Multi-Station Agricultural Machinery Scheduling Based on Spatiotemporal Clustering and Learnable Multi-Objective Evolutionary Algorithm

The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based solely on spatial distance cannot ensure the continuity of agricultural operations. Multi-objective evolutionary algorithms are sensitive to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AgriEngineering Jg. 7; H. 6; S. 197
Hauptverfasser: Jia, Liruizhi, Zhang, Qinshuo, Liu, Shengquan, Kong, Bo, Liu, Yuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2025
Schlagworte:
ISSN:2624-7402, 2624-7402
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based solely on spatial distance cannot ensure the continuity of agricultural operations. Multi-objective evolutionary algorithms are sensitive to the initial population quality and local search strategies for path planning, where unreasonable initial solutions or improper local search strategies can affect the diversity of solutions. Therefore, we propose a spatiotemporal allocation algorithm that constructs a spatiotemporal distance function to describe the feasibility of continuous operations and evaluates the spatiotemporal proximity of operation points and stations for clustering allocation. In terms of path planning, we design a learnable multi-objective evolutionary algorithm (LMOEA). First, a hybrid initialization strategy is used to enhance the initial population quality; second, a Q-learning-based local search method is constructed to adaptively adjust the search strategy to reduce ineffective iterations; finally, a dynamically adjusted crowding distance mechanism is introduced to improve the distribution of the solution set. Experimental results show that the spatiotemporal allocation algorithm improves the average cost and satisfaction by 4.09% and 3.28% compared to the spatial method. Compared with INSGA-II, HTSMOGA, and NNITSA algorithms, the LMOEA can obtain solutions of higher quality and greater diversity.
AbstractList The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based solely on spatial distance cannot ensure the continuity of agricultural operations. Multi-objective evolutionary algorithms are sensitive to the initial population quality and local search strategies for path planning, where unreasonable initial solutions or improper local search strategies can affect the diversity of solutions. Therefore, we propose a spatiotemporal allocation algorithm that constructs a spatiotemporal distance function to describe the feasibility of continuous operations and evaluates the spatiotemporal proximity of operation points and stations for clustering allocation. In terms of path planning, we design a learnable multi-objective evolutionary algorithm (LMOEA). First, a hybrid initialization strategy is used to enhance the initial population quality; second, a Q-learning-based local search method is constructed to adaptively adjust the search strategy to reduce ineffective iterations; finally, a dynamically adjusted crowding distance mechanism is introduced to improve the distribution of the solution set. Experimental results show that the spatiotemporal allocation algorithm improves the average cost and satisfaction by 4.09% and 3.28% compared to the spatial method. Compared with INSGA-II, HTSMOGA, and NNITSA algorithms, the LMOEA can obtain solutions of higher quality and greater diversity.
Author Liu, Yuan
Zhang, Qinshuo
Jia, Liruizhi
Liu, Shengquan
Kong, Bo
Author_xml – sequence: 1
  givenname: Liruizhi
  orcidid: 0000-0002-0178-4375
  surname: Jia
  fullname: Jia, Liruizhi
– sequence: 2
  givenname: Qinshuo
  surname: Zhang
  fullname: Zhang, Qinshuo
– sequence: 3
  givenname: Shengquan
  orcidid: 0000-0001-9623-4714
  surname: Liu
  fullname: Liu, Shengquan
– sequence: 4
  givenname: Bo
  surname: Kong
  fullname: Kong, Bo
– sequence: 5
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
BookMark eNptkcFu3CAURVGVSEnT_EJkqWu3GAzYy-kobSNNlMU0a_TAzx5GjJkCjtQvyG-XyVRVF12Bni7nXPTek4s5zEjIXUM_cd7TzzBFh_PkZsTo5klRSZtevSPXTLK2Vi1lF__cr8htSntKKRO0FX1_TV4fF59dvc2QXZirVcHZMlki-OoR7K6A469qa3c4LL4Iqi-QcKhKdHs8Pcl4OIZTeO2XlN86VDAP1QYhzmA8VmfBk9mjze4Fq_uX4JeTDAp45acQXd4dPpDLEXzC2z_nDXn-ev9j_b3ePH17WK82teWdyLXhspXGqG4UBhQ1wtgGaDcytGocoMWhZWAFbQbFsBOd4EoyAGWUGWU7dPyGPJy5Q4C9PkZ3KDV0AKffBiFOGmJ21qM2nbTWNMAE8tZYC3KURVpUKCSXprA-nlnHGH4umLLeh6X82ifNGSt9u6aXJSXPKRtDShHHv9aG6tMO9f93yH8DWZCaTw
Cites_doi 10.1016/j.ejor.2016.01.043
10.1287/opre.35.2.254
10.13031/aea.15332
10.1016/j.compag.2021.106607
10.1016/j.compag.2021.105993
10.1109/JAS.2019.1911405
10.1109/4235.996017
10.1016/j.eswa.2023.120988
10.1016/j.procs.2017.05.431
10.1016/j.compag.2009.01.011
10.1016/j.eswa.2022.118740
10.1016/j.compag.2017.12.042
10.3182/20130828-2-SF-3019.00023
10.1016/j.susoc.2023.02.002
10.1109/TEVC.2014.2301794
10.1016/j.compag.2019.03.034
10.1145/3453474
10.1016/j.compag.2024.109121
10.1016/j.biosystemseng.2018.04.003
10.1109/ACCESS.2023.3332145
10.1057/palgrave.jors.2601426
10.3182/20130828-2-SF-3019.00041
10.1007/978-3-319-95342-7
10.1016/j.biombioe.2017.09.013
10.1109/VTC2023-Fall60731.2023.10333601
10.3390/agriculture14091600
10.3390/a15030088
10.3390/agriculture13051042
10.1109/TEVC.2020.2991040
10.1007/s40747-021-00454-2
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/agriengineering7060197
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
ExternalDocumentID oai_doaj_org_article_b86ccb1a25e34bcca6f6ba72ece5636b
10_3390_agriengineering7060197
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c385t-b3646bb78f5ba70b5bc1a08f2ec7fda4ed42ac501d72e85853762aa7b7bf64d83
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515158600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-7402
IngestDate Fri Oct 03 12:20:27 EDT 2025
Mon Jun 30 07:20:38 EDT 2025
Sat Nov 29 07:11:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-b3646bb78f5ba70b5bc1a08f2ec7fda4ed42ac501d72e85853762aa7b7bf64d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0178-4375
0000-0001-9623-4714
OpenAccessLink https://doaj.org/article/b86ccb1a25e34bcca6f6ba72ece5636b
PQID 3223858196
PQPubID 5046921
ParticipantIDs doaj_primary_oai_doaj_org_article_b86ccb1a25e34bcca6f6ba72ece5636b
proquest_journals_3223858196
crossref_primary_10_3390_agriengineering7060197
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AgriEngineering
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hu (ref_1) 2025; 42
Huang (ref_2) 2022; 24
Chen (ref_36) 2014; 19
Edwards (ref_4) 2013; 46
Wang (ref_35) 2019; 6
Huang (ref_17) 2021; 37
Cao (ref_18) 2023; 54
Ding (ref_15) 2023; 39
Alaiso (ref_5) 2013; 46
ref_14
Yang (ref_27) 2023; 11
ref_11
Sethanan (ref_21) 2016; 252
Yu (ref_26) 2024; 45
Seyyedhasani (ref_8) 2018; 171
Mohamed (ref_6) 2017; 5
ref_19
Jiao (ref_30) 2023; 212
(ref_37) 2017; 109
Aguayo (ref_7) 2017; 107
Guo (ref_20) 2024; 224
Liu (ref_22) 2021; 7
Giosa (ref_33) 2002; 53
Wang (ref_28) 2022; 192
He (ref_12) 2018; 145
Si (ref_13) 2019; 162
Solomon (ref_34) 1987; 35
Cao (ref_9) 2021; 182
Ma (ref_16) 2020; 25
ref_24
ref_23
Guan (ref_3) 2009; 66
Guerreiro (ref_38) 2021; 54
Deb (ref_32) 2002; 6
Wang (ref_31) 2023; 233
ref_40
Xue (ref_29) 2023; 4
Sheng (ref_25) 2024; 40
He (ref_10) 2021; 8
Cai (ref_39) 2020; 25
References_xml – volume: 252
  start-page: 969
  year: 2016
  ident: ref_21
  article-title: Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.01.043
– volume: 35
  start-page: 254
  year: 1987
  ident: ref_34
  article-title: Algorithms for the vehicle routing and scheduling problems with time window constraints
  publication-title: Oper. Res.
  doi: 10.1287/opre.35.2.254
– volume: 39
  start-page: 1
  year: 2023
  ident: ref_15
  article-title: A blockchain-based wide-area agricultural machinery resource scheduling system
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.15332
– volume: 45
  start-page: 196
  year: 2024
  ident: ref_26
  article-title: Research on emergency allocation of agricultural machinery for cross-regions operation in large-scale farmland
  publication-title: J. Chin. Agric. Mech.
