GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels
Abstract Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA m...
Uložené v:
| Vydané v: | Briefings in bioinformatics Ročník 24; číslo 1 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
19.01.2023
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels. |
|---|---|
| AbstractList | Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels. Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels.Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels. Abstract Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels. |
| Author | Hu, Fei-Fei Xie, Gui-Yan Miao, Ya-Ru Liu, Chun-Jie Zeng, Yan Li, Xin-Wen Guo, An-Yuan |
| Author_xml | – sequence: 1 givenname: Chun-Jie orcidid: 0000-0002-3008-3375 surname: Liu fullname: Liu, Chun-Jie email: chunjie.sam.liu@gmail.com – sequence: 2 givenname: Fei-Fei orcidid: 0000-0002-8884-3568 surname: Hu fullname: Hu, Fei-Fei email: guoay@hust.edu.cn – sequence: 3 givenname: Gui-Yan orcidid: 0000-0002-2924-5306 surname: Xie fullname: Xie, Gui-Yan email: xieguiyan@hust.edu.cn – sequence: 4 givenname: Ya-Ru orcidid: 0000-0002-1982-3141 surname: Miao fullname: Miao, Ya-Ru email: miaoyr@hust.edu.cn – sequence: 5 givenname: Xin-Wen surname: Li fullname: Li, Xin-Wen email: lixinwen2020@163.com – sequence: 6 givenname: Yan surname: Zeng fullname: Zeng, Yan email: zengyan68@wust.edu.cn – sequence: 7 givenname: An-Yuan orcidid: 0000-0002-5099-7465 surname: Guo fullname: Guo, An-Yuan email: guoay@hust.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36549921$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c1rHSEQAHApCc1He-q9CIVSaLbRXVd3cwuPJikEemh7llmdTQ27ulU3kP--Pt5LD6HkojL-ZsSZE3Lgg0dC3nH2hbO-OR_ccD4MYNq2e0WOuVCqEqwVB9uzVFUrZHNETlK6Z6xmquOvyVEjW9H3NT8m_vrH5vKCgqfOZ7yLkNHSZYI8hjjTstA79EgTZmrAG4yFwvSYXKKQt3dhduaMLr8hzmDCPlCQpW6eV_8vMuEDTukNORxhSvh2v5-SX1dff25uqtvv1982l7eVabo2V4OQpmPCCgkSR96bUSFYO7a1HQ3vFON93RmpBsN4M4wKuFTW1ChYzQV0tjkln3Z1lxj-rJiynl0yOE3gMaxJ16rtSvM6JQv98IzehzWWTybdcN4IWd6qi3q_V-swo9VLdDPER_3UyQL4DpgYUoo4auMyZBd8juAmzZneTkuXaen9tErO52c5T2X_rz_udFiXF-FffzCkig |
| CitedBy_id | crossref_primary_10_1038_s41598_025_10290_w crossref_primary_10_1007_s12094_024_03818_5 crossref_primary_10_1186_s41065_025_00415_6 crossref_primary_10_3389_fimmu_2025_1558881 crossref_primary_10_1007_s12672_025_03384_4 crossref_primary_10_3389_fimmu_2024_1409448 crossref_primary_10_1002_cam4_71147 crossref_primary_10_1007_s00432_023_05401_x crossref_primary_10_3389_fimmu_2024_1426474 crossref_primary_10_3389_fmolb_2024_1365655 crossref_primary_10_1093_bib_bbae635 crossref_primary_10_1007_s12094_024_03796_8 crossref_primary_10_1038_s41598_024_56105_2 crossref_primary_10_1007_s12672_024_01006_z crossref_primary_10_3389_fphar_2025_1634985 crossref_primary_10_3390_ijms26072872 crossref_primary_10_3389_fendo_2023_1247709 crossref_primary_10_3389_fphar_2023_1213891 crossref_primary_10_1002_cam4_70605 crossref_primary_10_1007_s10616_024_00694_3 crossref_primary_10_3389_fcell_2023_1162344 crossref_primary_10_1007_s10735_024_10251_z crossref_primary_10_1007_s12672_023_00828_7 crossref_primary_10_1016_j_gene_2024_149136 crossref_primary_10_1038_s41419_025_07781_z crossref_primary_10_1186_s13000_024_01493_2 crossref_primary_10_1007_s43032_024_01625_5 