Complexity and performance of an Augmented Lagrangian algorithm
Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286-1309]. Complexity results that report its...
Gespeichert in:
| Veröffentlicht in: | Optimization methods & software Jg. 35; H. 5; S. 885 - 920 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
02.09.2020
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286-1309]. Complexity results that report its worst-case behaviour in terms of iterations and evaluations of functions and derivatives that are necessary to obtain suitable stopping criteria are presented in this work. In addition, its computational performance considering all problems from the CUTEst collection is presented, which shows that it is a useful tool for solving large-scale constrained optimization problems. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1055-6788 1029-4937 |
| DOI: | 10.1080/10556788.2020.1746962 |