– volume: 192
  start-page: 106607
  year: 2022
  ident: ref_28
  article-title: A two-step framework for dispatching shared agricultural machinery with time windows
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106607
– volume: 182
  start-page: 105993
  year: 2021
  ident: ref_9
  article-title: Task assignment of multiple agricultural machinery cooperation based on improved ant colony algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.105993
– volume: 6
  start-page: 516
  year: 2019
  ident: ref_35
  article-title: A memetic algorithm with competition for the capacitated green vehicle routing problem
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911405
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_32
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 5
  start-page: 739
  year: 2017
  ident: ref_6
  article-title: Optimization model for machinery selection of multi-crop farms in Elsuki agricultural scheme
  publication-title: Turk. J. Agric. Food Sci. Technol.
– volume: 233
  start-page: 120988
  year: 2023
  ident: ref_31
  article-title: Compensation and profit allocation for collaborative multicenter vehicle routing problems with time windows
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120988
– volume: 109
  start-page: 1146
  year: 2017
  ident: ref_37
  article-title: An adaptive implementation of ε-greedy in reinforcement learning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.05.431
– volume: 66
  start-page: 181
  year: 2009
  ident: ref_3
  article-title: Resource assignment and scheduling based on a two-phase metaheuristic for cropping system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2009.01.011
– volume: 54
  start-page: 114
  year: 2023
  ident: ref_18
  article-title: Agricultural Machinery Cross-Region Scheduling Optimization Based on Genetic Algorithm Variable Neighborhood Search
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 212
  start-page: 118740
  year: 2023
  ident: ref_30
  article-title: A multi-stage heuristic algorithm based on task grouping for vehicle routing problem with energy constraint in disasters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118740
– ident: ref_23
– volume: 145
  start-page: 226
  year: 2018
  ident: ref_12
  article-title: Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.042
– volume: 46
  start-page: 191
  year: 2013
  ident: ref_4
  article-title: Multi-machine coordination: Scheduling operations based on readiness criteria and using a modified tabu search algorithm
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20130828-2-SF-3019.00023
– volume: 37
  start-page: 71
  year: 2021
  ident: ref_17
  article-title: Multi-site and multi-machine cooperative instant response scheduling system based on fuzzy membership
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 4
  start-page: 62
  year: 2023
  ident: ref_29
  article-title: An adaptive ant colony algorithm for crowdsourcing multi-depot vehicle routing problem with time windows
  publication-title: Sustain. Oper. Comput.
  doi: 10.1016/j.susoc.2023.02.002
– volume: 19
  start-page: 50
  year: 2014
  ident: ref_36
  article-title: A new local search-based multiobjective optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2301794
– volume: 162
  start-page: 112
  year: 2019
  ident: ref_13
  article-title: A hierarchical game approach on real-time navigation scheduling of agricultural harvesters
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.034
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_38
  article-title: The hypervolume indicator: Computational problems and algorithms
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3453474
– volume: 224
  start-page: 109121
  year: 2024
  ident: ref_20
  article-title: Research on a multiobjective cooperative operation scheduling method for agricultural machinery across regions with time windows
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109121
– volume: 171
  start-page: 63
  year: 2018
  ident: ref_8
  article-title: Dynamic rerouting of a fleet of vehicles in agricultural operations through a Dynamic Multiple Depot Vehicle Routing Problem representation
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.04.003
– volume: 11
  start-page: 127043
  year: 2023
  ident: ref_27
  article-title: A bi-objective optimization VRP model for cold chain logistics: Enhancing cost efficiency and customer satisfaction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3332145
– volume: 24
  start-page: 93
  year: 2022
  ident: ref_2
  article-title: Research Progress of Agricultural Machinery Scheduling Technology Based on Time Window
  publication-title: J. Agric. Sci. Technol.
– volume: 53
  start-page: 977
  year: 2002
  ident: ref_33
  article-title: New assignment algorithms for the multi-depot vehicle routing problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601426
– volume: 46
  start-page: 133
  year: 2013
  ident: ref_5
  article-title: Ant colony optimization for scheduling of agricultural contracting work
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20130828-2-SF-3019.00041
– ident: ref_40
  doi: 10.1007/978-3-319-95342-7
– volume: 42
  start-page: 207
  year: 2025
  ident: ref_1
  article-title: The Development Path of Socialized Agricultural Machinery Service for Small-scale Agriculture—A Comparative Study among China, Japan and South Korea
  publication-title: J. China Agric. Univ. (Soc. Sci.)
– volume: 107
  start-page: 102
  year: 2017
  ident: ref_7
  article-title: A corn-stover harvest scheduling problem arising in cellulosic ethanol production
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.09.013
– volume: 25
  start-page: 113
  year: 2020
  ident: ref_16
  article-title: Optimal allocation of agricultural machinery service resources under multi-regional coordinated scheduling architecture
  publication-title: J. China Agric. Univ.
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: A joint optimization framework for wheat harvesting and transportation considering fragmental farmlands
  publication-title: Inf. Process. Agric.
– ident: ref_19
  doi: 10.1109/VTC2023-Fall60731.2023.10333601
– ident: ref_11
  doi: 10.3390/agriculture14091600
– ident: ref_14
  doi: 10.3390/a15030088
– ident: ref_24
  doi: 10.3390/agriculture13051042
– volume: 25
  start-page: 21
  year: 2020
  ident: ref_39
  article-title: A grid-based inverted generational distance for multi/many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2991040
– volume: 7
  start-page: 2871
  year: 2021
  ident: ref_22
  article-title: Dynamic immune cooperative scheduling of agricultural machineries
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00454-2
– volume: 40
  start-page: 115
  year: 2024
  ident: ref_25
  article-title: Two-stage optimization method for emergency disaster relief operation path of agricultural machinery based on genetic algorithm and clustering algorithm
  publication-title: Acta Agric. Shanghai
SSID ssj0002504599
Score 2.2930644
Snippet The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 197
SubjectTerms Agricultural cooperatives
Agricultural equipment
agricultural machinery operation service
Agricultural production
Agricultural technology
Algorithms
Clustering
Collaboration
Cooperation
Design
Efficiency
Evolutionary algorithms
Farm machinery
Farmers
Genetic algorithms
Integer programming
Methods
multi-objective evolutionary algorithm
multi-station agricultural machinery scheduling
Multiple objective analysis
Optimization algorithms
Path planning
Planning
Regions
reinforcement learning
Scheduling
Search methods
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZ4HZYDb7QFFvnA1WoS23mcVi0q2st2EQWJW-RXwqLSsmlB4hfs32bGcQvSor1wtZ3E1nyeiWfG3xByxqWJTBErxk2kmShMxXTlDOMSGsBexdwIX2wiGw7z29viMjjcZiGtcqETvaK2U4M-8i4AD2NYAJjvj38YVo3C6GooobFK1pGpDHC-3h8ML6-WXhYk6JJF0V4N5nC-76oa-YOXVH9IHhMj49M7q-TJ-__Rzd7gXGx_dqo7ZCv8atJei41dsuIme2SzVzeBbsPtk7_-_i0btfF4-tYHz_30aZaueaEjEKzFjPWa9sHoWQpDRz4TOxBbjen5-AkZF3CImljqWVvxUhZtP_BL37eKlQ6eA9YVvLg3rmHe87uHA3JzMbg-_8FCaQZmYGlzpnkqUq2zvJJaZZGW2sQqyqvEmayySjgrEmVkFNsscRh6BD2WKJXpTFepsDk_JGuT6cR9JRTjx1ElsAhQLgqeamvQj5w4JyOtJO-Q7kI05WPLwFHCyQWFWX4szA7powSXo5FB2zdMm7oMG7LUeWqMjlUiHRcacJxWKSwFFuBkCrPokJOFcMuwrWflm2SP_t99TL4kWCjYu2tOyNq8eXLfyIZ5nv-eNacBpa_9fvlh
  priority: 102
  providerName: ProQuest
Title Multi-Station Agricultural Machinery Scheduling Based on Spatiotemporal Clustering and Learnable Multi-Objective Evolutionary Algorithm
URI https://www.proquest.com/docview/3223858196
https://doaj.org/article/b86ccb1a25e34bcca6f6ba72ece5636b
Volume 7
WOSCitedRecordID wos001515158600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: M0K
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: PIMPY
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQMMCAeIpCqTywRnViO4-xrYpAqKWiIMEU2Y5TQKVFaUHiF_C3uXNCqQQSC0sGx4mtu8t3se_8HSGnXBpmEl953DDticTkns6t8biEBvBXPjfCFZuI-v347i4ZLJX6wpywkh64FFxTx6Ex2leBtFxoGC_MQ62iwBorQx5qRF8WJUuLKcRgJOaSSVIeCeawrm-qEfIGLyj-kDTGR6anJW_kSPt_YLJzNGfbZKv6Q6StcmY7ZMVOdslma1RULBl2j3y4Y7PesAyj0-978FzPZUfa4p0OQR8ZJpqPaBt8VUah69AlUFd8VGPaGb8iUQJ2UZOMOrJVPEtFywGu9FOJh7T7Vpmoghe3xqNp8Th_eN4nt2fdm865V1VU8AyP5dzTPBSh1lGcS5Ah01IbX7E4B2lGeaaEzUSgjGR-BgLGiCHAT6BUpCOdhyKL-QFZnUwn9pBQDPuyXGDtnlgkoIjM4PZvYK1kWkleI80vyaYvJXFGCgsO1EX6uy5qpI0KWPRG4mvXAOaQVuaQ_mUONVL_Ul9afY2zFEAL458ANkf_McYx2QiwCrDbi6mT1Xnxak_IunmbP86KBllrd_uD64YzSLj22CW0DS56g_tP7BnwCg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRLlwH_F0gI-wDHaJLbzc0BoW1p11e6y0hapnILtOKHVsluy26I-Qd-GZ2TGSbZIIG49cI0dJ3a-mYk9M98AvOHS-CYNlMeNrz2RmsLThTUel3gB7VXAjXDFJuLRKDk5Scdr8LPNhaGwylYnOkWdzw2dkfcQeOTDQsC8P__uUdUo8q62JTRqWBzaqx-4ZVu8G3zA7_s2DPf3jncPvKaqgGdwgKWneSQireOkkFrFvpbaBMpPitCauMiVsLkIlZF-kMehJa8ZimCoVKxjXUQiTziOewfWBYG9A-vjwXD8eXWqQ4RgMk3rVGTOU7-nSuIrXlELEllNQAxTv1lBVyzgD1vgDNz-w_9taR7Bg-ZXmvVr7D-GNTt7Avf7ZdXQidincO3yi71JHW_AbtrwvqELI7XVFZsgcHOKyC_ZDhr1nGHXiYs0b4i7pmx3ekGMEtRFzXLmWGkp6YzVD_ioz2rDwfYuG1lWOHB_WuI6Lb9-ewafbmUlNqEzm8_sc2DkH_cLQUWOEpHySOeGzslDa6WvleRd6LVQyM5rhpEMd2YEnuzv4OnCDiFm1ZsYwt2FeVVmjcLJdBIZowMVSsuFRjmNiginghOwMsK36MJ2C6asUVuL7AZJL_7d_BruHRwPj7KjwehwCzZCKorsjqa2obOsLuxLuGsul6eL6lUjIQy-3DbyfgHeRVh8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBtRWMAHOEZN_MjjgFD3UVEtWyoVpOUUbMcJoNIuaXfR_gL-E7-OGSfpIoG47YGr7Tix882MHzPfADwXyoY2i3QgbGgCmdkyMKWzgVBYgPYqElb6ZBPJZJIeH2fTLfjZxcKQW2WnE72iLpaWzsgHCDy6w0LADMrWLWK6P3p18i2gDFJ009ql02ggcujOv-P2bfVyvI__-gXno4N3e6-DNsNAYLGzdWBELGNjkrRURiehUcZGOkxL7mxSFlq6QnJtVRgVCXd0g4biyLVOTGLKWBapwH6vwDYuySXvwfZ0fDT9sDnhIXIwlWVNWLIQWTjQFXEXb2gGibgmIrap3yyiTxzwh13wxm5063-epttws11is2EjE3dgyy3uwo1hVbc0I-4e_PBxx8Gs8UNgF3X43JF3L3X1OZshoAvy1K_YLhr7gmHTmfdAbwm95mxvfkpME9RELwrm2WopGI01L3hrvjQGhR2ctTKusePhvMJ5Wn_6eh_eX8pMPIDeYrlwD4HRvXlYSkp-lMpMxKawdH7OnVOh0Ur0YdDBIj9pmEdy3LERkPK_A6kPu4SeTWtiDvcFy7rKW0WUmzS21kSaKyekQfmNyxiHggNwKsav6MNOB6y8VWer_AJVj_5d_QyuIdzyN-PJ4WO4zilXsj-x2oHeuj51T-CqPVt_XtVPW2Fh8PGygfcLi5NhPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Station+Agricultural+Machinery+Scheduling+Based+on+Spatiotemporal+Clustering+and+Learnable+Multi-Objective+Evolutionary+Algorithm&rft.jtitle=AgriEngineering&rft.au=Jia%2C+Liruizhi&rft.au=Zhang%2C+Qinshuo&rft.au=Liu%2C+Shengquan&rft.au=Kong%2C+Bo&rft.date=2025-06-01&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=7&rft.issue=6&rft.spage=197&rft_id=info:doi/10.3390%2Fagriengineering7060197&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriengineering7060197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon