Multi-Station Agricultural Machinery Scheduling Based on Spatiotemporal Clustering and Learnable Multi-Objective Evolutionary Algorithm
The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based solely on spatial distance cannot ensure the continuity of agricultural operations. Multi-objective evolutionary algorithms are sensitive to...
Gespeichert in:
| Veröffentlicht in: | AgriEngineering Jg. 7; H. 6; S. 197 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2025
|
| Schlagworte: | |
| ISSN: | 2624-7402, 2624-7402 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based solely on spatial distance cannot ensure the continuity of agricultural operations. Multi-objective evolutionary algorithms are sensitive to the initial population quality and local search strategies for path planning, where unreasonable initial solutions or improper local search strategies can affect the diversity of solutions. Therefore, we propose a spatiotemporal allocation algorithm that constructs a spatiotemporal distance function to describe the feasibility of continuous operations and evaluates the spatiotemporal proximity of operation points and stations for clustering allocation. In terms of path planning, we design a learnable multi-objective evolutionary algorithm (LMOEA). First, a hybrid initialization strategy is used to enhance the initial population quality; second, a Q-learning-based local search method is constructed to adaptively adjust the search strategy to reduce ineffective iterations; finally, a dynamically adjusted crowding distance mechanism is introduced to improve the distribution of the solution set. Experimental results show that the spatiotemporal allocation algorithm improves the average cost and satisfaction by 4.09% and 3.28% compared to the spatial method. Compared with INSGA-II, HTSMOGA, and NNITSA algorithms, the LMOEA can obtain solutions of higher quality and greater diversity. |
|---|---|
| AbstractList | The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based solely on spatial distance cannot ensure the continuity of agricultural operations. Multi-objective evolutionary algorithms are sensitive to the initial population quality and local search strategies for path planning, where unreasonable initial solutions or improper local search strategies can affect the diversity of solutions. Therefore, we propose a spatiotemporal allocation algorithm that constructs a spatiotemporal distance function to describe the feasibility of continuous operations and evaluates the spatiotemporal proximity of operation points and stations for clustering allocation. In terms of path planning, we design a learnable multi-objective evolutionary algorithm (LMOEA). First, a hybrid initialization strategy is used to enhance the initial population quality; second, a Q-learning-based local search method is constructed to adaptively adjust the search strategy to reduce ineffective iterations; finally, a dynamically adjusted crowding distance mechanism is introduced to improve the distribution of the solution set. Experimental results show that the spatiotemporal allocation algorithm improves the average cost and satisfaction by 4.09% and 3.28% compared to the spatial method. Compared with INSGA-II, HTSMOGA, and NNITSA algorithms, the LMOEA can obtain solutions of higher quality and greater diversity. |
| Author | Liu, Yuan Zhang, Qinshuo Jia, Liruizhi Liu, Shengquan Kong, Bo |
| Author_xml | – sequence: 1 givenname: Liruizhi orcidid: 0000-0002-0178-4375 surname: Jia fullname: Jia, Liruizhi – sequence: 2 givenname: Qinshuo surname: Zhang fullname: Zhang, Qinshuo – sequence: 3 givenname: Shengquan orcidid: 0000-0001-9623-4714 surname: Liu fullname: Liu, Shengquan – sequence: 4 givenname: Bo surname: Kong fullname: Kong, Bo – sequence: 5 givenname: Yuan surname: Liu fullname: Liu, Yuan |
| BookMark | eNptkcFu3CAURVGVSEnT_EJkqWu3GAzYy-kobSNNlMU0a_TAzx5GjJkCjtQvyG-XyVRVF12Bni7nXPTek4s5zEjIXUM_cd7TzzBFh_PkZsTo5klRSZtevSPXTLK2Vi1lF__cr8htSntKKRO0FX1_TV4fF59dvc2QXZirVcHZMlki-OoR7K6A469qa3c4LL4Iqi-QcKhKdHs8Pcl4OIZTeO2XlN86VDAP1QYhzmA8VmfBk9mjze4Fq_uX4JeTDAp45acQXd4dPpDLEXzC2z_nDXn-ev9j_b3ePH17WK82teWdyLXhspXGqG4UBhQ1wtgGaDcytGocoMWhZWAFbQbFsBOd4EoyAGWUGWU7dPyGPJy5Q4C9PkZ3KDV0AKffBiFOGmJ21qM2nbTWNMAE8tZYC3KURVpUKCSXprA-nlnHGH4umLLeh6X82ifNGSt9u6aXJSXPKRtDShHHv9aG6tMO9f93yH8DWZCaTw |
| Cites_doi | 10.1016/j.ejor.2016.01.043 10.1287/opre.35.2.254 10.13031/aea.15332 10.1016/j.compag.2021.106607 10.1016/j.compag.2021.105993 10.1109/JAS.2019.1911405 10.1109/4235.996017 10.1016/j.eswa.2023.120988 10.1016/j.procs.2017.05.431 10.1016/j.compag.2009.01.011 10.1016/j.eswa.2022.118740 10.1016/j.compag.2017.12.042 10.3182/20130828-2-SF-3019.00023 10.1016/j.susoc.2023.02.002 10.1109/TEVC.2014.2301794 10.1016/j.compag.2019.03.034 10.1145/3453474 10.1016/j.compag.2024.109121 10.1016/j.biosystemseng.2018.04.003 10.1109/ACCESS.2023.3332145 10.1057/palgrave.jors.2601426 10.3182/20130828-2-SF-3019.00041 10.1007/978-3-319-95342-7 10.1016/j.biombioe.2017.09.013 10.1109/VTC2023-Fall60731.2023.10333601 10.3390/agriculture14091600 10.3390/a15030088 10.3390/agriculture13051042 10.1109/TEVC.2020.2991040 10.1007/s40747-021-00454-2 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/agriengineering7060197 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2624-7402 |
| ExternalDocumentID | oai_doaj_org_article_b86ccb1a25e34bcca6f6ba72ece5636b 10_3390_agriengineering7060197 |
| GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c385t-b3646bb78f5ba70b5bc1a08f2ec7fda4ed42ac501d72e85853762aa7b7bf64d83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515158600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-7402 |
| IngestDate | Fri Oct 03 12:20:27 EDT 2025 Mon Jun 30 07:20:38 EDT 2025 Sat Nov 29 07:11:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-b3646bb78f5ba70b5bc1a08f2ec7fda4ed42ac501d72e85853762aa7b7bf64d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0178-4375 0000-0001-9623-4714 |
| OpenAccessLink | https://doaj.org/article/b86ccb1a25e34bcca6f6ba72ece5636b |
| PQID | 3223858196 |
| PQPubID | 5046921 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b86ccb1a25e34bcca6f6ba72ece5636b proquest_journals_3223858196 crossref_primary_10_3390_agriengineering7060197 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | AgriEngineering |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hu (ref_1) 2025; 42 Huang (ref_2) 2022; 24 Chen (ref_36) 2014; 19 Edwards (ref_4) 2013; 46 Wang (ref_35) 2019; 6 Huang (ref_17) 2021; 37 Cao (ref_18) 2023; 54 Ding (ref_15) 2023; 39 Alaiso (ref_5) 2013; 46 ref_14 Yang (ref_27) 2023; 11 ref_11 Sethanan (ref_21) 2016; 252 Yu (ref_26) 2024; 45 Seyyedhasani (ref_8) 2018; 171 Mohamed (ref_6) 2017; 5 ref_19 Jiao (ref_30) 2023; 212 (ref_37) 2017; 109 Aguayo (ref_7) 2017; 107 Guo (ref_20) 2024; 224 Liu (ref_22) 2021; 7 Giosa (ref_33) 2002; 53 Wang (ref_28) 2022; 192 He (ref_12) 2018; 145 Si (ref_13) 2019; 162 Solomon (ref_34) 1987; 35 Cao (ref_9) 2021; 182 Ma (ref_16) 2020; 25 ref_24 ref_23 Guan (ref_3) 2009; 66 Guerreiro (ref_38) 2021; 54 Deb (ref_32) 2002; 6 Wang (ref_31) 2023; 233 ref_40 Xue (ref_29) 2023; 4 Sheng (ref_25) 2024; 40 He (ref_10) 2021; 8 Cai (ref_39) 2020; 25 |
| References_xml | – volume: 252 start-page: 969 year: 2016 ident: ref_21 article-title: Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.01.043 – volume: 35 start-page: 254 year: 1987 ident: ref_34 article-title: Algorithms for the vehicle routing and scheduling problems with time window constraints publication-title: Oper. Res. doi: 10.1287/opre.35.2.254 – volume: 39 start-page: 1 year: 2023 ident: ref_15 article-title: A blockchain-based wide-area agricultural machinery resource scheduling system publication-title: Appl. Eng. Agric. doi: 10.13031/aea.15332 – volume: 45 start-page: 196 year: 2024 ident: ref_26 article-title: Research on emergency allocation of agricultural machinery for cross-regions operation in large-scale farmland publication-title: J. Chin. Agric. Mech. – volume: 192 start-page: 106607 year: 2022 ident: ref_28 article-title: A two-step framework for dispatching shared agricultural machinery with time windows publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106607 – volume: 182 start-page: 105993 year: 2021 ident: ref_9 article-title: Task assignment of multiple agricultural machinery cooperation based on improved ant colony algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.105993 – volume: 6 start-page: 516 year: 2019 ident: ref_35 article-title: A memetic algorithm with competition for the capacitated green vehicle routing problem publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911405 – volume: 6 start-page: 182 year: 2002 ident: ref_32 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 5 start-page: 739 year: 2017 ident: ref_6 article-title: Optimization model for machinery selection of multi-crop farms in Elsuki agricultural scheme publication-title: Turk. J. Agric. Food Sci. Technol. – volume: 233 start-page: 120988 year: 2023 ident: ref_31 article-title: Compensation and profit allocation for collaborative multicenter vehicle routing problems with time windows publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120988 – volume: 109 start-page: 1146 year: 2017 ident: ref_37 article-title: An adaptive implementation of ε-greedy in reinforcement learning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.05.431 – volume: 66 start-page: 181 year: 2009 ident: ref_3 article-title: Resource assignment and scheduling based on a two-phase metaheuristic for cropping system publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2009.01.011 – volume: 54 start-page: 114 year: 2023 ident: ref_18 article-title: Agricultural Machinery Cross-Region Scheduling Optimization Based on Genetic Algorithm Variable Neighborhood Search publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 212 start-page: 118740 year: 2023 ident: ref_30 article-title: A multi-stage heuristic algorithm based on task grouping for vehicle routing problem with energy constraint in disasters publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118740 – ident: ref_23 – volume: 145 start-page: 226 year: 2018 ident: ref_12 article-title: Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.12.042 – volume: 46 start-page: 191 year: 2013 ident: ref_4 article-title: Multi-machine coordination: Scheduling operations based on readiness criteria and using a modified tabu search algorithm publication-title: IFAC Proc. Vol. doi: 10.3182/20130828-2-SF-3019.00023 – volume: 37 start-page: 71 year: 2021 ident: ref_17 article-title: Multi-site and multi-machine cooperative instant response scheduling system based on fuzzy membership publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 4 start-page: 62 year: 2023 ident: ref_29 article-title: An adaptive ant colony algorithm for crowdsourcing multi-depot vehicle routing problem with time windows publication-title: Sustain. Oper. Comput. doi: 10.1016/j.susoc.2023.02.002 – volume: 19 start-page: 50 year: 2014 ident: ref_36 article-title: A new local search-based multiobjective optimization algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2301794 – volume: 162 start-page: 112 year: 2019 ident: ref_13 article-title: A hierarchical game approach on real-time navigation scheduling of agricultural harvesters publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.03.034 – volume: 54 start-page: 1 year: 2021 ident: ref_38 article-title: The hypervolume indicator: Computational problems and algorithms publication-title: ACM Comput. Surv. doi: 10.1145/3453474 – volume: 224 start-page: 109121 year: 2024 ident: ref_20 article-title: Research on a multiobjective cooperative operation scheduling method for agricultural machinery across regions with time windows publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109121 – volume: 171 start-page: 63 year: 2018 ident: ref_8 article-title: Dynamic rerouting of a fleet of vehicles in agricultural operations through a Dynamic Multiple Depot Vehicle Routing Problem representation publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.04.003 – volume: 11 start-page: 127043 year: 2023 ident: ref_27 article-title: A bi-objective optimization VRP model for cold chain logistics: Enhancing cost efficiency and customer satisfaction publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3332145 – volume: 24 start-page: 93 year: 2022 ident: ref_2 article-title: Research Progress of Agricultural Machinery Scheduling Technology Based on Time Window publication-title: J. Agric. Sci. Technol. – volume: 53 start-page: 977 year: 2002 ident: ref_33 article-title: New assignment algorithms for the multi-depot vehicle routing problem publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601426 – volume: 46 start-page: 133 year: 2013 ident: ref_5 article-title: Ant colony optimization for scheduling of agricultural contracting work publication-title: IFAC Proc. Vol. doi: 10.3182/20130828-2-SF-3019.00041 – ident: ref_40 doi: 10.1007/978-3-319-95342-7 – volume: 42 start-page: 207 year: 2025 ident: ref_1 article-title: The Development Path of Socialized Agricultural Machinery Service for Small-scale Agriculture—A Comparative Study among China, Japan and South Korea publication-title: J. China Agric. Univ. (Soc. Sci.) – volume: 107 start-page: 102 year: 2017 ident: ref_7 article-title: A corn-stover harvest scheduling problem arising in cellulosic ethanol production publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.09.013 – volume: 25 start-page: 113 year: 2020 ident: ref_16 article-title: Optimal allocation of agricultural machinery service resources under multi-regional coordinated scheduling architecture publication-title: J. China Agric. Univ. – volume: 8 start-page: 1 year: 2021 ident: ref_10 article-title: A joint optimization framework for wheat harvesting and transportation considering fragmental farmlands publication-title: Inf. Process. Agric. – ident: ref_19 doi: 10.1109/VTC2023-Fall60731.2023.10333601 – ident: ref_11 doi: 10.3390/agriculture14091600 – ident: ref_14 doi: 10.3390/a15030088 – ident: ref_24 doi: 10.3390/agriculture13051042 – volume: 25 start-page: 21 year: 2020 ident: ref_39 article-title: A grid-based inverted generational distance for multi/many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2991040 – volume: 7 start-page: 2871 year: 2021 ident: ref_22 article-title: Dynamic immune cooperative scheduling of agricultural machineries publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00454-2 – volume: 40 start-page: 115 year: 2024 ident: ref_25 article-title: Two-stage optimization method for emergency disaster relief operation path of agricultural machinery based on genetic algorithm and clustering algorithm publication-title: Acta Agric. Shanghai |
| SSID | ssj0002504599 |
| Score | 2.2930644 |
| Snippet | The multi-station agricultural machinery scheduling process mainly involves two key stages: order allocation and path planning. Order allocation methods based... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 197 |
| SubjectTerms | Agricultural cooperatives Agricultural equipment agricultural machinery operation service Agricultural production Agricultural technology Algorithms Clustering Collaboration Cooperation Design Efficiency Evolutionary algorithms Farm machinery Farmers Genetic algorithms Integer programming Methods multi-objective evolutionary algorithm multi-station agricultural machinery scheduling Multiple objective analysis Optimization algorithms Path planning Planning Regions reinforcement learning Scheduling Search methods |
| SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZ4HZYDb7QFFvnA1WoS23mcVi0q2st2EQWJW-RXwqLSsmlB4hfs32bGcQvSor1wtZ3E1nyeiWfG3xByxqWJTBErxk2kmShMxXTlDOMSGsBexdwIX2wiGw7z29viMjjcZiGtcqETvaK2U4M-8i4AD2NYAJjvj38YVo3C6GooobFK1pGpDHC-3h8ML6-WXhYk6JJF0V4N5nC-76oa-YOXVH9IHhMj49M7q-TJ-__Rzd7gXGx_dqo7ZCv8atJei41dsuIme2SzVzeBbsPtk7_-_i0btfF4-tYHz_30aZaueaEjEKzFjPWa9sHoWQpDRz4TOxBbjen5-AkZF3CImljqWVvxUhZtP_BL37eKlQ6eA9YVvLg3rmHe87uHA3JzMbg-_8FCaQZmYGlzpnkqUq2zvJJaZZGW2sQqyqvEmayySjgrEmVkFNsscRh6BD2WKJXpTFepsDk_JGuT6cR9JRTjx1ElsAhQLgqeamvQj5w4JyOtJO-Q7kI05WPLwFHCyQWFWX4szA7powSXo5FB2zdMm7oMG7LUeWqMjlUiHRcacJxWKSwFFuBkCrPokJOFcMuwrWflm2SP_t99TL4kWCjYu2tOyNq8eXLfyIZ5nv-eNacBpa_9fvlh priority: 102 providerName: ProQuest |
| Title | Multi-Station Agricultural Machinery Scheduling Based on Spatiotemporal Clustering and Learnable Multi-Objective Evolutionary Algorithm |
| URI | https://www.proquest.com/docview/3223858196 https://doaj.org/article/b86ccb1a25e34bcca6f6ba72ece5636b |
| Volume | 7 |
| WOSCitedRecordID | wos001515158600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: M0K dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: PIMPY dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQMMCAeIpCqTywRnViO4-xrYpAqKWiIMEU2Y5TQKVFaUHiF_C3uXNCqQQSC0sGx4mtu8t3se_8HSGnXBpmEl953DDticTkns6t8biEBvBXPjfCFZuI-v347i4ZLJX6wpywkh64FFxTx6Ex2leBtFxoGC_MQ62iwBorQx5qRF8WJUuLKcRgJOaSSVIeCeawrm-qEfIGLyj-kDTGR6anJW_kSPt_YLJzNGfbZKv6Q6StcmY7ZMVOdslma1RULBl2j3y4Y7PesAyj0-978FzPZUfa4p0OQR8ZJpqPaBt8VUah69AlUFd8VGPaGb8iUQJ2UZOMOrJVPEtFywGu9FOJh7T7Vpmoghe3xqNp8Th_eN4nt2fdm865V1VU8AyP5dzTPBSh1lGcS5Ah01IbX7E4B2lGeaaEzUSgjGR-BgLGiCHAT6BUpCOdhyKL-QFZnUwn9pBQDPuyXGDtnlgkoIjM4PZvYK1kWkleI80vyaYvJXFGCgsO1EX6uy5qpI0KWPRG4mvXAOaQVuaQ_mUONVL_Ul9afY2zFEAL458ANkf_McYx2QiwCrDbi6mT1Xnxak_IunmbP86KBllrd_uD64YzSLj22CW0DS56g_tP7BnwCg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRLlwH_F0gI-wDHaJLbzc0BoW1p11e6y0hapnILtOKHVsluy26I-Qd-GZ2TGSbZIIG49cI0dJ3a-mYk9M98AvOHS-CYNlMeNrz2RmsLThTUel3gB7VXAjXDFJuLRKDk5Scdr8LPNhaGwylYnOkWdzw2dkfcQeOTDQsC8P__uUdUo8q62JTRqWBzaqx-4ZVu8G3zA7_s2DPf3jncPvKaqgGdwgKWneSQireOkkFrFvpbaBMpPitCauMiVsLkIlZF-kMehJa8ZimCoVKxjXUQiTziOewfWBYG9A-vjwXD8eXWqQ4RgMk3rVGTOU7-nSuIrXlELEllNQAxTv1lBVyzgD1vgDNz-w_9taR7Bg-ZXmvVr7D-GNTt7Avf7ZdXQidincO3yi71JHW_AbtrwvqELI7XVFZsgcHOKyC_ZDhr1nGHXiYs0b4i7pmx3ekGMEtRFzXLmWGkp6YzVD_ioz2rDwfYuG1lWOHB_WuI6Lb9-ewafbmUlNqEzm8_sc2DkH_cLQUWOEpHySOeGzslDa6WvleRd6LVQyM5rhpEMd2YEnuzv4OnCDiFm1ZsYwt2FeVVmjcLJdBIZowMVSsuFRjmNiginghOwMsK36MJ2C6asUVuL7AZJL_7d_BruHRwPj7KjwehwCzZCKorsjqa2obOsLuxLuGsul6eL6lUjIQy-3DbyfgHeRVh8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBtRWMAHOEZN_MjjgFD3UVEtWyoVpOUUbMcJoNIuaXfR_gL-E7-OGSfpIoG47YGr7Tix882MHzPfADwXyoY2i3QgbGgCmdkyMKWzgVBYgPYqElb6ZBPJZJIeH2fTLfjZxcKQW2WnE72iLpaWzsgHCDy6w0LADMrWLWK6P3p18i2gDFJ009ql02ggcujOv-P2bfVyvI__-gXno4N3e6-DNsNAYLGzdWBELGNjkrRURiehUcZGOkxL7mxSFlq6QnJtVRgVCXd0g4biyLVOTGLKWBapwH6vwDYuySXvwfZ0fDT9sDnhIXIwlWVNWLIQWTjQFXEXb2gGibgmIrap3yyiTxzwh13wxm5063-epttws11is2EjE3dgyy3uwo1hVbc0I-4e_PBxx8Gs8UNgF3X43JF3L3X1OZshoAvy1K_YLhr7gmHTmfdAbwm95mxvfkpME9RELwrm2WopGI01L3hrvjQGhR2ctTKusePhvMJ5Wn_6eh_eX8pMPIDeYrlwD4HRvXlYSkp-lMpMxKawdH7OnVOh0Ur0YdDBIj9pmEdy3LERkPK_A6kPu4SeTWtiDvcFy7rKW0WUmzS21kSaKyekQfmNyxiHggNwKsav6MNOB6y8VWer_AJVj_5d_QyuIdzyN-PJ4WO4zilXsj-x2oHeuj51T-CqPVt_XtVPW2Fh8PGygfcLi5NhPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Station+Agricultural+Machinery+Scheduling+Based+on+Spatiotemporal+Clustering+and+Learnable+Multi-Objective+Evolutionary+Algorithm&rft.jtitle=AgriEngineering&rft.au=Jia%2C+Liruizhi&rft.au=Zhang%2C+Qinshuo&rft.au=Liu%2C+Shengquan&rft.au=Kong%2C+Bo&rft.date=2025-06-01&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=7&rft.issue=6&rft.spage=197&rft_id=info:doi/10.3390%2Fagriengineering7060197&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriengineering7060197 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |