Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles
The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and...
Uložené v:
| Vydané v: | Nature energy Ročník 6; číslo 2; s. 176 - 185 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.02.2021
Nature Publishing Group |
| Predmet: | |
| ISSN: | 2058-7546, 2058-7546 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and cobalt-free nature. Here we demonstrate a thermally modulated LFP battery to offer an adequate cruise range per charge that is extendable by 10 min recharge in all climates, essentially guaranteeing EVs that are free of range anxiety. Such a thermally modulated LFP battery designed to operate at a working temperature around 60 °C in any ambient condition promises to be a well-rounded powertrain for mass-market EVs. Furthermore, we reveal that the limited working time at the high temperature presents an opportunity to use graphite of low surface areas, thereby prospectively prolonging the EV lifespan to greater than two million miles.
Ternary layered oxides dominate the current automobile batteries but suffer from material scarcity and operational safety. Here the authors report that, when operating at around 60 °C, a low-cost lithium iron phosphate-based battery exhibits ultra-safe, fast rechargeable and long-lasting properties. |
|---|---|
| AbstractList | The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and cobalt-free nature. Here we demonstrate a thermally modulated LFP battery to offer an adequate cruise range per charge that is extendable by 10 min recharge in all climates, essentially guaranteeing EVs that are free of range anxiety. Such a thermally modulated LFP battery designed to operate at a working temperature around 60 °C in any ambient condition promises to be a well-rounded powertrain for mass-market EVs. Furthermore, we reveal that the limited working time at the high temperature presents an opportunity to use graphite of low surface areas, thereby prospectively prolonging the EV lifespan to greater than two million miles.Ternary layered oxides dominate the current automobile batteries but suffer from material scarcity and operational safety. Here the authors report that, when operating at around 60 °C, a low-cost lithium iron phosphate-based battery exhibits ultra-safe, fast rechargeable and long-lasting properties. The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered oxides increasingly rich in nickel; however, it is impossible to forgo the LFP battery due to its unsurpassed safety, as well as its low cost and cobalt-free nature. Here we demonstrate a thermally modulated LFP battery to offer an adequate cruise range per charge that is extendable by 10 min recharge in all climates, essentially guaranteeing EVs that are free of range anxiety. Such a thermally modulated LFP battery designed to operate at a working temperature around 60 °C in any ambient condition promises to be a well-rounded powertrain for mass-market EVs. Furthermore, we reveal that the limited working time at the high temperature presents an opportunity to use graphite of low surface areas, thereby prospectively prolonging the EV lifespan to greater than two million miles. Ternary layered oxides dominate the current automobile batteries but suffer from material scarcity and operational safety. Here the authors report that, when operating at around 60 °C, a low-cost lithium iron phosphate-based battery exhibits ultra-safe, fast rechargeable and long-lasting properties. |
| Author | Yang, Xiao-Guang Liu, Teng Wang, Chao-Yang |
| Author_xml | – sequence: 1 givenname: Xiao-Guang orcidid: 0000-0002-9880-3682 surname: Yang fullname: Yang, Xiao-Guang organization: Department of Mechanical Engineering and Electrochemical Engine Center, The Pennsylvania State University – sequence: 2 givenname: Teng surname: Liu fullname: Liu, Teng organization: Department of Mechanical Engineering and Electrochemical Engine Center, The Pennsylvania State University – sequence: 3 givenname: Chao-Yang orcidid: 0000-0003-0650-0025 surname: Wang fullname: Wang, Chao-Yang email: cxw31@psu.edu organization: Department of Mechanical Engineering and Electrochemical Engine Center, The Pennsylvania State University, EC Power |
| BookMark | eNp9kE1LxDAQhoOs4LruH_AU8FydpB_pHmXxCxa8rF5DkqY2a9vUJBX235u1guJhD8MMw_vMx3uOZr3tNUKXBK4JpOWNz0heQAI0BrCcJewEzSnkZcLyrJj9qc_Q0vsdANAVpXlJ5uh122jXibbd485WYyuCrnBrQmPGDhtnezw01g9N7GMpQtDOaI9r63AnvE864d51wLrVKjij8KdujGq1v0CntWi9Xv7kBXq5v9uuH5PN88PT-naTqLTMQyJVKos0U7ICArJiVMuCSKZBVEySglEBBYNVFb8EWZeVklktopykVAgm8nSBrqa5g7Mfo_aB7-zo-riS02xFspSVcFDRSaWc9d7pmg_OxNP3nAA_WMgnC3m0kH9byFmEyn-QMkEEY_vghGmPo-mE-rinf9Pu96oj1BeCnokz |
| CitedBy_id | crossref_primary_10_3390_batteries9030176 crossref_primary_10_1016_j_ijhydene_2024_02_063 crossref_primary_10_1016_j_cclet_2024_110041 crossref_primary_10_1016_j_jallcom_2021_160643 crossref_primary_10_1016_j_electacta_2023_141983 crossref_primary_10_1021_jacs_1c08425 crossref_primary_10_1038_s41467_023_38823_9 crossref_primary_10_1007_s11708_023_0900_x crossref_primary_10_1016_j_est_2024_114859 crossref_primary_10_1109_TCE_2024_3482101 crossref_primary_10_1039_D1QI00590A crossref_primary_10_1016_j_jpowsour_2024_234412 crossref_primary_10_1039_D4QI02572E crossref_primary_10_1016_j_pmatsci_2024_101388 crossref_primary_10_1016_j_est_2023_108453 crossref_primary_10_20517_energymater_2025_57 crossref_primary_10_1002_adma_202501185 crossref_primary_10_1039_D5NJ01427A crossref_primary_10_1016_j_jpowsour_2022_231943 crossref_primary_10_1016_j_ensm_2025_104417 crossref_primary_10_1016_j_jpowsour_2022_231705 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122184 crossref_primary_10_1016_j_cec_2024_100087 crossref_primary_10_1007_s11426_023_1705_9 crossref_primary_10_1016_j_applthermaleng_2022_118503 crossref_primary_10_1016_j_jechem_2025_01_046 crossref_primary_10_1016_j_est_2022_105471 crossref_primary_10_1038_s41467_022_35393_0 crossref_primary_10_1093_ijlct_ctad095 crossref_primary_10_1051_e3sconf_202346900005 crossref_primary_10_3390_batteries10080280 crossref_primary_10_1016_j_ccr_2022_214715 crossref_primary_10_1016_j_est_2023_108324 crossref_primary_10_1002_adma_202405956 crossref_primary_10_1002_adma_202510237 crossref_primary_10_1021_acsanm_5c01998 crossref_primary_10_1039_D1EE03292E crossref_primary_10_1016_j_ensm_2025_104402 crossref_primary_10_1002_anie_202314457 crossref_primary_10_1016_j_chempr_2023_09_007 crossref_primary_10_1016_j_joule_2021_05_001 crossref_primary_10_1016_j_jhazmat_2022_130160 crossref_primary_10_1007_s11581_025_06114_6 crossref_primary_10_1016_j_jpowsour_2023_232775 crossref_primary_10_1039_D1EE01530C crossref_primary_10_1016_j_oneear_2024_06_017 crossref_primary_10_1016_j_energy_2023_127378 crossref_primary_10_1016_j_jelechem_2024_118661 crossref_primary_10_1038_s41467_023_43808_9 crossref_primary_10_1002_anie_202418198 crossref_primary_10_1039_D4SC08244C crossref_primary_10_1016_j_etran_2023_100242 crossref_primary_10_3390_batteries8100185 crossref_primary_10_1016_j_jpowsour_2024_235728 crossref_primary_10_1016_j_est_2021_103891 crossref_primary_10_1016_j_est_2023_108905 crossref_primary_10_1002_adma_202301881 crossref_primary_10_1016_j_electacta_2024_145353 crossref_primary_10_1109_ACCESS_2021_3114785 crossref_primary_10_1002_smtd_202300125 crossref_primary_10_3390_pr13030756 crossref_primary_10_1016_j_ensm_2025_104094 crossref_primary_10_1039_D5TA01871D crossref_primary_10_3390_app13106286 crossref_primary_10_1016_j_electacta_2025_146864 crossref_primary_10_1016_j_jechem_2024_06_020 crossref_primary_10_5796_electrochemistry_25_00103 crossref_primary_10_1016_j_etran_2022_100199 crossref_primary_10_1016_j_seppur_2024_130674 crossref_primary_10_1039_D5CS00358J crossref_primary_10_3390_ma16062240 crossref_primary_10_3390_wevj16070346 crossref_primary_10_1016_j_mtcomm_2024_108765 crossref_primary_10_3390_electronics14183643 crossref_primary_10_1039_D4EE05509H crossref_primary_10_1002_smll_202309523 crossref_primary_10_1080_15325008_2023_2239238 crossref_primary_10_1038_s41467_024_49389_5 crossref_primary_10_1002_ange_202304581 crossref_primary_10_1007_s12034_023_02997_1 crossref_primary_10_1016_j_seppur_2022_122640 crossref_primary_10_1002_advs_202104145 crossref_primary_10_1038_s41467_023_41226_5 crossref_primary_10_1016_j_chemphys_2023_111891 crossref_primary_10_1016_j_jcis_2023_05_007 crossref_primary_10_1016_j_isci_2023_108419 crossref_primary_10_1016_j_nxmate_2025_100964 crossref_primary_10_1016_j_mser_2024_100797 crossref_primary_10_1002_adfm_202102765 crossref_primary_10_3390_batteries9110529 crossref_primary_10_1007_s12034_022_02877_0 crossref_primary_10_1016_j_jechem_2022_03_006 crossref_primary_10_1016_j_jechem_2023_05_011 crossref_primary_10_1021_jacs_2c03549 crossref_primary_10_1016_j_etran_2023_100305 crossref_primary_10_1016_j_etran_2023_100302 crossref_primary_10_1016_j_jallcom_2024_176516 crossref_primary_10_1016_j_solener_2024_112910 crossref_primary_10_1016_j_est_2024_112070 crossref_primary_10_1016_j_seppur_2024_128469 crossref_primary_10_1002_anie_202213416 crossref_primary_10_1016_j_apenergy_2022_119200 crossref_primary_10_1016_j_jpowsour_2021_230935 crossref_primary_10_1109_TIM_2022_3199253 crossref_primary_10_3390_batteries10110379 crossref_primary_10_1016_j_energy_2025_136648 crossref_primary_10_1016_j_ensm_2025_104236 crossref_primary_10_1007_s11581_021_04412_3 crossref_primary_10_1007_s40820_022_00939_w crossref_primary_10_1038_s41467_023_36197_6 crossref_primary_10_1016_j_ensm_2025_104479 crossref_primary_10_1016_j_oneear_2022_02_012 crossref_primary_10_1002_smll_202102894 crossref_primary_10_1051_smdo_2024008 crossref_primary_10_1002_aenm_202404368 crossref_primary_10_1002_batt_202300284 crossref_primary_10_1007_s10098_022_02407_w crossref_primary_10_1021_acsaem_5c00475 crossref_primary_10_1016_j_nanoen_2025_111014 crossref_primary_10_1016_j_rser_2022_112579 crossref_primary_10_1002_anie_202503109 crossref_primary_10_1016_j_cej_2024_159108 crossref_primary_10_1016_j_energy_2022_124653 crossref_primary_10_1016_j_apenergy_2024_123665 crossref_primary_10_1016_j_cej_2025_161969 crossref_primary_10_3390_batteries9070379 crossref_primary_10_3390_molecules27185845 crossref_primary_10_1016_j_applthermaleng_2025_127319 crossref_primary_10_1038_s41467_024_48867_0 crossref_primary_10_1002_ange_202418198 crossref_primary_10_1142_S1793604721300061 crossref_primary_10_1016_j_surfcoat_2024_130548 crossref_primary_10_1002_batt_202400280 crossref_primary_10_1016_j_compscitech_2023_110256 crossref_primary_10_1002_aenm_202404391 crossref_primary_10_12677_AEPE_2021_92006 crossref_primary_10_1016_j_jclepro_2022_134260 crossref_primary_10_1016_j_resconrec_2025_108523 crossref_primary_10_1109_TTE_2021_3136126 crossref_primary_10_1557_s43579_024_00644_2 crossref_primary_10_1002_cnl2_70001 crossref_primary_10_1016_j_cej_2025_161928 crossref_primary_10_1016_j_rser_2024_114786 crossref_primary_10_1038_s44359_025_00067_9 crossref_primary_10_1007_s10008_023_05545_3 crossref_primary_10_1038_s41560_023_01215_w crossref_primary_10_1038_s44287_025_00181_7 crossref_primary_10_1002_cjce_24923 crossref_primary_10_1016_j_cej_2025_161931 crossref_primary_10_1016_j_energy_2021_122881 crossref_primary_10_1016_j_energy_2023_127698 crossref_primary_10_1016_j_jcis_2024_01_122 crossref_primary_10_1002_ange_202307868 crossref_primary_10_1002_advs_202101646 crossref_primary_10_1002_cssc_202401432 crossref_primary_10_1038_s44286_024_00105_6 crossref_primary_10_1038_s41596_025_01234_9 crossref_primary_10_1007_s43939_025_00291_x crossref_primary_10_1002_adfm_202414384 crossref_primary_10_1016_j_apenergy_2025_125443 crossref_primary_10_1016_j_resconrec_2025_108519 crossref_primary_10_1016_j_cej_2024_158235 crossref_primary_10_1016_j_egyr_2022_03_016 crossref_primary_10_1063_5_0159269 crossref_primary_10_1002_smm2_1185 crossref_primary_10_1016_j_apenergy_2023_122132 crossref_primary_10_1002_adma_202417796 crossref_primary_10_1016_j_jclepro_2023_136504 crossref_primary_10_3390_coatings11080932 crossref_primary_10_1002_adma_202104763 crossref_primary_10_1002_adma_202309722 crossref_primary_10_1002_ange_202213416 crossref_primary_10_1002_adma_202410482 crossref_primary_10_1016_j_jallcom_2023_171570 crossref_primary_10_1016_j_ensm_2025_104269 crossref_primary_10_1016_j_jallcom_2025_183920 crossref_primary_10_3390_wevj15060268 crossref_primary_10_1002_anie_202307868 crossref_primary_10_1016_j_apenergy_2022_118832 crossref_primary_10_1016_j_cej_2025_164985 crossref_primary_10_1002_adma_202412871 crossref_primary_10_3390_en14175565 crossref_primary_10_1002_adma_202109282 crossref_primary_10_1002_ange_202503109 crossref_primary_10_1007_s10098_023_02629_6 crossref_primary_10_1002_aenm_202403002 crossref_primary_10_1016_j_jpowsour_2023_233688 crossref_primary_10_1002_anie_202409409 crossref_primary_10_1007_s43069_025_00461_w crossref_primary_10_1016_j_sctalk_2022_100039 crossref_primary_10_1016_j_wasman_2024_05_010 crossref_primary_10_1002_anie_202304581 crossref_primary_10_1002_adfm_202507097 crossref_primary_10_1002_aenm_202406064 crossref_primary_10_1016_j_measurement_2024_115148 crossref_primary_10_1002_adfm_202409403 crossref_primary_10_1016_j_apenergy_2024_123183 crossref_primary_10_1038_s41467_024_54454_0 crossref_primary_10_1002_ange_202314457 crossref_primary_10_1007_s12274_023_5427_7 crossref_primary_10_1002_smll_202201808 crossref_primary_10_1016_j_jclepro_2022_133756 crossref_primary_10_1002_adfm_202514172 crossref_primary_10_1002_ente_202201398 crossref_primary_10_1016_j_tre_2023_103362 crossref_primary_10_1038_s41467_023_35933_2 crossref_primary_10_1039_D5TA00166H crossref_primary_10_1002_anie_202505212 crossref_primary_10_1016_j_jpowsour_2023_232805 crossref_primary_10_1016_j_resourpol_2022_102866 crossref_primary_10_1039_D5TA00679A crossref_primary_10_1002_adfm_202405055 crossref_primary_10_1016_j_jhazmat_2023_133349 crossref_primary_10_1002_celc_202100927 crossref_primary_10_1002_adfm_202406966 crossref_primary_10_1016_j_jechem_2024_12_026 crossref_primary_10_1016_j_energy_2024_133385 crossref_primary_10_1021_acsaem_5c00664 crossref_primary_10_1039_D5EB00131E crossref_primary_10_1039_D4NR04671D crossref_primary_10_1016_j_colsurfa_2023_133110 crossref_primary_10_3390_su14106064 crossref_primary_10_1016_j_ensm_2025_104363 crossref_primary_10_1021_acsenergylett_5c00612 crossref_primary_10_1016_j_rser_2025_115677 crossref_primary_10_3390_batteries9070367 crossref_primary_10_1016_j_jpowsour_2022_231441 crossref_primary_10_3390_batteries11060209 crossref_primary_10_1007_s10008_024_05858_x crossref_primary_10_1002_smll_202205086 crossref_primary_10_1039_D2SC05723A crossref_primary_10_1038_s44286_024_00103_8 crossref_primary_10_3390_s22072634 crossref_primary_10_1016_j_electacta_2024_144780 crossref_primary_10_1002_ente_202300826 crossref_primary_10_3390_en15113884 crossref_primary_10_1016_j_jpowsour_2023_233484 crossref_primary_10_1016_j_jcis_2023_01_138 crossref_primary_10_1039_D2NR04140E crossref_primary_10_1002_adma_202502766 crossref_primary_10_1002_aenm_202201834 crossref_primary_10_1016_j_ijthermalsci_2025_110193 crossref_primary_10_1016_j_jechem_2024_08_011 crossref_primary_10_1016_j_jpowsour_2025_237240 crossref_primary_10_1016_j_nanoen_2025_111396 crossref_primary_10_1002_adfm_202423719 crossref_primary_10_1016_j_jclepro_2022_134748 crossref_primary_10_1038_s41467_022_33666_2 crossref_primary_10_1016_j_nanoen_2022_107874 crossref_primary_10_1007_s10163_023_01681_0 crossref_primary_10_1016_j_nanoen_2024_109337 crossref_primary_10_1016_j_partic_2022_05_009 crossref_primary_10_1016_j_apenergy_2022_118758 crossref_primary_10_1016_j_wasman_2024_03_037 crossref_primary_10_1016_j_ceramint_2023_12_339 crossref_primary_10_1016_j_scitotenv_2024_177748 crossref_primary_10_1016_j_apenergy_2021_118116 crossref_primary_10_1016_j_resconrec_2023_107015 crossref_primary_10_1149_1945_7111_ad570b crossref_primary_10_1007_s11426_021_1111_2 crossref_primary_10_1002_batt_202400348 crossref_primary_10_1016_j_jclepro_2024_141452 crossref_primary_10_1016_j_resconrec_2022_106606 crossref_primary_10_3390_cryst15040308 crossref_primary_10_1002_aenm_202304097 crossref_primary_10_1016_j_jpowsour_2022_231105 crossref_primary_10_1002_smll_202205142 crossref_primary_10_3390_s22051966 crossref_primary_10_1016_j_est_2022_104854 crossref_primary_10_1002_adma_202109356 crossref_primary_10_1002_ange_202505212 crossref_primary_10_1016_j_jclepro_2025_145306 crossref_primary_10_1002_cssc_202202158 crossref_primary_10_1002_smtd_202201390 crossref_primary_10_1002_bte2_20230028 crossref_primary_10_1002_ange_202409409 crossref_primary_10_1016_j_ijthermalsci_2025_109900 crossref_primary_10_1016_j_est_2023_107275 crossref_primary_10_1016_j_ccr_2022_214879 crossref_primary_10_1002_aenm_202203283 crossref_primary_10_3390_wevj14040088 crossref_primary_10_1016_j_jpowsour_2023_232965 crossref_primary_10_3390_batteries9050261 crossref_primary_10_3390_en14196006 crossref_primary_10_1016_j_cej_2024_149923 crossref_primary_10_1016_j_est_2025_116469 crossref_primary_10_1016_j_ces_2025_121964 crossref_primary_10_1109_ACCESS_2022_3182726 crossref_primary_10_1002_aenm_202400621 crossref_primary_10_1021_acsenergylett_5c02528 crossref_primary_10_1016_j_jechem_2023_09_050 crossref_primary_10_1016_j_applthermaleng_2023_122235 crossref_primary_10_1016_j_jpowsour_2022_231129 crossref_primary_10_5796_electrochemistry_25_71009 crossref_primary_10_1016_j_etran_2024_100364 crossref_primary_10_3390_pr13051478 crossref_primary_10_1002_aenm_202201190 crossref_primary_10_1038_s41467_024_45091_8 crossref_primary_10_1016_j_mtchem_2024_102159 crossref_primary_10_1002_ente_202301277 crossref_primary_10_1016_j_nanoen_2024_110249 crossref_primary_10_1002_adma_202202848 crossref_primary_10_1002_advs_202504683 crossref_primary_10_1039_D5TA02392K crossref_primary_10_1021_acsenergylett_5c02530 crossref_primary_10_1002_batt_202400437 crossref_primary_10_1016_j_applthermaleng_2024_123197 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1038_s41467_024_48181_9 crossref_primary_10_1002_adfm_202408422 crossref_primary_10_1016_j_ijhydene_2024_11_093 crossref_primary_10_3390_s22052043 crossref_primary_10_1039_D5NJ00262A crossref_primary_10_1016_j_est_2022_105813 crossref_primary_10_1038_s44359_024_00020_2 crossref_primary_10_1109_ACCESS_2021_3090534 |
| Cites_doi | 10.1038/nenergy.2016.112 10.1016/j.apenergy.2016.01.097 10.1021/cr020731c 10.1016/j.mattod.2014.10.040 10.1016/j.joule.2019.09.021 10.1149/2.1151613jes 10.12968/S0013-7758(23)90634-3 10.1002/aenm.201501010 10.1016/j.ensm.2016.10.007 10.1109/MELE.2018.2889545 10.1016/j.ijthermalsci.2018.03.004 10.1149/1945-7111/abbb0a 10.1149/1.3557892 10.1016/j.jpowsour.2013.01.063 10.1002/ese3.283 10.1073/pnas.1807115115 10.1016/j.isci.2020.101010 10.1016/j.est.2018.01.019 10.1007/s41918-018-0022-z 10.1149/1.1348257 10.1016/j.joule.2017.08.019 10.1149/2.1181714jes 10.1038/nmat2418 10.2172/1605985 10.1149/2.0681609jes 10.1149/1.1874693 10.1038/nature16502 10.1016/j.electacta.2016.09.117 10.1016/j.jpowsour.2012.05.018 10.1016/j.joule.2020.02.010 10.1039/C5TA00361J 10.1016/j.jpowsour.2017.05.110 10.1149/2.0321602jes 10.1002/adma.201800561 10.1038/s41560-018-0107-2 10.2172/1503280 10.1149/2.0981913jes |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
| DBID | AAYXX CITATION 3V. 7SP 7SU 7TB 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ C1K CCPQU DWQXO FR3 GNUQQ HCIFZ L6V L7M M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1038/s41560-020-00757-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Environmental Engineering Abstracts ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2058-7546 |
| EndPage | 185 |
| ExternalDocumentID | 10_1038_s41560_020_00757_7 |
| GrantInformation_xml | – fundername: Pennsylvania State University (Penn State) grantid: William E. Diefenderfer Endowment funderid: https://doi.org/10.13039/100008321 – fundername: DOE | Office of Energy Efficiency and Renewable Energy (Office of Energy Efficiency & Renewable Energy) grantid: DE-EE0008355 funderid: https://doi.org/10.13039/100006134 |
| GroupedDBID | 0R~ 3V. 88I AAEEF AARCD AAYZH AAZLF ABJNI ABLJU ABUWG ACBWK ACGFS ADBBV AEUYN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BKKNO BPHCQ CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ M2P NNMJJ O9- ODYON PQQKQ PROAC RNT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ABJCF ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ARAPS ATHPR BGLVJ CITATION M7S PHGZM PHGZT PQGLB PTHSS 7SP 7SU 7TB 7XB 8FD 8FE 8FG 8FK C1K FR3 L6V L7M P62 PKEHL PQEST PQUKI PUEGO Q9U |
| ID | FETCH-LOGICAL-c385t-bc3b634cbd010bd72eb61b7e0ad7b1672a06709d0380bf8dcb4fa4cb132aa7a53 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 405 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608653100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2058-7546 |
| IngestDate | Sat Sep 06 07:31:08 EDT 2025 Sat Nov 29 04:06:06 EST 2025 Tue Nov 18 21:18:15 EST 2025 Fri Feb 21 02:38:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-bc3b634cbd010bd72eb61b7e0ad7b1672a06709d0380bf8dcb4fa4cb132aa7a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0650-0025 0000-0002-9880-3682 |
| PQID | 2491437805 |
| PQPubID | 2069617 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2491437805 crossref_primary_10_1038_s41560_020_00757_7 crossref_citationtrail_10_1038_s41560_020_00757_7 springer_journals_10_1038_s41560_020_00757_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature energy |
| PublicationTitleAbbrev | Nat Energy |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | NeedellZAMcNerneyJChangMTTrancikJEPotential for widespread electrification of personal vehicle travel in the United StatesNat. Energy201611611210.1038/nenergy.2016.112 SunY-KHigh-energy cathode material for long-life and safe lithium batteriesNat. Mater.2009832032410.1038/nmat2418 Wang, C., He, L., Sun, H., Lu, P. & Zhu, Y. Battery pack, vehicle and energy storage device. China Patent CN110165118B (2019). LiMLuJChenZAmineK30 Years of lithium-ion batteriesAdv. Mater.201830180056110.1002/adma.201800561 He, K., Jiang, W., Wang, X. & Wen, A. Single battery, power battery pack and vehicle. China Patent CN110364675A (2019). MastaliMFarkhondehMFarhadSFraserRAFowlerMElectrochemical modeling of commercial LiFePO4 and graphite electrodes: kinetic and transport properties and their temperature dependenceJ. Electrochem. Soc.2016163A2803A281610.1149/2.1151613jes MastaliMElectrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteriesInt. J. Therm. Sci.201812921823010.1016/j.ijthermalsci.2018.03.004 Lienert, P. & Chan, C. Global automakers investing at least $300 billion on batteries and EVs. Reuters (2019); https://graphics.reuters.com/AUTOS-INVESTMENT-ELECTRIC/010081ZB3HD/index.html YamadaAChungSCHinokumaKOptimized LiFePO4 for lithium battery cathodesJ. Electrochem. Soc.2001148A22410.1149/1.1348257 OlivettiEACederGGaustadGGFuXLithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metalsJoule2017122924310.1016/j.joule.2017.08.019 New Energy Vehicles Safety Monitoring Results Report (National Big Data Alliance of New Energy Vehicles, 2019). TakahashiMOhtsukaHAkutoKSakuraiYConfirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cellsJ. Electrochem. Soc.2005152A89910.1149/1.1874693 YangXGZhangGGeSWangCYFast charging of lithium-ion batteries at all temperaturesProc. Natl Acad. Sci. USA20181157266727110.1073/pnas.1807115115 XiongRMaSLiHSunFLiJToward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuitiScience20202310101010.1016/j.isci.2020.101010 ManthiramASongBLiWA perspective on nickel-rich layered oxide cathodes for lithium-ion batteriesEnergy Storage Mater.2017612513910.1016/j.ensm.2016.10.007 Americans Spend an Average of 17,600 Minutes Driving Each Year (American Automobile Association, 2016); https://newsroom.aaa.com/2016/09/americans-spend-average-17600-minutes-driving-year Lutsey, N. & Nicholas, M. Update on Electric Vehicle Costs in the United States Through 2030 1–12 (International Council on Clean Transportation, 2019). LFP market share drops in 2019 but expect a comeback with cell-to-pack. Adamas Intelligence (4 March 2020); https://www.adamasintel.com/lfp-market-2019-cell-to-pack-comeback GallagherKGOptimizing areal capacities through understanding the limitations of lithium-ion electrodesJ. Electrochem. Soc.2015163A138A14910.1149/2.0321602jes YangXGAsymmetric temperature modulation for extreme fast charging of lithium-ion batteriesJoule201933002301910.1016/j.joule.2019.09.021 WangCYLithium-ion battery structure that self-heats at low temperaturesNature201652951551810.1038/nature16502 Kwon, M., Choi, J., Kwon, K., Do, E. & Lee, Y. Complex electrode assembly including plurality of electrode assemblies and electrochemical device comprising the complex electrode assembly. United States Patent US20200020922A1 (2020). YangXAll-climate battery technology for electric vehicles: inching closer to the mainstream adoption of automated drivingIEEE Electrific. Mag.20197122110.1109/MELE.2018.2889545 NaumannMSchimpeMKeilPHesseHCJossenAAnalysis and modeling of calendar aging of a commercial LiFePO4/graphite cellJ. Energy Storage20181715316910.1016/j.est.2018.01.019 Battery Requirements for Future Automotive Applications (EUCAR, 2019); https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf AndreDFuture generations of cathode materials: an automotive industry perspectiveJ. Mater. Chem. A201536709673210.1039/C5TA00361J ZaghibKEnhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteriesJ. Power Sources2012219364410.1016/j.jpowsour.2012.05.018 Mullaney, T. Tesla and the science behind the next-generation, lower-cost, ‘million-mile’ electric-car battery. CNBC TECH TRENDS (30 June 2020); https://www.cnbc.com/2020/06/30/tesla-and-the-science-of-low-cost-next-gen-ev-million-mile-battery.html DingYCanoZPYuALuJChenZAutomotive Li-ion batteries: current status and future perspectivesElectrochem. Energy Rev.2019212810.1007/s41918-018-0022-z WangCYA fast rechargeable lithium-ion battery at subfreezing temperaturesJ. Electrochem. Soc.2016163A1944A195010.1149/2.0681609jes Lamb, J., Torres-Castro, L., Stanley, J., Grosso, C. & Gray, L. S. Evaluation of Multi-cell Failure Propagation SAND-2020-2802 (Sandia National Laboratories, 2020); https://doi.org/10.2172/1605985 FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097 HarlowJEA wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologiesJ. Electrochem. Soc.2019166A3031A304410.1149/2.0981913jes Morris, J. Tesla’s shift to cobalt-free batteries is its most important move yet. Forbes (11 July 2020); https://www.forbes.com/sites/jamesmorris/2020/07/11/teslas-shift-to-cobalt-free-batteries-is-its-most-important-move-yet NittaNWuFLeeJTYushinGLi-ion battery materials: present and futureMate. Today20151825226410.1016/j.mattod.2014.10.040 Electric Vehicle Outlook 2020 (BloombergNEF, 2020); https://about.bnef.com/electric-vehicle-outlook WangZZhuKHuJWangJStudy on the fire risk associated with a failure of large-scale commercial LiFePO4/graphite and LiNixCoyMn1-x-yO2/graphite batteriesEnergy Sci. Eng.2019741141910.1002/ese3.283 SchimpeMComprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteriesJ. Electrochem. Soc.2018165A181A19310.1149/2.1181714jes WhittinghamMSLithium batteries and cathode materialsChem. Rev.20041044271430210.1021/cr020731c YangXGLengYZhangGGeSWangCYModeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear agingJ. Power Sources2017360284010.1016/j.jpowsour.2017.05.110 ManthiramAKnightJCMyungS-TOhS-MSunY-KNickel-rich and lithium-rich layered oxide cathodes: progress and perspectivesAdv. Energy Mater.20166150101010.1002/aenm.201501010 FengXRenDHeXOuyangMMitigating thermal runaway of lithium-ion batteriesJoule2020474377010.1016/j.joule.2020.02.010 ZhangGRapid self-heating and internal temperature sensing of lithium-ion batteries at low temperaturesElectrochim. Acta201621814915510.1016/j.electacta.2016.09.117 ChengJHHarlowJEJohnsonMBGauthierRDahnJREffect of duty cycle on the lifetime of single crystal LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion cellsJ. Electrochem. Soc.202016713052910.1149/1945-7111/abbb0a Jiang, L., Yang, K., Zhu, Y. & Zhu, J. Electric connector and battery comprising the same. United States Patent US20170346065A1 (2017). Nelson, P. A., Ahmed, S., Gallagher, K. G. & Dees, D. W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles 3rd edn ANL/CSE-19/2 (Argonne National Laboratory, 2020). NohH-JYounSYoonCSSunY-KComparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteriesJ. Power Sources201323312113010.1016/j.jpowsour.2013.01.063 SchmuchRWagnerRHörpelGPlackeTWinterMPerformance and cost of materials for lithium-based rechargeable automotive batteriesNat. Energy2018326727810.1038/s41560-018-0107-2 SmithAJBurnsJCZhaoXXiongDDahnJRA high precision coulometry study of the SEI growth in Li/graphite cellsJ. Electrochem. Soc.2011158A44710.1149/1.3557892 Dynamometer Drive Schedules. United States Environmental Protection Agencyhttps://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules Fast Facts: US Transportation Sector Greenhouse Gas Emissions (1990–2018) (US EPA, 2019); https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ZK4P.pdf K Zaghib (757_CR20) 2012; 219 757_CR11 A Manthiram (757_CR14) 2016; 6 A Yamada (757_CR19) 2001; 148 M Mastali (757_CR49) 2016; 163 MS Whittingham (757_CR5) 2004; 104 M Naumann (757_CR42) 2018; 17 AJ Smith (757_CR43) 2011; 158 N Nitta (757_CR6) 2015; 18 R Schmuch (757_CR7) 2018; 3 G Zhang (757_CR38) 2016; 218 XG Yang (757_CR35) 2019; 3 CY Wang (757_CR47) 2016; 163 Z Wang (757_CR22) 2019; 7 757_CR41 757_CR40 M Schimpe (757_CR46) 2018; 165 A Manthiram (757_CR15) 2017; 6 XG Yang (757_CR36) 2018; 115 ZA Needell (757_CR2) 2016; 1 M Mastali (757_CR50) 2018; 129 D Andre (757_CR10) 2015; 3 JH Cheng (757_CR45) 2020; 167 757_CR39 R Xiong (757_CR16) 2020; 23 757_CR33 757_CR32 757_CR30 X Yang (757_CR37) 2019; 7 X Feng (757_CR17) 2020; 4 XG Yang (757_CR48) 2017; 360 757_CR29 757_CR3 757_CR28 CY Wang (757_CR34) 2016; 529 757_CR4 EA Olivetti (757_CR13) 2017; 1 757_CR27 KG Gallagher (757_CR31) 2015; 163 757_CR1 757_CR25 757_CR24 757_CR23 JE Harlow (757_CR44) 2019; 166 757_CR21 M Li (757_CR8) 2018; 30 Y-K Sun (757_CR12) 2009; 8 Y Ding (757_CR9) 2019; 2 H-J Noh (757_CR18) 2013; 233 M Takahashi (757_CR26) 2005; 152 C Fiori (757_CR51) 2016; 168 |
| References_xml | – reference: New Energy Vehicles Safety Monitoring Results Report (National Big Data Alliance of New Energy Vehicles, 2019). – reference: NaumannMSchimpeMKeilPHesseHCJossenAAnalysis and modeling of calendar aging of a commercial LiFePO4/graphite cellJ. Energy Storage20181715316910.1016/j.est.2018.01.019 – reference: MastaliMElectrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteriesInt. J. Therm. Sci.201812921823010.1016/j.ijthermalsci.2018.03.004 – reference: ZaghibKEnhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteriesJ. Power Sources2012219364410.1016/j.jpowsour.2012.05.018 – reference: SchimpeMComprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteriesJ. Electrochem. Soc.2018165A181A19310.1149/2.1181714jes – reference: Lienert, P. & Chan, C. Global automakers investing at least $300 billion on batteries and EVs. Reuters (2019); https://graphics.reuters.com/AUTOS-INVESTMENT-ELECTRIC/010081ZB3HD/index.html – reference: LiMLuJChenZAmineK30 Years of lithium-ion batteriesAdv. Mater.201830180056110.1002/adma.201800561 – reference: DingYCanoZPYuALuJChenZAutomotive Li-ion batteries: current status and future perspectivesElectrochem. Energy Rev.2019212810.1007/s41918-018-0022-z – reference: YangXAll-climate battery technology for electric vehicles: inching closer to the mainstream adoption of automated drivingIEEE Electrific. Mag.20197122110.1109/MELE.2018.2889545 – reference: Dynamometer Drive Schedules. United States Environmental Protection Agencyhttps://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules – reference: SchmuchRWagnerRHörpelGPlackeTWinterMPerformance and cost of materials for lithium-based rechargeable automotive batteriesNat. Energy2018326727810.1038/s41560-018-0107-2 – reference: Lamb, J., Torres-Castro, L., Stanley, J., Grosso, C. & Gray, L. S. Evaluation of Multi-cell Failure Propagation SAND-2020-2802 (Sandia National Laboratories, 2020); https://doi.org/10.2172/1605985 – reference: Morris, J. Tesla’s shift to cobalt-free batteries is its most important move yet. Forbes (11 July 2020); https://www.forbes.com/sites/jamesmorris/2020/07/11/teslas-shift-to-cobalt-free-batteries-is-its-most-important-move-yet/ – reference: He, K., Jiang, W., Wang, X. & Wen, A. Single battery, power battery pack and vehicle. China Patent CN110364675A (2019). – reference: WangCYLithium-ion battery structure that self-heats at low temperaturesNature201652951551810.1038/nature16502 – reference: Jiang, L., Yang, K., Zhu, Y. & Zhu, J. Electric connector and battery comprising the same. United States Patent US20170346065A1 (2017). – reference: LFP market share drops in 2019 but expect a comeback with cell-to-pack. Adamas Intelligence (4 March 2020); https://www.adamasintel.com/lfp-market-2019-cell-to-pack-comeback/ – reference: SmithAJBurnsJCZhaoXXiongDDahnJRA high precision coulometry study of the SEI growth in Li/graphite cellsJ. Electrochem. Soc.2011158A44710.1149/1.3557892 – reference: Nelson, P. A., Ahmed, S., Gallagher, K. G. & Dees, D. W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles 3rd edn ANL/CSE-19/2 (Argonne National Laboratory, 2020). – reference: ZhangGRapid self-heating and internal temperature sensing of lithium-ion batteries at low temperaturesElectrochim. Acta201621814915510.1016/j.electacta.2016.09.117 – reference: FengXRenDHeXOuyangMMitigating thermal runaway of lithium-ion batteriesJoule2020474377010.1016/j.joule.2020.02.010 – reference: NohH-JYounSYoonCSSunY-KComparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteriesJ. Power Sources201323312113010.1016/j.jpowsour.2013.01.063 – reference: WhittinghamMSLithium batteries and cathode materialsChem. Rev.20041044271430210.1021/cr020731c – reference: ManthiramASongBLiWA perspective on nickel-rich layered oxide cathodes for lithium-ion batteriesEnergy Storage Mater.2017612513910.1016/j.ensm.2016.10.007 – reference: WangZZhuKHuJWangJStudy on the fire risk associated with a failure of large-scale commercial LiFePO4/graphite and LiNixCoyMn1-x-yO2/graphite batteriesEnergy Sci. Eng.2019741141910.1002/ese3.283 – reference: YangXGLengYZhangGGeSWangCYModeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear agingJ. Power Sources2017360284010.1016/j.jpowsour.2017.05.110 – reference: ChengJHHarlowJEJohnsonMBGauthierRDahnJREffect of duty cycle on the lifetime of single crystal LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion cellsJ. Electrochem. Soc.202016713052910.1149/1945-7111/abbb0a – reference: YangXGZhangGGeSWangCYFast charging of lithium-ion batteries at all temperaturesProc. Natl Acad. Sci. USA20181157266727110.1073/pnas.1807115115 – reference: AndreDFuture generations of cathode materials: an automotive industry perspectiveJ. Mater. Chem. A201536709673210.1039/C5TA00361J – reference: Lutsey, N. & Nicholas, M. Update on Electric Vehicle Costs in the United States Through 2030 1–12 (International Council on Clean Transportation, 2019). – reference: Fast Facts: US Transportation Sector Greenhouse Gas Emissions (1990–2018) (US EPA, 2019); https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ZK4P.pdf – reference: YamadaAChungSCHinokumaKOptimized LiFePO4 for lithium battery cathodesJ. Electrochem. Soc.2001148A22410.1149/1.1348257 – reference: MastaliMFarkhondehMFarhadSFraserRAFowlerMElectrochemical modeling of commercial LiFePO4 and graphite electrodes: kinetic and transport properties and their temperature dependenceJ. Electrochem. Soc.2016163A2803A281610.1149/2.1151613jes – reference: Wang, C., He, L., Sun, H., Lu, P. & Zhu, Y. Battery pack, vehicle and energy storage device. China Patent CN110165118B (2019). – reference: Americans Spend an Average of 17,600 Minutes Driving Each Year (American Automobile Association, 2016); https://newsroom.aaa.com/2016/09/americans-spend-average-17600-minutes-driving-year/ – reference: Electric Vehicle Outlook 2020 (BloombergNEF, 2020); https://about.bnef.com/electric-vehicle-outlook/ – reference: NittaNWuFLeeJTYushinGLi-ion battery materials: present and futureMate. Today20151825226410.1016/j.mattod.2014.10.040 – reference: Battery Requirements for Future Automotive Applications (EUCAR, 2019); https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf – reference: FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097 – reference: TakahashiMOhtsukaHAkutoKSakuraiYConfirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cellsJ. Electrochem. Soc.2005152A89910.1149/1.1874693 – reference: OlivettiEACederGGaustadGGFuXLithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metalsJoule2017122924310.1016/j.joule.2017.08.019 – reference: WangCYA fast rechargeable lithium-ion battery at subfreezing temperaturesJ. Electrochem. Soc.2016163A1944A195010.1149/2.0681609jes – reference: SunY-KHigh-energy cathode material for long-life and safe lithium batteriesNat. Mater.2009832032410.1038/nmat2418 – reference: YangXGAsymmetric temperature modulation for extreme fast charging of lithium-ion batteriesJoule201933002301910.1016/j.joule.2019.09.021 – reference: Mullaney, T. Tesla and the science behind the next-generation, lower-cost, ‘million-mile’ electric-car battery. CNBC TECH TRENDS (30 June 2020); https://www.cnbc.com/2020/06/30/tesla-and-the-science-of-low-cost-next-gen-ev-million-mile-battery.html – reference: XiongRMaSLiHSunFLiJToward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuitiScience20202310101010.1016/j.isci.2020.101010 – reference: NeedellZAMcNerneyJChangMTTrancikJEPotential for widespread electrification of personal vehicle travel in the United StatesNat. Energy201611611210.1038/nenergy.2016.112 – reference: GallagherKGOptimizing areal capacities through understanding the limitations of lithium-ion electrodesJ. Electrochem. Soc.2015163A138A14910.1149/2.0321602jes – reference: ManthiramAKnightJCMyungS-TOhS-MSunY-KNickel-rich and lithium-rich layered oxide cathodes: progress and perspectivesAdv. Energy Mater.20166150101010.1002/aenm.201501010 – reference: HarlowJEA wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologiesJ. Electrochem. Soc.2019166A3031A304410.1149/2.0981913jes – reference: Kwon, M., Choi, J., Kwon, K., Do, E. & Lee, Y. Complex electrode assembly including plurality of electrode assemblies and electrochemical device comprising the complex electrode assembly. United States Patent US20200020922A1 (2020). – volume: 1 start-page: 16112 year: 2016 ident: 757_CR2 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.112 – ident: 757_CR30 – ident: 757_CR11 – volume: 168 start-page: 257 year: 2016 ident: 757_CR51 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.097 – ident: 757_CR4 – volume: 104 start-page: 4271 year: 2004 ident: 757_CR5 publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 18 start-page: 252 year: 2015 ident: 757_CR6 publication-title: Mate. Today doi: 10.1016/j.mattod.2014.10.040 – ident: 757_CR24 – ident: 757_CR28 – volume: 3 start-page: 3002 year: 2019 ident: 757_CR35 publication-title: Joule doi: 10.1016/j.joule.2019.09.021 – volume: 163 start-page: A2803 year: 2016 ident: 757_CR49 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1151613jes – ident: 757_CR25 doi: 10.12968/S0013-7758(23)90634-3 – volume: 6 start-page: 1501010 year: 2016 ident: 757_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501010 – volume: 6 start-page: 125 year: 2017 ident: 757_CR15 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.10.007 – volume: 7 start-page: 12 year: 2019 ident: 757_CR37 publication-title: IEEE Electrific. Mag. doi: 10.1109/MELE.2018.2889545 – volume: 129 start-page: 218 year: 2018 ident: 757_CR50 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.03.004 – ident: 757_CR3 – volume: 167 start-page: 130529 year: 2020 ident: 757_CR45 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abbb0a – volume: 158 start-page: A447 year: 2011 ident: 757_CR43 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3557892 – volume: 233 start-page: 121 year: 2013 ident: 757_CR18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.063 – ident: 757_CR29 – ident: 757_CR32 – volume: 7 start-page: 411 year: 2019 ident: 757_CR22 publication-title: Energy Sci. Eng. doi: 10.1002/ese3.283 – volume: 115 start-page: 7266 year: 2018 ident: 757_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807115115 – volume: 23 start-page: 101010 year: 2020 ident: 757_CR16 publication-title: iScience doi: 10.1016/j.isci.2020.101010 – volume: 17 start-page: 153 year: 2018 ident: 757_CR42 publication-title: J. Energy Storage doi: 10.1016/j.est.2018.01.019 – volume: 2 start-page: 1 year: 2019 ident: 757_CR9 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0022-z – volume: 148 start-page: A224 year: 2001 ident: 757_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1348257 – volume: 1 start-page: 229 year: 2017 ident: 757_CR13 publication-title: Joule doi: 10.1016/j.joule.2017.08.019 – volume: 165 start-page: A181 year: 2018 ident: 757_CR46 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1181714jes – volume: 8 start-page: 320 year: 2009 ident: 757_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat2418 – ident: 757_CR21 doi: 10.2172/1605985 – volume: 163 start-page: A1944 year: 2016 ident: 757_CR47 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0681609jes – volume: 152 start-page: A899 year: 2005 ident: 757_CR26 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1874693 – ident: 757_CR41 – ident: 757_CR33 – volume: 529 start-page: 515 year: 2016 ident: 757_CR34 publication-title: Nature doi: 10.1038/nature16502 – volume: 218 start-page: 149 year: 2016 ident: 757_CR38 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.09.117 – ident: 757_CR1 – volume: 219 start-page: 36 year: 2012 ident: 757_CR20 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.05.018 – volume: 4 start-page: 743 year: 2020 ident: 757_CR17 publication-title: Joule doi: 10.1016/j.joule.2020.02.010 – volume: 3 start-page: 6709 year: 2015 ident: 757_CR10 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00361J – volume: 360 start-page: 28 year: 2017 ident: 757_CR48 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.110 – volume: 163 start-page: A138 year: 2015 ident: 757_CR31 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0321602jes – volume: 30 start-page: 1800561 year: 2018 ident: 757_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201800561 – volume: 3 start-page: 267 year: 2018 ident: 757_CR7 publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – ident: 757_CR40 – ident: 757_CR23 – ident: 757_CR39 doi: 10.2172/1503280 – volume: 166 start-page: A3031 year: 2019 ident: 757_CR44 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0981913jes – ident: 757_CR27 |
| SSID | ssj0002922581 |
| Score | 2.6173425 |
| Snippet | The pursuit of energy density has driven electric vehicle (EV) batteries from using lithium iron phosphate (LFP) cathodes in early days to ternary layered... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 176 |
| SubjectTerms | 639/166/988 639/4077/4079/891 639/638/161 Automobiles Cathodes Cobalt Economics and Management Electric vehicles Energy Energy Policy Energy Storage Energy Systems Flux density High temperature Iron Iron phosphates Life span Lithium Lithium-ion batteries Low cost Nickel Oxides Powertrain Product safety Rechargeable batteries Renewable and Green Energy |
| Title | Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles |
| URI | https://link.springer.com/article/10.1038/s41560-020-00757-7 https://www.proquest.com/docview/2491437805 |
| Volume | 6 |
| WOSCitedRecordID | wos000608653100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2058-7546 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: P5Z dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2058-7546 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: M7S dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2058-7546 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2058-7546 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002922581 issn: 2058-7546 databaseCode: M2P dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQKg9sYDWPJnYmBKiIAaqKlxBLFD-iVmraQkol_j1nJ20BiS4sHhLnFPnOd9_Z9wA4QQukVWCSY_xU0WaoHJp4PKEeCjQCOsk8G-X7fMvabf7yEnXKA7e8DKuc6kSrqNVQmjPyBroJaNpNBf7z0Rs1XaPM7WrZQmMZVhDZuCak687rzM5YvAillbtlrozj80Zu_BWHGp_JGEtG2U97NAeZv-5Frbm53vzvj27BRgk0yUUhGduwpAc7sP6t_OAuPKOMoF7u9z9JNlSmj5dWBGF5t_eREZP-RkbdYT7q4nMibB1OdKsJolySIeSmmU2YJkUjnZ4kE921MXZ78HTdery6oWWfBSp9HoypkL4I_aYUCp0zoZinRegKpp1EMeGGzEtMMk-kcAEdkXIlRTNNcDo6sknCksDfh8pgONAHQFJEdBFLORJOm1IGUahYqLUwZeE1Y7wK7nS1Y1kWITe9MPqxvQz3eVxwKEYOxZZDMavC6eybUVGCY-Hs2pQtcbkd83jOkyqcTRk7f_03tcPF1I5gzTMxLjaKuwaV8fuHPoZVORn38vc6rFy22p37uhVKM7IHHDvB6xcDsum2 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UF4VSwv4ACewNutkY-dQVRWwarXLqodS9WbiR7Qr7Ytm26p_qr-xM07SBST21gPXxB4p8eeZ-ex5AHxAC-Rdl5Jj4sLxJHURz4XKuUBAo0NnpQhRvqcDORyqs7PseANumlwYCqtsdGJQ1G5u6Yy8jTQBTTtV4N9f_OLUNYpuV5sWGhUs-v76CilbuXf0Fdf3oxC9bydfDnndVYDbWHWX3NjYpHFijUMqYpwU3qQdI32UO2k6qRQ5pa5kLopVZArlrEmKHIcjbctzmVOXCFT5DxKqLEahguL47kxHZLg7VKfOzUEB7ZL4UcSJo5Fxllz-af9WTu1f97DBvPW2_rcf8wye1o40O6iQ_xw2_OwFPPmtvOJLOMU9gHZnMrlm07mjPmXeMaQdo_HFlFF6H1uM5uVihM-ZCXVGx75k6MWzKVIKPg0J4axqFDS27NKPQgzhK_hxLx-2DZuz-cy_Blagx5rJQqHgIrG2m6VOpt4bKnvvpVQt6DSrq21dZJ16fUx0uOyPla4QoREROiBCyxZ8upuzqEqMrB2928BA1-qm1CsMtOBzA6TV639Le7Ne2nt4dHjyfaAHR8P-DjwWFM8TItZ3YXN5fuHfwkN7uRyX5-_CRmDw874Bdgtfa0UQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+modulated+lithium+iron+phosphate+batteries+for+mass-market+electric+vehicles&rft.jtitle=Nature+energy&rft.au=Yang%2C+Xiao-Guang&rft.au=Liu%2C+Teng&rft.au=Wang%2C+Chao-Yang&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-7546&rft.volume=6&rft.issue=2&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1038%2Fs41560-020-00757-7&rft.externalDocID=10_1038_s41560_020_00757_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7546&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7546&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7546&client=summon |