Complexity and performance of an Augmented Lagrangian algorithm

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286-1309]. Complexity results that report its...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 35; číslo 5; s. 885 - 920
Hlavní autoři: Birgin, E. G., Martínez, J. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.09.2020
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286-1309]. Complexity results that report its worst-case behaviour in terms of iterations and evaluations of functions and derivatives that are necessary to obtain suitable stopping criteria are presented in this work. In addition, its computational performance considering all problems from the CUTEst collection is presented, which shows that it is a useful tool for solving large-scale constrained optimization problems.
AbstractList Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286–1309]. Complexity results that report its worst-case behaviour in terms of iterations and evaluations of functions and derivatives that are necessary to obtain suitable stopping criteria are presented in this work. In addition, its computational performance considering all problems from the CUTEst collection is presented, which shows that it is a useful tool for solving large-scale constrained optimization problems.
Author Martínez, J. M.
Birgin, E. G.
Author_xml – sequence: 1
  givenname: E. G.
  orcidid: 0000-0002-7466-7663
  surname: Birgin
  fullname: Birgin, E. G.
  email: egbirgin@ime.usp.br
  organization: Dept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo
– sequence: 2
  givenname: J. M.
  orcidid: 0000-0003-3331-368X
  surname: Martínez
  fullname: Martínez, J. M.
  organization: Dept. of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas
BookMark eNqFkF9LwzAUxYNMcJt-BKHgc2fSJE2CDzqG_2Dgiz6HNE1qRpvMNEP37W2dvvigT_dyOOfcy28GJj54A8A5ggsEObxEkNKScb4oYDFIjJSiLI7AFMFC5ERgNhl3SvPRdAJmfb-BEBJEyim4XoVu25oPl_aZ8nW2NdGG2CmvTRbsIGXLXdMZn0ydrVUTlW_cIKq2CdGl1-4UHFvV9ubse87By93t8-ohXz_dP66W61xjTlOuCl1XJcEVYcNX3CBsjLCqRpoVuiK6JqWlnFohEFW1UVTXGFfMcK6YUYLhObg49G5jeNuZPslN2EU_nJQFwYIKKDAdXPTg0jH0fTRWbqPrVNxLBOXISv6wkiMr-c1qyF39ymmXVHLBp6hc-2_65pB2_ovde4htLZPatyHagZh2vcR_V3wCd86Eng
CitedBy_id crossref_primary_10_1007_s12532_021_00207_9
crossref_primary_10_1093_imanum_draa021
crossref_primary_10_1007_s10589_024_00572_w
crossref_primary_10_1007_s10898_022_01168_6
crossref_primary_10_1137_20M135950X
crossref_primary_10_1007_s10107_024_02163_3
crossref_primary_10_1007_s10898_025_01521_5
crossref_primary_10_1287_moor_2022_0104
crossref_primary_10_1080_02331934_2024_2392019
crossref_primary_10_1080_10556788_2025_2453111
crossref_primary_10_1007_s10107_024_02062_7
crossref_primary_10_1007_s11042_025_21124_2
crossref_primary_10_1007_s10898_024_01456_3
crossref_primary_10_1007_s11075_023_01647_1
crossref_primary_10_1007_s10915_021_01409_y
crossref_primary_10_1137_22M1489824
crossref_primary_10_1145_3583559
crossref_primary_10_1007_s10107_023_02000_z
crossref_primary_10_1007_s10957_024_02421_6
crossref_primary_10_3390_ijerph17186437
crossref_primary_10_1007_s11075_020_00928_3
crossref_primary_10_1287_moor_2021_1165
crossref_primary_10_1016_j_measurement_2023_113509
crossref_primary_10_1007_s10957_022_02003_4
crossref_primary_10_1109_TMC_2024_3521934
crossref_primary_10_3390_stats4030033
crossref_primary_10_1007_s11081_022_09747_y
crossref_primary_10_1109_LWC_2020_3043365
crossref_primary_10_1137_21M1426067
crossref_primary_10_1090_mcom_3839
crossref_primary_10_1109_TVT_2024_3409890
crossref_primary_10_1080_10556788_2020_1786564
crossref_primary_10_1007_s10957_025_02731_3
crossref_primary_10_1007_s10957_025_02734_0
Cites_doi 10.18637/jss.v060.i03
10.1137/1.9780898719857
10.1080/10556788.2011.556634
10.1007/s10107-014-0784-y
10.1007/978-3-662-12211-2
10.1007/s10589-007-9050-z
10.1080/02331930903578700
10.1080/10556780701577730
10.1145/502800.502803
10.1137/050635225
10.1287/moor.2017.0879
10.1137/140990309
10.1007/s10107-016-0994-6
10.1023/A:1019928808826
10.1137/120868359
10.1007/BF01581275
10.1080/02331930500100270
10.1137/S1052623493251463
10.1016/j.orl.2017.09.005
10.1137/10081085X
10.1023/A:1008777829180
10.1287/moor.25.2.214.12222
10.1007/s10107-012-0528-9
10.1007/BF00927673
10.1007/s10957-017-1071-x
10.1007/s10107-009-0264-y
10.1016/0377-0427(94)00088-I
10.1093/imanum/drx002
10.1287/moor.1.2.97
10.1007/s10589-014-9687-3
10.1109/TAC.2017.2658438
10.1137/1.9781611973365
10.1137/17M1147330
10.1080/10556788.2013.841692
10.1137/15M1008488
10.1080/10556788.2015.1071813
10.1137/S1052623497330963
10.1007/s101070100263
10.1007/s10107-004-0559-y
10.1007/s10107-006-0077-1
10.1137/17M1127107
10.1007/s10589-011-9396-0
10.1137/090777189
10.1080/10556788.2015.1025401
10.1137/060654797
10.1007/s10589-009-9240-y
10.1137/11082381X
10.1137/0312021
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2020.1746962
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 920
ExternalDocumentID 10_1080_10556788_2020_1746962
1746962
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-a2cdb643b471028e13ee9fad1c72cb4cd46f585f9915adea5cd33b7e88a7ea973
IEDL.DBID TFW
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523671200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Wed Aug 13 08:35:24 EDT 2025
Sat Nov 29 02:36:07 EST 2025
Tue Nov 18 22:25:27 EST 2025
Mon Oct 20 23:49:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-a2cdb643b471028e13ee9fad1c72cb4cd46f585f9915adea5cd33b7e88a7ea973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3331-368X
0000-0002-7466-7663
OpenAccessLink http://dx.doi.org/10.1080/10556788.2020.1746962
PQID 2439590935
PQPubID 186278
PageCount 36
ParticipantIDs proquest_journals_2439590935
crossref_primary_10_1080_10556788_2020_1746962
crossref_citationtrail_10_1080_10556788_2020_1746962
informaworld_taylorfrancis_310_1080_10556788_2020_1746962
PublicationCentury 2000
PublicationDate 2020-09-02
PublicationDateYYYYMMDD 2020-09-02
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
Fiacco A.V. (CIT0037) 1968
CIT0032
CIT0031
Dostál Z. (CIT0034) 2017; 15
CIT0036
CIT0035
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
Dostál Z. (CIT0033) 2009; 23
CIT0053
CIT0012
CIT0011
CIT0055
Sun W. (CIT0056) 2006
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
Fletcher R. (CIT0038) 1987
Solodov M.V. (CIT0054) 1999; 6
References_xml – ident: CIT0024
  doi: 10.18637/jss.v060.i03
– ident: CIT0029
  doi: 10.1137/1.9780898719857
– volume: 23
  volume-title: Optimal Quadratic Programming Algorithms
  year: 2009
  ident: CIT0033
– ident: CIT0014
  doi: 10.1080/10556788.2011.556634
– volume: 15
  start-page: 215
  year: 2017
  ident: CIT0034
  publication-title: Adv. Electr. Electron. Eng.
– ident: CIT0031
  doi: 10.1007/s10107-014-0784-y
– ident: CIT0028
  doi: 10.1007/978-3-662-12211-2
– ident: CIT0017
  doi: 10.1007/s10589-007-9050-z
– ident: CIT0005
  doi: 10.1080/02331930903578700
– ident: CIT0018
  doi: 10.1080/10556780701577730
– ident: CIT0023
  doi: 10.1145/502800.502803
– ident: CIT0042
  doi: 10.1137/050635225
– ident: CIT0007
  doi: 10.1287/moor.2017.0879
– volume: 6
  start-page: 323
  year: 1999
  ident: CIT0054
  publication-title: J. Convex Anal.
– ident: CIT0044
  doi: 10.1137/140990309
– ident: CIT0008
  doi: 10.1007/s10107-016-0994-6
– volume-title: Nonlinear Programming: Sequential Unconstrained Minimization Techniques
  year: 1968
  ident: CIT0037
– ident: CIT0016
  doi: 10.1023/A:1019928808826
– ident: CIT0046
  doi: 10.1137/120868359
– ident: CIT0050
  doi: 10.1007/BF01581275
– ident: CIT0011
  doi: 10.1080/02331930500100270
– ident: CIT0027
  doi: 10.1137/S1052623493251463
– ident: CIT0047
  doi: 10.1016/j.orl.2017.09.005
– ident: CIT0036
  doi: 10.1137/10081085X
– ident: CIT0053
  doi: 10.1023/A:1008777829180
– ident: CIT0055
  doi: 10.1287/moor.25.2.214.12222
– ident: CIT0035
  doi: 10.1007/s10107-012-0528-9
– ident: CIT0043
  doi: 10.1007/BF00927673
– ident: CIT0013
  doi: 10.1007/s10957-017-1071-x
– ident: CIT0015
  doi: 10.1007/s10107-009-0264-y
– ident: CIT0048
  doi: 10.1016/0377-0427(94)00088-I
– volume-title: Practical Methods of Optimization
  year: 1987
  ident: CIT0038
– ident: CIT0039
  doi: 10.1093/imanum/drx002
– ident: CIT0052
  doi: 10.1287/moor.1.2.97
– ident: CIT0041
– ident: CIT0040
  doi: 10.1007/s10589-014-9687-3
– volume-title: Optimization Theory and Methods: Nonlinear Programming
  year: 2006
  ident: CIT0056
– ident: CIT0026
  doi: 10.1109/TAC.2017.2658438
– ident: CIT0020
  doi: 10.1137/1.9781611973365
– ident: CIT0004
  doi: 10.1137/17M1147330
– ident: CIT0009
  doi: 10.1080/10556788.2013.841692
– ident: CIT0006
  doi: 10.1137/15M1008488
– ident: CIT0045
– ident: CIT0030
  doi: 10.1080/10556788.2015.1071813
– ident: CIT0022
  doi: 10.1137/S1052623497330963
– ident: CIT0049
– ident: CIT0032
  doi: 10.1007/s101070100263
– ident: CIT0057
  doi: 10.1007/s10107-004-0559-y
– ident: CIT0002
  doi: 10.1007/s10107-006-0077-1
– ident: CIT0021
  doi: 10.1137/17M1127107
– ident: CIT0019
  doi: 10.1007/s10589-011-9396-0
– ident: CIT0010
  doi: 10.1137/090777189
– ident: CIT0012
  doi: 10.1080/10556788.2015.1025401
– ident: CIT0001
  doi: 10.1137/060654797
– ident: CIT0003
  doi: 10.1007/s10589-009-9240-y
– ident: CIT0025
  doi: 10.1137/11082381X
– ident: CIT0051
  doi: 10.1137/0312021
SSID ssj0004146
Score 2.4803152
Snippet Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 885
SubjectTerms Algorithms
Augmented Lagrangian methods
Complexity
Constraints
Nonlinear programming
numerical experiments
Optimization
Title Complexity and performance of an Augmented Lagrangian algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1746962
https://www.proquest.com/docview/2439590935
Volume 35
WOSCitedRecordID wos000523671200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sgTZ26mRCFaJiQBVDEd0sx49QqbRVkiLx7zk7Dm2FUAcYE-mc6Hy--y65-w6hayN0pJmkgWaEBNRAggI4WQZSpMIImbAojd2wCTYYxKNR8uyrCQtfVmlzaFMRRThfbQ-3SIu6Iu7WzXSE1A2yu7BtK3K6ifPCEPrt0Rz2X5edkb6_CCQCK1L38Py2ylp0WuMu_eGrXQDq7__Dqx-gPY8-ca8yl0O0padHaHeFk_AY3VkPYVkyy08Mj8HzZWcBnhm4hXuLzDF5KvwkMgh1GVgYFpNslo_Lt_cT9NJ_GN4_Bn7KQiBJHJWBCKVKAZek1IEN3SFaJ0aojmShTKlUtGsgpzAAJCOhtIikIiRlOo4F0yJh5BQ1prOpPkOYEqKIzXiUhuBoTNymigBEMlRoy9vfRLTWLpeegtxOwpjwjmcqrfXDrX64108T3XyLzSsOjk0CyerW8dJ9_DDVpBJONsi26n3m_jgXPATYFiX2n_H5H5a-QDv20lWohS3UKPOFvkTb8qMcF_mVM9wvLyfocA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT8IwEG8MmqgPfhtR1D34OoW1o9uTIUaCEXnCyFvT9QNJEAgME_9777pNIMb4oK9brluu7d3v2rvfEXJlpQkNV8w3nFKfWQhQACcrX8lEWqliHiaRazbBO52o14uXa2EwrRJjaJsRRThbjZsbD6OLlLgb19QRYjcI74IqpuTUYzTD6yH4WuTP7zZfFrWReYURiPgoU1Tx_DTMin9aYS_9Zq2dC2ru_sfP75GdHIB6jWzF7JM1Mzog20u0hIfkFo0EEmWmHx58x5ssigu8sYVHXmPed2Se2mvLPni7PiwyTw774-kgfX07Is_N--5dy88bLfiKRmHqy0DpBKBJwhzeMDVqTGylrikeqIQpzeoWwgoLWDKU2shQaUoTbqJIciNjTo9JaTQemRPiMUo1xaBHG_CP1kZVpimgJMukQer-MmGFeoXKWcixGcZQ1HKy0kI_AvUjcv2UyfWX2CSj4fhNIF6eO5G68w-bNSsR9BfZSjHRIt_RMxEAcgtjvDY-_cPQl2Sz1X1qi_ZD5_GMbOErl7AWVEgpnc7NOdlQ7-lgNr1wq_gT-y7smg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4YNEYPvo0oag9eq9Ddsu3JELXRSAgHjNw2230gCQKBYuK_d3a7FYgxHPTaZrbN7OzMN-3MNwhdaa5CRQXxFcXYJxoSFMDJwhc85ZqLmIZpZIdN0FYr6nbjtqsmnLqySpND65wowvpqc7jHUhcVcTd2piOkbpDdBVVTkVOPjRdeB-hcN0beSV7nrZGuwQhEfCNTNPH8tsxSeFoiL_3hrG0ESnb_4d330I6Dn14jt5d9tKaGB2h7gZTwEN0aF2FoMrNPDx7jjeetBd5IwyWvMetZKk_pNXkPYl0PTMzjg95o0s_e3o_QS_LQuXv03ZgFX-AozHweCJkCMEmJRRuqhpWKNZc1QQOREiFJXUNSoQFJhlwqHgqJcUpVFHGqeEzxMSoNR0N1gjyCscQm5ZEKoqPWUZVIDBhJE64McX8ZkUK7TDgOcjMKY8Bqjqq00A8z-mFOP2V0_S02zkk4VgnEi1vHMvv1Q-ejShheIVsp9pm58zxlAeC2MDY_jU__sPQl2mzfJ6z51Ho-Q1vmjq1WCyqolE1m6hxtiI-sP51cWBv-AjdI60w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+and+performance+of+an+Augmented+Lagrangian+algorithm&rft.jtitle=Optimization+methods+%26+software&rft.au=Birgin%2C+E.+G.&rft.au=Mart%C3%ADnez%2C+J.+M.&rft.date=2020-09-02&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=35&rft.issue=5&rft.spage=885&rft.epage=920&rft_id=info:doi/10.1080%2F10556788.2020.1746962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10556788_2020_1746962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon