400437
crossref_primary_10_1016_j_applthermaleng_2024_123197
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1038_s41467_024_48181_9
crossref_primary_10_1002_adfm_202408422
crossref_primary_10_1016_j_ijhydene_2024_11_093
crossref_primary_10_3390_s22052043
crossref_primary_10_1039_D5NJ00262A
crossref_primary_10_1016_j_est_2022_105813
crossref_primary_10_1038_s44359_024_00020_2
crossref_primary_10_1109_ACCESS_2021_3090534
Cites_doi 10.1038/nenergy.2016.112
10.1016/j.apenergy.2016.01.097
10.1021/cr020731c
10.1016/j.mattod.2014.10.040
10.1016/j.joule.2019.09.021
10.1149/2.1151613jes
10.12968/S0013-7758(23)90634-3
10.1002/aenm.201501010
10.1016/j.ensm.2016.10.007
10.1109/MELE.2018.2889545
10.1016/j.ijthermalsci.2018.03.004
10.1149/1945-7111/abbb0a
10.1149/1.3557892
10.1016/j.jpowsour.2013.01.063
10.1002/ese3.283
10.1073/pnas.1807115115
10.1016/j.isci.2020.101010
10.1016/j.est.2018.01.019
10.1007/s41918-018-0022-z
10.1149/1.1348257
10.1016/j.joule.2017.08.019
10.1149/2.1181714jes
10.1038/nmat2418
10.2172/1605985
10.1149/2.0681609jes
10.1149/1.1874693
10.1038/nature16502
10.1016/j.electacta.2016.09.117
10.1016/j.jpowsour.2012.05.018
10.1016/j.joule.2020.02.010
10.1039/C5TA00361J
10.1016/j.jpowsour.2017.05.110
10.1149/2.0321602jes
10.1002/adma.201800561
10.1038/s41560-018-0107-2
10.2172/1503280
10.1149/2.0981913jes
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
3V.
7SP
7SU
7TB
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
L7M
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1038/s41560-020-00757-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Environmental Engineering Abstracts
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-7546
EndPage 185
ExternalDocumentID 10_1038_s41560_020_00757_7
GrantInformation_xml – fundername: Pennsylvania State University (Penn State)
  grantid: William E. Diefenderfer Endowment
  funderid: https://doi.org/10.13039/100008321
– fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy)
  grantid: DE-EE0008355
  funderid: https://doi.org/10.13039/100006134
GroupedDBID 0R~
3V.
88I
AAEEF
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ADBBV
AEUYN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BKKNO
BPHCQ
CCPQU
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
M2P
NNMJJ
O9-
ODYON
PQQKQ
PROAC
RNT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ABJCF
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ARAPS
ATHPR
BGLVJ
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SP
7SU
7TB
7XB
8FD
8FE
8FG
8FK
C1K
FR3
L6V
L7M
P62
PKEHL
PQEST
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c385t-bc3b634cbd010bd72eb61b7e0ad7b1672a06709d0380bf8dcb4fa4cb132aa7a53
IEDL.DBID M2P
ISICitedReferencesCount 405
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608653100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2058-7546
IngestDate Sat Sep 06 07:31:08 EDT 2025
Sat Nov 29 04:06:06 EST 2025
Tue Nov 18 21:18:15 EST 2025
Fri Feb 21 02:38:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-bc3b634cbd010bd72eb61b7e0ad7b1672a06709d0380bf8dcb4fa4cb132aa7a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0650-0025
0000-0002-9880-3682
PQID 2491437805
PQPubID 2069617
PageCount 10
ParticipantIDs proquest_journals_2491437805
crossref_primary_10_1038_s41560_020_00757_7
crossref_citationtrail_10_1038_s41560_020_00757_7
springer_journals_10_1038_s41560_020_00757_7
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature energy
PublicationTitleAbbrev Nat Energy
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References NeedellZAMcNerneyJChangMTTrancikJEPotential for widespread electrification of personal vehicle travel in the United StatesNat. Energy201611611210.1038/nenergy.2016.112
SunY-KHigh-energy cathode material for long-life and safe lithium batteriesNat. Mater.2009832032410.1038/nmat2418
Wang, C., He, L., Sun, H., Lu, P. & Zhu, Y. Battery pack, vehicle and energy storage device. China Patent CN110165118B (2019).
LiMLuJChenZAmineK30 Years of lithium-ion batteriesAdv. Mater.201830180056110.1002/adma.201800561
He, K., Jiang, W., Wang, X. & Wen, A. Single battery, power battery pack and vehicle. China Patent CN110364675A (2019).
MastaliMFarkhondehMFarhadSFraserRAFowlerMElectrochemical modeling of commercial LiFePO4 and graphite electrodes: kinetic and transport properties and their temperature dependenceJ. Electrochem. Soc.2016163A2803A281610.1149/2.1151613jes
MastaliMElectrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteriesInt. J. Therm. Sci.201812921823010.1016/j.ijthermalsci.2018.03.004
Lienert, P. & Chan, C. Global automakers investing at least $300 billion on batteries and EVs. Reuters (2019); https://graphics.reuters.com/AUTOS-INVESTMENT-ELECTRIC/010081ZB3HD/index.html
YamadaAChungSCHinokumaKOptimized LiFePO4 for lithium battery cathodesJ. Electrochem. Soc.2001148A22410.1149/1.1348257
OlivettiEACederGGaustadGGFuXLithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metalsJoule2017122924310.1016/j.joule.2017.08.019
New Energy Vehicles Safety Monitoring Results Report (National Big Data Alliance of New Energy Vehicles, 2019).
TakahashiMOhtsukaHAkutoKSakuraiYConfirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cellsJ. Electrochem. Soc.2005152A89910.1149/1.1874693
YangXGZhangGGeSWangCYFast charging of lithium-ion batteries at all temperaturesProc. Natl Acad. Sci. USA20181157266727110.1073/pnas.1807115115
XiongRMaSLiHSunFLiJToward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuitiScience20202310101010.1016/j.isci.2020.101010
ManthiramASongBLiWA perspective on nickel-rich layered oxide cathodes for lithium-ion batteriesEnergy Storage Mater.2017612513910.1016/j.ensm.2016.10.007
Americans Spend an Average of 17,600 Minutes Driving Each Year (American Automobile Association, 2016); https://newsroom.aaa.com/2016/09/americans-spend-average-17600-minutes-driving-year
Lutsey, N. & Nicholas, M. Update on Electric Vehicle Costs in the United States Through 2030 1–12 (International Council on Clean Transportation, 2019).
LFP market share drops in 2019 but expect a comeback with cell-to-pack. Adamas Intelligence (4 March 2020); https://www.adamasintel.com/lfp-market-2019-cell-to-pack-comeback
GallagherKGOptimizing areal capacities through understanding the limitations of lithium-ion electrodesJ. Electrochem. Soc.2015163A138A14910.1149/2.0321602jes
YangXGAsymmetric temperature modulation for extreme fast charging of lithium-ion batteriesJoule201933002301910.1016/j.joule.2019.09.021
WangCYLithium-ion battery structure that self-heats at low temperaturesNature201652951551810.1038/nature16502
Kwon, M., Choi, J., Kwon, K., Do, E. & Lee, Y. Complex electrode assembly including plurality of electrode assemblies and electrochemical device comprising the complex electrode assembly. United States Patent US20200020922A1 (2020).
YangXAll-climate battery technology for electric vehicles: inching closer to the mainstream adoption of automated drivingIEEE Electrific. Mag.20197122110.1109/MELE.2018.2889545
NaumannMSchimpeMKeilPHesseHCJossenAAnalysis and modeling of calendar aging of a commercial LiFePO4/graphite cellJ. Energy Storage20181715316910.1016/j.est.2018.01.019
Battery Requirements for Future Automotive Applications (EUCAR, 2019); https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf
AndreDFuture generations of cathode materials: an automotive industry perspectiveJ. Mater. Chem. A201536709673210.1039/C5TA00361J
ZaghibKEnhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteriesJ. Power Sources2012219364410.1016/j.jpowsour.2012.05.018
Mullaney, T. Tesla and the science behind the next-generation, lower-cost, ‘million-mile’ electric-car battery. CNBC TECH TRENDS (30 June 2020); https://www.cnbc.com/2020/06/30/tesla-and-the-science-of-low-cost-next-gen-ev-million-mile-battery.html
DingYCanoZPYuALuJChenZAutomotive Li-ion batteries: current status and future perspectivesElectrochem. Energy Rev.2019212810.1007/s41918-018-0022-z
WangCYA fast rechargeable lithium-ion battery at subfreezing temperaturesJ. Electrochem. Soc.2016163A1944A195010.1149/2.0681609jes
Lamb, J., Torres-Castro, L., Stanley, J., Grosso, C. & Gray, L. S. Evaluation of Multi-cell Failure Propagation SAND-2020-2802 (Sandia National Laboratories, 2020); https://doi.org/10.2172/1605985
FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097
HarlowJEA wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologiesJ. Electrochem. Soc.2019166A3031A304410.1149/2.0981913jes
Morris, J. Tesla’s shift to cobalt-free batteries is its most important move yet. Forbes (11 July 2020); https://www.forbes.com/sites/jamesmorris/2020/07/11/teslas-shift-to-cobalt-free-batteries-is-its-most-important-move-yet
NittaNWuFLeeJTYushinGLi-ion battery materials: present and futureMate. Today20151825226410.1016/j.mattod.2014.10.040
Electric Vehicle Outlook 2020 (BloombergNEF, 2020); https://about.bnef.com/electric-vehicle-outlook
WangZZhuKHuJWangJStudy on the fire risk associated with a failure of large-scale commercial LiFePO4/graphite and LiNixCoyMn1-x-yO2/graphite batteriesEnergy Sci. Eng.2019741141910.1002/ese3.283
SchimpeMComprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteriesJ. Electrochem. Soc.2018165A181A19310.1149/2.1181714jes
WhittinghamMSLithium batteries and cathode materialsChem. Rev.20041044271430210.1021/cr020731c
YangXGLengYZhangGGeSWangCYModeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear agingJ. Power Sources2017360284010.1016/j.jpowsour.2017.05.110
ManthiramAKnightJCMyungS-TOhS-MSunY-KNickel-rich and lithium-rich layered oxide cathodes: progress and perspectivesAdv. Energy Mater.20166150101010.1002/aenm.201501010
FengXRenDHeXOuyangMMitigating thermal runaway of lithium-ion batteriesJoule2020474377010.1016/j.joule.2020.02.010
ZhangGRapid self-heating and internal temperature sensing of lithium-ion batteries at low temperaturesElectrochim. Acta201621814915510.1016/j.electacta.2016.09.117
ChengJHHarlowJEJohnsonMBGauthierRDahnJREffect of duty cycle on the lifetime of single crystal LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion cellsJ. Electrochem. Soc.202016713052910.1149/1945-7111/abbb0a
Jiang, L., Yang, K., Zhu, Y. & Zhu, J. Electric connector and battery comprising the same. United States Patent US20170346065A1 (2017).
Nelson, P. A., Ahmed, S., Gallagher, K. G. & Dees, D. W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles 3rd edn ANL/CSE-19/2 (Argonne National Laboratory, 2020).
NohH-JYounSYoonCSSunY-KComparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteriesJ. Power Sources201323312113010.1016/j.jpowsour.2013.01.063
SchmuchRWagnerRHörpelGPlackeTWinterMPerformance and cost of materials for lithium-based rechargeable automotive batteriesNat. Energy2018326727810.1038/s41560-018-0107-2
SmithAJBurnsJCZhaoXXiongDDahnJRA high precision coulometry study of the SEI growth in Li/graphite cellsJ. Electrochem. Soc.2011158A44710.1149/1.3557892
Dynamometer Drive Schedules. United States Environmental Protection Agencyhttps://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
Fast Facts: US Transportation Sector Greenhouse Gas Emissions (1990–2018) (US EPA, 2019); https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ZK4P.pdf
K Zaghib (757_CR20) 2012; 219
757_CR11
A Manthiram (757_CR14) 2016; 6
A Yamada (757_CR19) 2001; 148
M Mastali (757_CR49) 2016; 163
MS Whittingham (757_CR5) 2004; 104
M Naumann (757_CR42) 2018; 17
AJ Smith (757_CR43) 2011; 158
N Nitta (757_CR6) 2015; 18
R Schmuch (757_CR7) 2018; 3
G Zhang (757_CR38) 2016; 218
XG Yang (757_CR35) 2019; 3
CY Wang (757_CR47) 2016; 163
Z Wang (757_CR22) 2019; 7
757_CR41
757_CR40
M Schimpe (757_CR46) 2018; 165
A Manthiram (757_CR15) 2017; 6
XG Yang (757_CR36) 2018; 115
ZA Needell (757_CR2) 2016; 1
M Mastali (757_CR50) 2018; 129
D Andre (757_CR10) 2015; 3
JH Cheng (757_CR45) 2020; 167
757_CR39
R Xiong (757_CR16) 2020; 23
757_CR33
757_CR32
757_CR30
X Yang (757_CR37) 2019; 7
X Feng (757_CR17) 2020; 4
XG Yang (757_CR48) 2017; 360
757_CR29
757_CR3
757_CR28
CY Wang (757_CR34) 2016; 529
757_CR4
EA Olivetti (757_CR13) 2017; 1
757_CR27
KG Gallagher (757_CR31) 2015; 163
757_CR1
757_CR25
757_CR24
757_CR23
JE Harlow (757_CR44) 2019; 166
757_CR21
M Li (757_CR8) 2018; 30
Y-K Sun (757_CR12) 2009; 8
Y Ding (757_CR9) 2019; 2
H-J Noh (757_CR18) 2013; 233
M Takahashi (757_CR26) 2005; 152
C Fiori (757_CR51) 2016; 168
References_xml – reference: New Energy Vehicles Safety Monitoring Results Report (National Big Data Alliance of New Energy Vehicles, 2019).
– reference: NaumannMSchimpeMKeilPHesseHCJossenAAnalysis and modeling of calendar aging of a commercial LiFePO4/graphite cellJ. Energy Storage20181715316910.1016/j.est.2018.01.019
– reference: MastaliMElectrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteriesInt. J. Therm. Sci.201812921823010.1016/j.ijthermalsci.2018.03.004
– reference: ZaghibKEnhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteriesJ. Power Sources2012219364410.1016/j.jpowsour.2012.05.018
– reference: SchimpeMComprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteriesJ. Electrochem. Soc.2018165A181A19310.1149/2.1181714jes
– reference: Lienert, P. & Chan, C. Global automakers investing at least $300 billion on batteries and EVs. Reuters (2019); https://graphics.reuters.com/AUTOS-INVESTMENT-ELECTRIC/010081ZB3HD/index.html
– reference: LiMLuJChenZAmineK30 Years of lithium-ion batteriesAdv. Mater.201830180056110.1002/adma.201800561
– reference: DingYCanoZPYuALuJChenZAutomotive Li-ion batteries: current status and future perspectivesElectrochem. Energy Rev.2019212810.1007/s41918-018-0022-z
– reference: YangXAll-climate battery technology for electric vehicles: inching closer to the mainstream adoption of automated drivingIEEE Electrific. Mag.20197122110.1109/MELE.2018.2889545
– reference: Dynamometer Drive Schedules. United States Environmental Protection Agencyhttps://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
– reference: SchmuchRWagnerRHörpelGPlackeTWinterMPerformance and cost of materials for lithium-based rechargeable automotive batteriesNat. Energy2018326727810.1038/s41560-018-0107-2
– reference: Lamb, J., Torres-Castro, L., Stanley, J., Grosso, C. & Gray, L. S. Evaluation of Multi-cell Failure Propagation SAND-2020-2802 (Sandia National Laboratories, 2020); https://doi.org/10.2172/1605985
– reference: Morris, J. Tesla’s shift to cobalt-free batteries is its most important move yet. Forbes (11 July 2020); https://www.forbes.com/sites/jamesmorris/2020/07/11/teslas-shift-to-cobalt-free-batteries-is-its-most-important-move-yet/
– reference: He, K., Jiang, W., Wang, X. & Wen, A. Single battery, power battery pack and vehicle. China Patent CN110364675A (2019).
– reference: WangCYLithium-ion battery structure that self-heats at low temperaturesNature201652951551810.1038/nature16502
– reference: Jiang, L., Yang, K., Zhu, Y. & Zhu, J. Electric connector and battery comprising the same. United States Patent US20170346065A1 (2017).
– reference: LFP market share drops in 2019 but expect a comeback with cell-to-pack. Adamas Intelligence (4 March 2020); https://www.adamasintel.com/lfp-market-2019-cell-to-pack-comeback/
– reference: SmithAJBurnsJCZhaoXXiongDDahnJRA high precision coulometry study of the SEI growth in Li/graphite cellsJ. Electrochem. Soc.2011158A44710.1149/1.3557892
– reference: Nelson, P. A., Ahmed, S., Gallagher, K. G. & Dees, D. W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles 3rd edn ANL/CSE-19/2 (Argonne National Laboratory, 2020).
– reference: ZhangGRapid self-heating and internal temperature sensing of lithium-ion batteries at low temperaturesElectrochim. Acta201621814915510.1016/j.electacta.2016.09.117
– reference: FengXRenDHeXOuyangMMitigating thermal runaway of lithium-ion batteriesJoule2020474377010.1016/j.joule.2020.02.010
– reference: NohH-JYounSYoonCSSunY-KComparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteriesJ. Power Sources201323312113010.1016/j.jpowsour.2013.01.063
– reference: WhittinghamMSLithium batteries and cathode materialsChem. Rev.20041044271430210.1021/cr020731c
– reference: ManthiramASongBLiWA perspective on nickel-rich layered oxide cathodes for lithium-ion batteriesEnergy Storage Mater.2017612513910.1016/j.ensm.2016.10.007
– reference: WangZZhuKHuJWangJStudy on the fire risk associated with a failure of large-scale commercial LiFePO4/graphite and LiNixCoyMn1-x-yO2/graphite batteriesEnergy Sci. Eng.2019741141910.1002/ese3.283
– reference: YangXGLengYZhangGGeSWangCYModeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear agingJ. Power Sources2017360284010.1016/j.jpowsour.2017.05.110
– reference: ChengJHHarlowJEJohnsonMBGauthierRDahnJREffect of duty cycle on the lifetime of single crystal LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion cellsJ. Electrochem. Soc.202016713052910.1149/1945-7111/abbb0a
– reference: YangXGZhangGGeSWangCYFast charging of lithium-ion batteries at all temperaturesProc. Natl Acad. Sci. USA20181157266727110.1073/pnas.1807115115
– reference: AndreDFuture generations of cathode materials: an automotive industry perspectiveJ. Mater. Chem. A201536709673210.1039/C5TA00361J
– reference: Lutsey, N. & Nicholas, M. Update on Electric Vehicle Costs in the United States Through 2030 1–12 (International Council on Clean Transportation, 2019).
– reference: Fast Facts: US Transportation Sector Greenhouse Gas Emissions (1990–2018) (US EPA, 2019); https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ZK4P.pdf
– reference: YamadaAChungSCHinokumaKOptimized LiFePO4 for lithium battery cathodesJ. Electrochem. Soc.2001148A22410.1149/1.1348257
– reference: MastaliMFarkhondehMFarhadSFraserRAFowlerMElectrochemical modeling of commercial LiFePO4 and graphite electrodes: kinetic and transport properties and their temperature dependenceJ. Electrochem. Soc.2016163A2803A281610.1149/2.1151613jes
– reference: Wang, C., He, L., Sun, H., Lu, P. & Zhu, Y. Battery pack, vehicle and energy storage device. China Patent CN110165118B (2019).
– reference: Americans Spend an Average of 17,600 Minutes Driving Each Year (American Automobile Association, 2016); https://newsroom.aaa.com/2016/09/americans-spend-average-17600-minutes-driving-year/
– reference: Electric Vehicle Outlook 2020 (BloombergNEF, 2020); https://about.bnef.com/electric-vehicle-outlook/
– reference: NittaNWuFLeeJTYushinGLi-ion battery materials: present and futureMate. Today20151825226410.1016/j.mattod.2014.10.040
– reference: Battery Requirements for Future Automotive Applications (EUCAR, 2019); https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf
– reference: FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097
– reference: TakahashiMOhtsukaHAkutoKSakuraiYConfirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cellsJ. Electrochem. Soc.2005152A89910.1149/1.1874693
– reference: OlivettiEACederGGaustadGGFuXLithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metalsJoule2017122924310.1016/j.joule.2017.08.019
– reference: WangCYA fast rechargeable lithium-ion battery at subfreezing temperaturesJ. Electrochem. Soc.2016163A1944A195010.1149/2.0681609jes
– reference: SunY-KHigh-energy cathode material for long-life and safe lithium batteriesNat. Mater.2009832032410.1038/nmat2418
– reference: YangXGAsymmetric temperature modulation for extreme fast charging of lithium-ion batteriesJoule201933002301910.1016/j.joule.2019.09.021
– reference: Mullaney, T. Tesla and the science behind the next-generation, lower-cost, ‘million-mile’ electric-car battery. CNBC TECH TRENDS (30 June 2020); https://www.cnbc.com/2020/06/30/tesla-and-the-science-of-low-cost-next-gen-ev-million-mile-battery.html
– reference: XiongRMaSLiHSunFLiJToward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuitiScience20202310101010.1016/j.isci.2020.101010
– reference: NeedellZAMcNerneyJChangMTTrancikJEPotential for widespread electrification of personal vehicle travel in the United StatesNat. Energy201611611210.1038/nenergy.2016.112
– reference: GallagherKGOptimizing areal capacities through understanding the limitations of lithium-ion electrodesJ. Electrochem. Soc.2015163A138A14910.1149/2.0321602jes
– reference: ManthiramAKnightJCMyungS-TOhS-MSunY-KNickel-rich and lithium-rich layered oxide cathodes: progress and perspectivesAdv. Energy Mater.20166150101010.1002/aenm.201501010
– reference: HarlowJEA wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologiesJ. Electrochem. Soc.2019166A3031A304410.1149/2.0981913jes
– reference: Kwon, M., Choi, J., Kwon, K., Do, E. & Lee, Y. Complex electrode assembly including plurality of electrode assemblies and electrochemical device comprising the complex electrode assembly. United States Patent US20200020922A1 (2020).
– volume: 1
  start-page: 16112
  year: 2016
  ident: 757_CR2
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.112
– ident: 757_CR30
– ident: 757_CR11
– volume: 168
  start-page: 257
  year: 2016
  ident: 757_CR51
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.097
– ident: 757_CR4
– volume: 104
  start-page: 4271
  year: 2004
  ident: 757_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 18
  start-page: 252
  year: 2015
  ident: 757_CR6
  publication-title: Mate. Today
  doi: 10.1016/j.mattod.2014.10.040
– ident: 757_CR24
– ident: 757_CR28
– volume: 3
  start-page: 3002
  year: 2019
  ident: 757_CR35
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.021
– volume: 163
  start-page: A2803
  year: 2016
  ident: 757_CR49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1151613jes
– ident: 757_CR25
  doi: 10.12968/S0013-7758(23)90634-3
– volume: 6
  start-page: 1501010
  year: 2016
  ident: 757_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501010
– volume: 6
  start-page: 125
  year: 2017
  ident: 757_CR15
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.10.007
– volume: 7
  start-page: 12
  year: 2019
  ident: 757_CR37
  publication-title: IEEE Electrific. Mag.
  doi: 10.1109/MELE.2018.2889545
– volume: 129
  start-page: 218
  year: 2018
  ident: 757_CR50
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.03.004
– ident: 757_CR3
– volume: 167
  start-page: 130529
  year: 2020
  ident: 757_CR45
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abbb0a
– volume: 158
  start-page: A447
  year: 2011
  ident: 757_CR43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3557892
– volume: 233
  start-page: 121
  year: 2013
  ident: 757_CR18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.063
– ident: 757_CR29
– ident: 757_CR32
– volume: 7
  start-page: 411
  year: 2019
  ident: 757_CR22
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.283
– volume: 115
  start-page: 7266
  year: 2018
  ident: 757_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1807115115
– volume: 23
  start-page: 101010
  year: 2020
  ident: 757_CR16
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101010
– volume: 17
  start-page: 153
  year: 2018
  ident: 757_CR42
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.01.019
– volume: 2
  start-page: 1
  year: 2019
  ident: 757_CR9
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0022-z
– volume: 148
  start-page: A224
  year: 2001
  ident: 757_CR19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1348257
– volume: 1
  start-page: 229
  year: 2017
  ident: 757_CR13
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.019
– volume: 165
  start-page: A181
  year: 2018
  ident: 757_CR46
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1181714jes
– volume: 8
  start-page: 320
  year: 2009
  ident: 757_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2418
– ident: 757_CR21
  doi: 10.2172/1605985
– volume: 163
  start-page: A1944
  year: 2016
  ident: 757_CR47
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0681609jes
– volume: 152
  start-page: A899
  year: 2005
  ident: 757_CR26
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1874693
– ident: 757_CR41
– ident: 757_CR33
– volume: 529
  start-page: 515
  year: 2016
  ident: 757_CR34
  publication-title: Nature
  doi: 10.1038/nature16502
– volume: 218
  start-page: 149
  year: 2016
  ident: 757_CR38
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.117
– ident: 757_CR1
– volume: 219
  start-page: 36
  year: 2012
  ident: 757_CR20
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.05.018
– volume: 4
  start-page: 743
  year: 2020
  ident: 757_CR17
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.010
– volume: 3
  start-page: 6709
  year: 2015
  ident: 757_CR10
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00361J
– volume: 360
  start-page: 28
  year: 2017
  ident: 757_CR48
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.110
– volume: 163
  start-page: A138
  year: 2015
  ident: 757_CR31
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0321602jes
– volume: 30
  start-page: 1800561
  year: 2018
  ident: 757_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 3
  start-page: 267
  year: 2018
  ident: 757_CR7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– ident: 757_CR40
– ident: 757_CR23
– ident: 757_CR39
  doi: 10.2172/1503280
– volume: 166
  start-page: A3031
  year: 2019
  ident: 757_CR44
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0981913jes
– ident: 757_CR27
SSID ssj0002922581
Score 2.617289
Snippet The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms 639/166/988
639/4077/4079/891
639/638/161
Automobiles
Cathodes
Cobalt
Economics and Management
Electric vehicles
Energy
Energy Policy
Energy Storage
Energy Systems
Flux density
High temperature
Iron
Iron phosphates
Life span
Lithium
Lithium-ion batteries
Low cost
Nickel
Oxides
Powertrain
Product safety
Rechargeable batteries
Renewable and Green Energy
Title Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles
URI https://link.springer.com/article/10.1038/s41560-020-00757-7
https://www.proquest.com/docview/2491437805
Volume 6
WOSCitedRecordID wos000608653100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: P5Z
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: M7S
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2058-7546
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002922581
  issn: 2058-7546
  databaseCode: M2P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5VB7YwKrzdDIhQFQMUFW8VLFEfkWt1BekIPHvObspBSRYWDwkjhX5O_vu7Lv7AI5krJXM85zyXDEaGsZomscRDWQcODokJhxryTVvtZJOJ22XB25FGVY52xPdRq1Hyp6RN9BNQNVuK_Cfjp-pZY2yt6slhcYiVNGy8WxI143f_jxj8VOU1sQrc2VYkDQK668wan0mqyw55d_10dzI_HEv6tRNc-2_P7oOq6WhSc6mkrEBC2a4CStfyg9uwSPKCO7L_f47GYy05fEymqBZ3u29DohNfyPj7qgYd_E5ka4OJ7rVBK1cMkCTmw5cwjSZEun0FHkzXRdjtw0Pzcv7iyta8ixQFSTRhEplkQmV1OicSc19I2NPcsOE5tKLuS9sMk-qcQKZzBMEN8wFdkdHVgguomAHKsPR0OwCkb4RIuCRHTLE2U9jX-Oq5zwQTIY6rIE3m-1MlUXILRdGP3OX4UGSTRHKEKHMIZTxGhx_fjOeluD4s_fBDJasXI5FNsekBiczYOevfx9t7-_R9mHZtzEuLor7ACqTl1dzCEvqbdIrXupQPb9stW_rTihty--wbUdPH5se6mU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4lPISW0rxoT2BVa-TjZNDhRBQteqy6qGg3oxf0a60L5ptUf8Uv7EzTtJtkeitB66JYyXx5xl_9sx8ANs2886WZclV6QRPgxC8KLMeT2yWRDkkYaJqSV8NBvnpaXG8An_aXBgKq2xtYjTUfuZoj3wXaQK6dqrA_3H-i5NqFJ2uthIaNSyOwuVvpGzV3uEXHN8dKfe_nnw-4I2qAHdJ3ltw6-g9Umc9UhHrlQw261oVhPHKdjMlDaWuFF4kubBljp-SlgabI20zRhlSiUCT_yClymIUKiiPr_d0ZIGzI-82uTnYwW5F_Ehw4mjknBVXt_3fclH71zlsdG_7T_-3H7MOa81Cmn2qkf8MVsL0OTy5UV7xBfzAOYB-Zzy-ZJOZJ52y4BnSjuHofMIovY_Nh7NqPsTrzMY6o6NQMVzFswlSCj6JCeGsFgoaOXYRhjGG8CV8v5cPewWr09k0vAZmZTAmUT3qMsXRLjLp0aoplRhhU592oNuOrnZNkXXS-hjreNif5LpGhEZE6IgIrTrw_vqZeV1i5M7Wmy0MdGNuKr3EQAc-tEBa3v53bxt39_YOHh2cfOvr_uHg6A08lhTPEyPWN2F1cXYe3sJDd7EYVWdbcSIw-HnfALsC_ztFvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+modulated+lithium+iron+phosphate+batteries+for+mass-market+electric+vehicles&rft.jtitle=Nature+energy&rft.au=Yang%2C+Xiao-Guang&rft.au=Liu%2C+Teng&rft.au=Wang%2C+Chao-Yang&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-7546&rft.volume=6&rft.issue=2&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1038%2Fs41560-020-00757-7&rft.externalDocID=10_1038_s41560_020_00757_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7546&client=summon