crossref_primary_10_1016_j_tranon_2025_102409 crossref_primary_10_2147_JIR_S515347 crossref_primary_10_1515_jtim_2025_0009 crossref_primary_10_1186_s12859_023_05615_3 crossref_primary_10_3389_fgene_2024_1430565 crossref_primary_10_1080_15257770_2024_2393316 crossref_primary_10_3389_fimmu_2025_1509222 crossref_primary_10_62347_SDZI3679 crossref_primary_10_1007_s12672_025_03477_0 crossref_primary_10_1186_s12894_023_01307_5 crossref_primary_10_7717_peerj_17629 crossref_primary_10_2147_BCTT_S497975 crossref_primary_10_1038_s41598_025_93695_x crossref_primary_10_1007_s12325_024_02806_z crossref_primary_10_1038_s41598_024_76798_9 crossref_primary_10_3389_fonc_2025_1525635 crossref_primary_10_1038_s41598_023_45249_2 crossref_primary_10_1016_j_arabjc_2023_105561 crossref_primary_10_1007_s12032_025_02841_y crossref_primary_10_1007_s12672_024_01093_y crossref_primary_10_3389_fgene_2025_1539745 crossref_primary_10_3389_fgene_2025_1584986 crossref_primary_10_1002_cam4_70986 crossref_primary_10_2147_JIR_S501850 crossref_primary_10_3390_biomedicines13040773 crossref_primary_10_1186_s41065_024_00353_9 crossref_primary_10_1007_s10142_023_01122_z crossref_primary_10_1038_s41598_025_95493_x crossref_primary_10_1186_s12967_023_04503_x crossref_primary_10_3390_cancers15235653 crossref_primary_10_1177_15330338241297597 crossref_primary_10_3892_mmr_2023_13132 crossref_primary_10_1080_15257770_2024_2432991 crossref_primary_10_1186_s41065_025_00535_z crossref_primary_10_1007_s00432_023_05000_w crossref_primary_10_1186_s12935_025_03942_4 crossref_primary_10_3389_fonc_2025_1537084 crossref_primary_10_3389_fgene_2024_1404348 crossref_primary_10_1016_j_yjmcc_2025_07_018 crossref_primary_10_1186_s12935_024_03348_8 crossref_primary_10_1186_s12977_024_00636_z crossref_primary_10_1007_s00432_024_05970_5 crossref_primary_10_1093_bib_bbaf364 crossref_primary_10_1007_s12672_025_02701_1 crossref_primary_10_1007_s10495_023_01916_3 crossref_primary_10_1007_s12672_025_02631_y crossref_primary_10_1016_j_humgen_2025_201391 crossref_primary_10_1038_s41598_025_01986_0 crossref_primary_10_3389_fmed_2025_1624815 crossref_primary_10_1007_s11011_025_01574_1 crossref_primary_10_1186_s41065_025_00523_3 crossref_primary_10_1016_j_bbcan_2025_189330 crossref_primary_10_1007_s12672_025_02775_x crossref_primary_10_3390_ijms242216380 crossref_primary_10_1038_s41598_024_53489_z crossref_primary_10_3390_ijms241713269 crossref_primary_10_3390_medicina61071283 crossref_primary_10_3389_fimmu_2025_1529029 crossref_primary_10_3390_cancers15133284 crossref_primary_10_1007_s10142_023_00974_9 crossref_primary_10_1007_s12672_025_02004_5 crossref_primary_10_7759_cureus_65504 crossref_primary_10_1038_s41698_025_01027_z crossref_primary_10_1186_s13619_025_00232_2 crossref_primary_10_3389_fimmu_2025_1559317 crossref_primary_10_1186_s41065_025_00496_3 crossref_primary_10_1186_s12967_023_04822_z crossref_primary_10_3390_ijms242115530 crossref_primary_10_1002_imt2_233 crossref_primary_10_1016_j_canlet_2025_217753 crossref_primary_10_7717_peerj_18401 crossref_primary_10_1007_s10238_025_01689_w crossref_primary_10_1002_cbin_12053 crossref_primary_10_1007_s10238_024_01389_x crossref_primary_10_7759_cureus_65190 crossref_primary_10_1007_s10142_025_01626_w crossref_primary_10_1016_j_compbiomed_2025_110768 crossref_primary_10_1186_s41065_025_00364_0 crossref_primary_10_1007_s12672_024_01084_z crossref_primary_10_1002_jcp_70092 crossref_primary_10_1186_s12935_025_03843_6 crossref_primary_10_1002_ccs3_70042 crossref_primary_10_1016_j_heliyon_2024_e32291 crossref_primary_10_1096_fj_202402165RR crossref_primary_10_3389_fonc_2023_1209168 crossref_primary_10_1038_s41698_025_00949_y crossref_primary_10_3390_biology13020083 crossref_primary_10_1007_s10238_025_01677_0 crossref_primary_10_1186_s41065_025_00448_x crossref_primary_10_1007_s12672_024_01483_2 crossref_primary_10_3390_ijms251910351 crossref_primary_10_1186_s12885_024_12489_y crossref_primary_10_3389_fmolb_2023_1265359 crossref_primary_10_1186_s13048_025_01758_4 crossref_primary_10_1016_j_smhs_2025_09_001 crossref_primary_10_3389_fimmu_2023_1112704 crossref_primary_10_3389_fmolb_2024_1452290 crossref_primary_10_3390_ph18060900 crossref_primary_10_3389_fimmu_2023_1249731 crossref_primary_10_3389_fimmu_2024_1491910 crossref_primary_10_1016_j_csbj_2024_02_015 crossref_primary_10_1016_j_ijbiomac_2025_142079 crossref_primary_10_1186_s41065_025_00398_4 crossref_primary_10_1016_j_future_2024_06_053 crossref_primary_10_1097_MD_0000000000037460 crossref_primary_10_3390_ijms252011143 crossref_primary_10_1016_j_phrs_2024_107521 crossref_primary_10_2147_BCTT_S490154 crossref_primary_10_1007_s10147_025_02723_3 crossref_primary_10_1002_cbin_12027 crossref_primary_10_3390_ijms26188780 crossref_primary_10_2147_ITT_S486609 crossref_primary_10_3389_fimmu_2025_1642193 crossref_primary_10_2147_JHC_S450479 crossref_primary_10_1007_s10142_025_01669_z crossref_primary_10_1186_s13578_025_01431_9 crossref_primary_10_1038_s41598_024_76298_w crossref_primary_10_1111_jog_16313 crossref_primary_10_1093_nar_gkaf388 crossref_primary_10_1007_s12672_025_02723_9 crossref_primary_10_1186_s12967_023_04819_8 crossref_primary_10_1186_s12894_024_01559_9 crossref_primary_10_1016_j_jff_2024_106089 crossref_primary_10_1016_j_tranon_2025_102496 crossref_primary_10_7717_peerj_19785 crossref_primary_10_1016_j_bspc_2024_106504 crossref_primary_10_3389_fonc_2023_1109378 crossref_primary_10_1002_ctm2_70144 crossref_primary_10_3390_ijms26073322 crossref_primary_10_1186_s12885_024_13225_2 crossref_primary_10_1007_s00432_024_05870_8 crossref_primary_10_3389_fimmu_2025_1623315 crossref_primary_10_1038_s41598_024_74565_4 crossref_primary_10_1093_jleuko_qiae041 crossref_primary_10_1080_15257770_2024_2336222 crossref_primary_10_1038_s41598_025_14342_z crossref_primary_10_1007_s12672_025_01780_4 crossref_primary_10_1186_s12920_024_01825_7 crossref_primary_10_1038_s41598_025_96683_3 crossref_primary_10_1002_tox_24079 crossref_primary_10_1038_s41598_025_99017_5 crossref_primary_10_1016_j_bspc_2024_107240 crossref_primary_10_1016_j_heliyon_2024_e35231 crossref_primary_10_1007_s10142_024_01338_7 crossref_primary_10_3389_fimmu_2024_1409945 crossref_primary_10_1186_s41065_025_00411_w crossref_primary_10_1002_adfm_202419915 crossref_primary_10_3389_fgene_2025_1536620 crossref_primary_10_62347_SLUH3891 crossref_primary_10_1186_s12967_024_05641_6 crossref_primary_10_1007_s12672_024_01712_8 crossref_primary_10_1096_fj_202301161R crossref_primary_10_1038_s41598_024_52153_w crossref_primary_10_3390_bioengineering12040420 crossref_primary_10_3390_jpm14070765 crossref_primary_10_1007_s12672_024_01107_9 crossref_primary_10_1038_s41598_024_82460_1 crossref_primary_10_3389_fcell_2023_1247632 crossref_primary_10_62347_WKTK8811 crossref_primary_10_1080_15257770_2023_2296615 crossref_primary_10_1038_s41598_025_05658_x crossref_primary_10_3389_fphar_2024_1329409 crossref_primary_10_1186_s13578_024_01316_3 crossref_primary_10_1007_s12672_024_01553_5 crossref_primary_10_1007_s13577_023_01005_2 crossref_primary_10_1038_s41598_025_99909_6 crossref_primary_10_1021_acsomega_5c03331 crossref_primary_10_1038_s41598_023_46107_x crossref_primary_10_1038_s41598_024_61302_0 crossref_primary_10_3390_medicina61081333 crossref_primary_10_1002_advs_202502271 crossref_primary_10_1007_s12672_024_01516_w crossref_primary_10_1016_j_bbrep_2025_101942 crossref_primary_10_3389_fonc_2023_1159725 crossref_primary_10_1186_s40246_025_00726_9 crossref_primary_10_1016_j_compbiomed_2025_110021 crossref_primary_10_1002_cam4_70819 crossref_primary_10_1111_jcmm_18392 crossref_primary_10_1007_s10495_025_02103_2 crossref_primary_10_1038_s41598_024_57533_w crossref_primary_10_3389_fimmu_2024_1519345 crossref_primary_10_1038_s41598_024_57594_x crossref_primary_10_1186_s41065_025_00369_9 crossref_primary_10_1016_j_nexres_2025_100391 crossref_primary_10_1002_cai2_149 crossref_primary_10_1016_j_heliyon_2023_e18436 crossref_primary_10_1007_s00432_023_05075_5 crossref_primary_10_2147_JMDH_S483940 crossref_primary_10_1186_s12967_025_06872_x crossref_primary_10_1186_s40246_024_00633_5 crossref_primary_10_1007_s12672_025_03355_9 crossref_primary_10_1038_s41598_025_97078_0 crossref_primary_10_1049_syb2_12097 crossref_primary_10_1097_MD_0000000000036303 crossref_primary_10_1186_s12885_024_13060_5 crossref_primary_10_1515_med_2023_0825 crossref_primary_10_1038_s41598_025_92542_3 crossref_primary_10_1016_j_molimm_2025_02_016 crossref_primary_10_3103_S0095452724050141 crossref_primary_10_1038_s41598_024_54255_x crossref_primary_10_1007_s10238_025_01815_8 crossref_primary_10_1186_s40001_024_01649_2 crossref_primary_10_1186_s41065_025_00429_0 crossref_primary_10_1186_s12920_024_01922_7 crossref_primary_10_1186_s12967_024_05401_6 crossref_primary_10_1007_s00262_025_04034_y crossref_primary_10_1097_CM9_0000000000003254 crossref_primary_10_1038_s41698_024_00658_y crossref_primary_10_3389_fimmu_2025_1572108 crossref_primary_10_1007_s12033_023_01045_x crossref_primary_10_1038_s41598_024_58982_z crossref_primary_10_1016_j_cellsig_2025_111657 crossref_primary_10_3389_fmolb_2024_1424104 crossref_primary_10_1002_advs_202309840 crossref_primary_10_1016_j_heliyon_2024_e37007 crossref_primary_10_3389_fimmu_2024_1456649 crossref_primary_10_1039_D4MD00940A crossref_primary_10_1111_ajco_14173 crossref_primary_10_1007_s13205_025_04294_6 crossref_primary_10_62347_SUVC1606 crossref_primary_10_3724_abbs_2025042 crossref_primary_10_3390_jmp5010005 crossref_primary_10_3389_fphar_2023_1200795 crossref_primary_10_3389_fphar_2025_1563435 crossref_primary_10_1111_jcmm_70476 crossref_primary_10_1186_s13048_024_01478_1 crossref_primary_10_1515_med_2024_0906 crossref_primary_10_1096_fj_202400917R crossref_primary_10_1016_j_bbrc_2023_06_015 crossref_primary_10_1038_s41698_025_00834_8 crossref_primary_10_1186_s12885_025_14096_x crossref_primary_10_1002_cam4_70836 crossref_primary_10_1097_MD_0000000000039592 crossref_primary_10_1111_febs_17080 crossref_primary_10_1038_s42003_024_06891_2 crossref_primary_10_3390_cimb46030117 crossref_primary_10_3390_ijms26125772 crossref_primary_10_1080_15257770_2024_2408735 crossref_primary_10_1007_s12031_025_02381_0 crossref_primary_10_1038_s41598_025_85887_2 crossref_primary_10_1093_bib_bbae691 crossref_primary_10_3390_biom15040510 crossref_primary_10_62347_XAKQ8090 crossref_primary_10_1038_s41598_025_17230_8 crossref_primary_10_1038_s41598_023_45761_5 crossref_primary_10_3389_fgene_2023_1290903 crossref_primary_10_2147_BCTT_S537429 |
| Cites_doi | 10.1038/s41467-018-05914-x 10.1073/pnas.0506580102 10.1186/gb-2011-12-4-r41 10.1093/nar/gkz430 10.1158/2159-8290.CD-12-0095 10.1093/bib/bbac129 10.1016/j.ebiom.2018.12.054 10.1038/s41467-021-23681-0 10.1038/nrc3458 10.1186/1471-2105-14-7 10.1038/nmeth.2650 10.1093/bib/bbaa176 10.1016/j.cell.2018.03.035 10.1093/bib/bbz131 10.1093/nar/gks1111 10.1038/nchembio.1986 10.1093/bioinformatics/bty411 10.1038/ncomms4887 10.1038/ng.2764 10.3389/fgene.2020.00654 10.1093/nar/gkaa407 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| DOI | 10.1093/bib/bbac558 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | 36549921 10_1093_bib_bbac558 10.1093/bib/bbac558 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31822030 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c385t-b46c804d46a6ef19cf7eaddf52dfc18701928c67bc013bf7a167dc2e40214a8d3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 389 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902410400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Sun Nov 09 14:29:19 EST 2025 Mon Oct 06 16:52:51 EDT 2025 Wed Feb 19 02:25:07 EST 2025 Sat Nov 29 05:43:34 EST 2025 Tue Nov 18 21:06:17 EST 2025 Wed Apr 02 06:58:29 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | immunogenomics clinical outcomes gene set cancer analysis web server |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-b46c804d46a6ef19cf7eaddf52dfc18701928c67bc013bf7a167dc2e40214a8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8884-3568 0000-0002-1982-3141 0000-0002-3008-3375 0000-0002-2924-5306 0000-0002-5099-7465 |
| OpenAccessLink | https://academic.oup.com/bib/article-pdf/24/1/bbac558/48782462/bbac558.pdf |
| PMID | 36549921 |
| PQID | 3113461922 |
| PQPubID | 26846 |
| ParticipantIDs | proquest_miscellaneous_2758109876 proquest_journals_3113461922 pubmed_primary_36549921 crossref_citationtrail_10_1093_bib_bbac558 crossref_primary_10_1093_bib_bbac558 oup_primary_10_1093_bib_bbac558 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-19 |
| PublicationDateYYYYMMDD | 2023-01-19 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2023 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Hänzelmann (2023011917083389300_ref4) 2013; 14 Liu (2023011917083389300_ref11) 2018; 34 Griffith (2023011917083389300_ref18) 2018; 9 Shen (2023011917083389300_ref21) 2019; 40 Li (2023011917083389300_ref9) 2020; 48 Mermel (2023011917083389300_ref16) 2011; 12 Harvey (2023011917083389300_ref2) 2013; 13 Cerami (2023011917083389300_ref7) 2012; 2 Weinstein (2023011917083389300_ref6) 2013; 45 Zong (2023011917083389300_ref5) 2021; 12 Sanchez-Vega (2023011917083389300_ref20) 2018; 173 Maleki (2023011917083389300_ref1) 2020; 11 Subramanian (2023011917083389300_ref3) 2005; 102 Miao (2023011917083389300_ref13) 2019; 7 Rees (2023011917083389300_ref15) 2016; 12 Li (2023011917083389300_ref12) 2013; 10 Lv (2023011917083389300_ref22) 2019; 21 Tang (2023011917083389300_ref8) 2019; 47 Hu (2023011917083389300_ref19) 2021; 22 Akbani (2023011917083389300_ref17) 2014; 5 Yang (2023011917083389300_ref14) 2013; 41 Lin (2023011917083389300_ref10) 2022; 23 |
| References_xml | – volume: 9 start-page: 3476 year: 2018 ident: 2023011917083389300_ref18 article-title: The prognostic effects of somatic mutations in ER-positive breast cancer publication-title: Nat Commun doi: 10.1038/s41467-018-05914-x – volume: 102 start-page: 15545 year: 2005 ident: 2023011917083389300_ref3 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 7 year: 2019 ident: 2023011917083389300_ref13 article-title: ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy publication-title: Adv Sci – volume: 12 start-page: R41 year: 2011 ident: 2023011917083389300_ref16 article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers publication-title: Genome Biol doi: 10.1186/gb-2011-12-4-r41 – volume: 47 start-page: W556 year: 2019 ident: 2023011917083389300_ref8 article-title: GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz430 – volume: 2 start-page: 401 year: 2012 ident: 2023011917083389300_ref7 article-title: The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – volume: 23 start-page: bbac129 year: 2022 ident: 2023011917083389300_ref10 article-title: CAMOIP: a web server for comprehensive analysis on multi-omics of immunotherapy in pan-cancer publication-title: Brief Bioinform doi: 10.1093/bib/bbac129 – volume: 40 start-page: 318 year: 2019 ident: 2023011917083389300_ref21 article-title: Development and validation of an immune gene-set based Prognostic signature in ovarian cancer publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.054 – volume: 12 start-page: 3579 year: 2021 ident: 2023011917083389300_ref5 article-title: Analysis of the genomic landscape of yolk sac tumors reveals mechanisms of evolution and chemoresistance publication-title: Nat Commun doi: 10.1038/s41467-021-23681-0 – volume: 13 start-page: 246 year: 2013 ident: 2023011917083389300_ref2 article-title: The Hippo pathway and human cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc3458 – volume: 14 start-page: 7 year: 2013 ident: 2023011917083389300_ref4 article-title: GSVA: gene set variation analysis for microarray and RNA-Seq data publication-title: BMC Bioinform doi: 10.1186/1471-2105-14-7 – volume: 10 start-page: 1046 year: 2013 ident: 2023011917083389300_ref12 article-title: TCPA: a resource for cancer functional proteomics data publication-title: Nat Methods doi: 10.1038/nmeth.2650 – volume: 22 start-page: bbaa176 year: 2021 ident: 2023011917083389300_ref19 article-title: Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response publication-title: Brief Bioinform doi: 10.1093/bib/bbaa176 – volume: 173 start-page: 321 year: 2018 ident: 2023011917083389300_ref20 article-title: Oncogenic signaling pathways in The Cancer Genome Atlas publication-title: Cell doi: 10.1016/j.cell.2018.03.035 – volume: 21 start-page: 2175 year: 2019 ident: 2023011917083389300_ref22 article-title: Landscape of cancer diagnostic biomarkers from specifically expressed genes publication-title: Brief Bioinform doi: 10.1093/bib/bbz131 – volume: 41 start-page: D955 year: 2013 ident: 2023011917083389300_ref14 article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1111 – volume: 12 start-page: 109 year: 2016 ident: 2023011917083389300_ref15 article-title: Correlating chemical sensitivity and basal gene expression reveals mechanism of action publication-title: Nat Chem Biol doi: 10.1038/nchembio.1986 – volume: 34 start-page: 3771 year: 2018 ident: 2023011917083389300_ref11 article-title: GSCALite: a web server for gene set cancer analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty411 – volume: 5 start-page: 3887 year: 2014 ident: 2023011917083389300_ref17 article-title: A pan-cancer proteomic perspective on The Cancer Genome Atlas publication-title: Nat Commun doi: 10.1038/ncomms4887 – volume: 45 start-page: 1113 year: 2013 ident: 2023011917083389300_ref6 article-title: The Cancer Genome Atlas Pan-Cancer analysis project publication-title: Nat Genet doi: 10.1038/ng.2764 – volume: 11 start-page: 654 year: 2020 ident: 2023011917083389300_ref1 article-title: Gene set analysis: challenges, opportunities, and future research publication-title: Front Genet doi: 10.3389/fgene.2020.00654 – volume: 48 start-page: W509 year: 2020 ident: 2023011917083389300_ref9 article-title: TIMER2.0 for analysis of tumor-infiltrating immune cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa407 |
| SSID | ssj0020781 |
| Score | 2.7154772 |
| Snippet | Abstract
Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the... Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | 1-Phosphatidylinositol 3-kinase Cancer Cell cycle Clinical outcomes Gene expression Genes Genomic analysis Genomics Genomics - methods Humans Immune system Infiltration Metastases Mutation Neoplasms - drug therapy Neoplasms - genetics Oncogenes Pharmacogenetics Pharmacogenomics Phosphatidylinositol 3-Kinases - genetics Sensitivity analysis Signal to noise ratio Tumor suppressor genes Tumors |
| Title | GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36549921 https://www.proquest.com/docview/3113461922 https://www.proquest.com/docview/2758109876 |
| Volume | 24 |
| WOSCitedRecordID | wos000902410400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8RADA4qCr54H-s5gk9icdtOO1PfRDweRAUP9q3MVVhYusu2Cv57k-1Y8EB96cNM2ilJhiSTyReAQ3QZQsszDHISZQLOlQ4UWokgtlI5qyMrJpdonm_E7a3s9bJ7f0G2-iGFn8Unuq9PtFYmSaimN0wkNSp4vOu1cRXh1TRFRCIgdHdfhvfl3U-G51Mx2zefcmJbLhf_-1dLsOC9R3bWiHsZply5AnNNP8m3VSivHs7PTpkqWYsCYdlooGryTBk-GKqLY5WrmSFpj5G0wSRhqqY5KlE-ZiMPZ-0HkMiyPtWRtCMDumpUrcHT5cXj-XXgGyoEJpZJHWieGtnllqcqdUWYmUKgItkiiWxhQknI7JE0qdAGHUNdCBWmwprIcQJWU9LG6zBTDku3CYwLoXXXWBV1DddWICe4RG_Aam5DnWYdOPrgdm482jg1vRjkTdY7zpGBuWdgBw5b4lEDsvEz2T6K7XeKnQ-R5n4vVjlqY8wpTow6cNBO4y6i1Igq3fClyiMMm_BjaBo6sNGoQrtOnFIMHYVbfy6_DfPUjZ5OaMJsB2bq8YvbhVnzWver8R5Mi57cm6juOzIN6zc |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GSCA%3A+an+integrated+platform+for+gene+set+cancer+analysis+at+genomic%2C+pharmacogenomic+and+immunogenomic+levels&rft.jtitle=Briefings+in+bioinformatics&rft.au=Liu%2C+Chun-Jie&rft.au=Hu%2C+Fei-Fei&rft.au=Xie%2C+Gui-Yan&rft.au=Miao%2C+Ya-Ru&rft.date=2023-01-19&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac558&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |