Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning
Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO)...
Uloženo v:
| Vydáno v: | Cluster computing Ročník 27; číslo 4; s. 5235 - 5283 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1386-7857, 1573-7543 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm’s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at
https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po
. |
|---|---|
| AbstractList | Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm’s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po. Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm’s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po . |
| Author | Gharehchopogh, Farhad Soleimanian Barshandeh, Saeid Trojovský, Pavel El-kenawy, El-Sayed M. Abdollahzadeh, Benyamin Abualigah, Laith Khodadadi, Nima Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Benyamin surname: Abdollahzadeh fullname: Abdollahzadeh, Benyamin organization: Department of Mathematics, Faculty of Science, University of Hradec Králové – sequence: 2 givenname: Nima surname: Khodadadi fullname: Khodadadi, Nima email: nima.khodadadi@miami.edu organization: Department of Civil and Architectural Engineering, University of Miami – sequence: 3 givenname: Saeid surname: Barshandeh fullname: Barshandeh, Saeid organization: Department of Computer Science, School of Engineering, Afagh Higher Education Institute – sequence: 4 givenname: Pavel surname: Trojovský fullname: Trojovský, Pavel organization: Department of Mathematics, Faculty of Science, University of Hradec Králové – sequence: 5 givenname: Farhad Soleimanian surname: Gharehchopogh fullname: Gharehchopogh, Farhad Soleimanian organization: Department of Computer Engineering, Urmia Branch, Islamic Azad University – sequence: 6 givenname: El-Sayed M. surname: El-kenawy fullname: El-kenawy, El-Sayed M. organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology – sequence: 7 givenname: Laith surname: Abualigah fullname: Abualigah, Laith organization: Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Computer Sciences Department, University of Tabuk, Computer Science Department, Al al-Bayt University – sequence: 8 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Research and Innovation Center, Obuda University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8BL3pYzcdmk_UmxS8otIfeQ5pm25Td7JpkBf31xq4ieOhpBuZ9ZuZ9J2DkWmcAuMToFiPE7wJGTBQZIjRDOSE4YydgjBmnGWc5HaWepjEXjJ-BSQh7hFDJSTkGdtk3CrZdtI39NB5eLxc391BB176bGjYmqp3pvQ3R6l-VirZ1UNXb1tu4a6ByG2hjgKrraquHqXWwUXpnnYG1Ud5Ztz0Hp5Wqg7n4qVOwenpczV6y-eL5dfYwzzQVLGZlsSZUbzjPVWGwUYhijQrNjeBiTUyJNgLzkiPEClaV1OS6So7XLNcFEYrTKbga1na-fetNiHLf9t6li5IiwfOccEGSigwq7dsQvKlk522j_IfESH4nKodEZUpUHhKVLEHiH6RtPPiNXtn6OEoHNKQ7bmv831dHqC-AFI0M |
| CitedBy_id | crossref_primary_10_1016_j_aej_2025_02_032 crossref_primary_10_1038_s41598_024_83543_9 crossref_primary_10_3390_jmse12050754 crossref_primary_10_1007_s10586_024_04666_2 crossref_primary_10_1016_j_sciaf_2025_e02547 crossref_primary_10_3390_app142311116 crossref_primary_10_1016_j_compeleceng_2025_110230 crossref_primary_10_1007_s41060_025_00752_9 crossref_primary_10_1016_j_wateco_2025_100003 crossref_primary_10_1007_s13369_024_09817_6 crossref_primary_10_1088_1402_4896_ad91f2 crossref_primary_10_1371_journal_pone_0328005 crossref_primary_10_1088_1402_4896_ade378 crossref_primary_10_1016_j_rineng_2025_104372 crossref_primary_10_1016_j_psep_2025_106862 crossref_primary_10_3390_sym17060841 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_1007_s10586_025_05265_5 crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1007_s12065_024_01011_9 crossref_primary_10_1038_s41598_024_83589_9 crossref_primary_10_1016_j_engappai_2025_111316 crossref_primary_10_1016_j_knosys_2025_114221 crossref_primary_10_1007_s12145_024_01610_1 crossref_primary_10_3389_frai_2025_1473223 crossref_primary_10_1007_s41939_025_00991_0 crossref_primary_10_1038_s41598_024_83788_4 crossref_primary_10_1002_oca_3284 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1007_s10462_024_11049_x crossref_primary_10_1016_j_aei_2024_102923 crossref_primary_10_3788_LOP242304 crossref_primary_10_1038_s41598_024_83222_9 crossref_primary_10_1016_j_jobe_2025_112292 crossref_primary_10_3390_automation6020013 crossref_primary_10_1016_j_jestch_2025_102173 crossref_primary_10_1007_s11255_024_04067_9 crossref_primary_10_1016_j_compag_2025_110496 crossref_primary_10_1007_s10462_025_11120_1 crossref_primary_10_1007_s12065_025_01026_w crossref_primary_10_1038_s41598_025_86251_0 crossref_primary_10_1016_j_ins_2024_121861 crossref_primary_10_1007_s10845_025_02647_9 crossref_primary_10_1007_s11227_024_06713_6 crossref_primary_10_1016_j_advengsoft_2024_103862 crossref_primary_10_1016_j_sciaf_2025_e02920 crossref_primary_10_1016_j_cosrev_2025_100740 crossref_primary_10_3390_biomimetics10050310 crossref_primary_10_1016_j_asej_2025_103615 crossref_primary_10_1016_j_jer_2024_11_012 crossref_primary_10_3390_app14219940 crossref_primary_10_1016_j_cose_2025_104539 crossref_primary_10_1109_ACCESS_2025_3562367 crossref_primary_10_1007_s42235_024_00608_1 crossref_primary_10_1007_s10586_024_04954_x crossref_primary_10_3390_en18112855 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_32604_cmes_2025_061028 crossref_primary_10_1007_s13042_025_02620_1 crossref_primary_10_1007_s10586_024_04866_w crossref_primary_10_1007_s10115_025_02422_5 crossref_primary_10_1186_s40537_025_01174_x crossref_primary_10_1016_j_measurement_2024_116231 crossref_primary_10_1007_s10586_024_04632_y crossref_primary_10_1038_s41598_025_87826_7 crossref_primary_10_1038_s41598_025_17756_x crossref_primary_10_1007_s42235_025_00674_z crossref_primary_10_1515_mt_2024_0516 crossref_primary_10_1515_mt_2025_0043 crossref_primary_10_1080_03091902_2025_2471332 crossref_primary_10_1007_s11540_024_09721_4 crossref_primary_10_32604_cmc_2024_051336 crossref_primary_10_1088_2631_8695_adb378 crossref_primary_10_3390_pr12030490 crossref_primary_10_1016_j_engappai_2025_110257 crossref_primary_10_1038_s41598_025_88277_w crossref_primary_10_1007_s00202_024_02848_0 crossref_primary_10_1016_j_eswa_2025_127287 crossref_primary_10_3390_biomimetics10060356 crossref_primary_10_1002_dac_70192 crossref_primary_10_1016_j_cscm_2025_e04357 crossref_primary_10_1007_s00521_024_09602_4 crossref_primary_10_3390_app15189955 crossref_primary_10_1007_s43069_025_00522_0 crossref_primary_10_1186_s12888_025_07178_4 crossref_primary_10_1515_mt_2025_0291 crossref_primary_10_3390_biomimetics10090629 crossref_primary_10_1016_j_jmsy_2025_04_003 crossref_primary_10_1080_0305215X_2024_2386102 crossref_primary_10_1080_0305215X_2025_2464862 crossref_primary_10_1186_s12872_025_04522_0 crossref_primary_10_1016_j_envint_2025_109301 crossref_primary_10_1007_s10586_025_05508_5 crossref_primary_10_1007_s12597_024_00893_8 crossref_primary_10_1038_s41598_025_92324_x crossref_primary_10_1038_s41598_024_82918_2 crossref_primary_10_1007_s10462_025_11117_w crossref_primary_10_1007_s12065_025_01073_3 crossref_primary_10_1038_s41598_024_56521_4 crossref_primary_10_1002_ese3_70055 crossref_primary_10_1109_ACCESS_2025_3541975 crossref_primary_10_1007_s42044_025_00283_3 crossref_primary_10_1016_j_advengsoft_2024_103694 crossref_primary_10_1038_s41598_025_08894_3 crossref_primary_10_3390_en18154008 crossref_primary_10_1007_s00521_024_10203_4 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126365 crossref_primary_10_1007_s10462_025_11360_1 crossref_primary_10_1007_s10489_025_06397_2 crossref_primary_10_1038_s41598_024_83636_5 crossref_primary_10_1007_s10586_024_04969_4 crossref_primary_10_1038_s41598_025_08517_x crossref_primary_10_1007_s10462_025_11289_5 crossref_primary_10_1007_s12046_025_02799_7 crossref_primary_10_1007_s41060_025_00723_0 crossref_primary_10_1016_j_neucom_2025_129816 crossref_primary_10_3390_app14167168 crossref_primary_10_1007_s10586_024_04991_6 crossref_primary_10_1109_ACCESS_2024_3522291 crossref_primary_10_1016_j_tws_2024_112631 crossref_primary_10_1038_s41598_024_78021_1 crossref_primary_10_1177_24056456241305805 crossref_primary_10_3389_fpls_2025_1615038 crossref_primary_10_1016_j_energy_2025_136498 crossref_primary_10_1016_j_advengsoft_2024_103857 crossref_primary_10_3390_biomimetics10060411 crossref_primary_10_1515_mt_2024_0217 crossref_primary_10_1007_s00432_024_05968_z crossref_primary_10_3390_fractalfract9030148 crossref_primary_10_1007_s10586_024_05005_1 crossref_primary_10_1016_j_suscom_2025_101114 crossref_primary_10_1038_s41598_025_88080_7 crossref_primary_10_1007_s10586_024_04978_3 crossref_primary_10_1038_s41598_025_04370_0 crossref_primary_10_1002_suco_70195 crossref_primary_10_1016_j_ijdrr_2024_105003 crossref_primary_10_3390_biomimetics10010014 crossref_primary_10_1016_j_rineng_2025_106530 crossref_primary_10_1038_s41598_024_72541_6 crossref_primary_10_1109_JSEN_2025_3569297 crossref_primary_10_1007_s12065_025_01053_7 crossref_primary_10_12677_iae_2024_124090 crossref_primary_10_1080_15567036_2025_2450249 crossref_primary_10_1016_j_compbiomed_2025_110597 crossref_primary_10_3390_sym17060938 crossref_primary_10_1007_s10586_024_04467_7 crossref_primary_10_1016_j_envres_2025_121918 crossref_primary_10_1038_s41598_025_11129_0 crossref_primary_10_3390_biomimetics10070471 crossref_primary_10_1002_itl2_70103 crossref_primary_10_1007_s42235_024_00613_4 crossref_primary_10_48084_etasr_11112 crossref_primary_10_1016_j_knosys_2025_113978 crossref_primary_10_1007_s00603_025_04730_2 crossref_primary_10_1007_s11227_025_07816_4 crossref_primary_10_1016_j_jer_2025_05_011 crossref_primary_10_32604_cmes_2025_059786 crossref_primary_10_1007_s00202_024_02787_w crossref_primary_10_1007_s00521_025_11552_4 crossref_primary_10_1007_s12083_025_01983_0 crossref_primary_10_1016_j_jer_2024_12_013 crossref_primary_10_1007_s00521_025_11584_w crossref_primary_10_1007_s10586_025_05540_5 crossref_primary_10_1007_s11831_024_10217_0 crossref_primary_10_1016_j_aei_2024_102783 crossref_primary_10_1038_s41598_024_82062_x crossref_primary_10_1007_s10586_024_04761_4 crossref_primary_10_1007_s10586_024_04931_4 crossref_primary_10_1016_j_engappai_2025_112198 crossref_primary_10_1371_journal_pone_0317584 crossref_primary_10_7717_peerj_cs_2652 |
| Cites_doi | 10.1680/jstbu.22.00083 10.1007/s00366-020-01179-5 10.2307/3796884 10.1038/scientificamerican0792-66 10.1016/j.physa.2011.08.043 10.32604/csse.2023.032497 10.1016/j.asoc.2015.12.001 10.1002/9780470496916 10.1002/int.22535 10.1007/s10462-022-10173-w 10.1016/j.cma.2007.03.003 10.1016/j.swevo.2015.07.002 10.1016/j.advengsoft.2015.01.010 10.1007/s00500-021-05606-7 10.1016/j.engappai.2020.103541 10.1109/4235.585893 10.1016/j.asoc.2019.03.012 10.1016/j.advengsoft.2017.07.002 10.1016/j.future.2019.07.015 10.1007/3-540-50871-6 10.1103/PhysRevE.78.046110 10.2307/3802772 10.1016/j.advengsoft.2022.103282 10.3390/s22030855 10.1016/j.engappai.2018.04.021 10.1016/j.swevo.2013.11.003 10.1016/j.future.2017.10.052 10.1016/j.matdes.2011.03.077 10.1007/s10898-007-9149-x 10.1007/s10682-006-9105-0 10.1016/j.ins.2009.03.004 10.1016/j.knosys.2019.105190 10.1007/s00521-015-1870-7 10.1016/j.asoc.2015.07.045 10.1016/j.cie.2021.107408 10.1016/j.asoc.2018.07.033 10.1016/j.advengsoft.2016.01.008 10.1139/cjz-2012-0147 10.1109/MCI.2006.329691 10.1038/s41598-022-14225-7 10.1145/959060.959070 10.2307/3808462 10.1109/4235.771163 10.1109/TEVC.2008.919004 10.1163/157075609X437673 10.2307/3802804 10.1016/j.cad.2010.12.015 10.2528/PIER07082403 10.1007/s10898-008-9332-8 10.1016/j.knosys.2022.110011 10.1023/A:1008202821328 10.1016/j.physa.2016.08.012 10.1016/j.swevo.2019.03.004 10.1080/00207160108805080 10.1023/A:1016568309421 10.1016/j.knosys.2021.107486 10.1126/science.220.4598.671 10.1016/j.advengsoft.2013.12.007 10.1016/j.eswa.2020.113377 10.2193/0022-541X(2006)70[246:CPDAVI]2.0.CO;2 10.1016/j.knosys.2015.12.022 10.1016/j.knosys.2015.07.006 10.1016/j.datak.2018.07.009 10.1016/j.neucom.2016.09.068 10.1016/j.jcde.2015.06.003 10.1016/j.advengsoft.2005.04.005 10.1016/j.ejor.2020.08.045 10.1002/jwmg.396 10.7717/peerj-cs.976 10.1016/j.cma.2022.114570 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10586-023-04221-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 5283 |
| ExternalDocumentID | 10_1007_s10586_023_04221_5 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c385t-96b23cd774a6e1ea031c06c7e878b2e90d8179700565f93e4cf042b54c628a73 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 257 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001145076400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Thu Nov 27 00:14:45 EST 2025 Sat Nov 29 05:40:20 EST 2025 Tue Nov 18 22:00:58 EST 2025 Fri Feb 21 02:38:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Global optimization Puma optimization algorithm Automatic phase change Metaheuristic algorithm Optimization Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-96b23cd774a6e1ea031c06c7e878b2e90d8179700565f93e4cf042b54c628a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3087442782 |
| PQPubID | 2043865 |
| PageCount | 49 |
| ParticipantIDs | proquest_journals_3087442782 crossref_primary_10_1007_s10586_023_04221_5 crossref_citationtrail_10_1007_s10586_023_04221_5 springer_journals_10_1007_s10586_023_04221_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gharehchopogh, Gholizadeh (CR5) 2019; 48 Rashedi, Nezamabadi-Pour, Saryazdi (CR12) 2009; 179 Abdollahzadeh, Gharehchopogh, Mirjalili (CR34) 2021; 158 Abedinpourshotorban (CR44) 2016; 26 Storn, Price (CR9) 1997; 11 Kumar, Singh, Vidyarthi (CR33) 2021; 25 Lambert (CR57) 2006; 70 Zhou, Zhang, Li (CR75) 2018; 117 Cheraghalipour, Hajiaghaei-Keshteli, Paydar (CR37) 2018; 72 El-kenawy (CR13) 2023; 45 Rao (CR17) 2019 Shayanfar, Gharehchopogh (CR15) 2018; 71 CR32 José-García, Gómez-Flores (CR74) 2016; 41 Deb, Deb (CR8) 2013 Demers (CR59) 2003; 32 Törn, Zilinskas (CR2) 1989 Floudas, Gounaris (CR1) 2009; 45 Simon (CR40) 2008; 12 Erol, Eksin (CR42) 2006; 37 Yapici, Cetinkaya (CR21) 2019; 78 Parsopoulos, Vrahatis (CR3) 2002; 1 Abdollahzadeh (CR29) 2022; 174 Holland (CR36) 1992; 267 Anderson, Lindzey (CR60) 2003; 67 Jiang, McQuay (CR76) 2012; 391 Kunkel (CR54) 1999; 63 Murphy (CR55) 1998; 10 LaRue (CR58) 2012; 76 Mirjalili, Mirjalili, Lewis (CR64) 2014; 69 Drake, Özcan, Burke (CR61) 2012 Bartnick (CR53) 2013; 91 Monroy-Vilchis (CR56) 2009; 59 Faramarzi (CR35) 2020; 152 Knopff (CR52) 2010; 74 Lancichinetti, Fortunato, Radicchi (CR78) 2008; 78 Rardin, Rardin (CR16) 1998 Dorigo, Birattari, Stutzle (CR25) 2006; 1 Yazdani, Jolai (CR30) 2016; 3 Tang (CR38) 2015; 36 Formato (CR43) 2007; 77 Dehghani, Trojovská, Trojovský (CR45) 2022; 12 Zhang (CR49) 2017; 221 Gambella, Ghaddar, Naoum-Sawaya (CR72) 2021; 290 Agushaka, Ezugwu, Abualigah (CR66) 2022; 391 Karaboga, Basturk (CR27) 2007; 39 Mirjalili (CR68) 2015; 89 Trojovský, Dehghani (CR23) 2022; 8 Dehghani (CR39) 2023; 259 Kim, Kim (CR77) 2017; 465 Kaur (CR67) 2020; 90 Mirjalili (CR65) 2016; 96 Balachandran (CR71) 2012; 35 CR10 Yao, Liu, Lin (CR62) 1999; 3 Kirkpatrick, Gelatt, Vecchi (CR41) 1983; 220 Digalakis, Margaritis (CR63) 2001; 77 Kumar, Kulkarni, Satapathy (CR48) 2018; 81 Porter, Onnela, Mucha (CR80) 2009; 56 Mirjalili, Mirjalili, Hatamlou (CR47) 2016; 27 Khodadadi, Talatahari, Gandomi (CR18) 2023 Azizi, Talatahari, Gandomi (CR69) 2023; 56 Talbi (CR6) 2009 Wolpert, Macready (CR19) 1997; 1 Faramarzi (CR22) 2020; 191 Khodadadi (CR7) 2022 Lusseau (CR79) 2007; 21 Mirjalili (CR28) 2017; 114 Rao, Savsani, Vakharia (CR14) 2011; 43 Abdollahzadeh, Gharehchopogh, Mirjalili (CR31) 2021; 36 Hashim (CR46) 2019; 101 Robinette, Gashwiler, Morris (CR51) 1959; 23 Trojovský, Dehghani (CR11) 2022; 22 Yang (CR24) 2009 Nanda, Panda (CR73) 2014; 16 Mirjalili (CR20) 2015; 83 Mirjalili, Lewis (CR26) 2016; 95 Ackerman, Lindzey, Hemker (CR50) 1984; 48 Beyer, Sendhoff (CR4) 2007; 196 Salawudeen (CR70) 2021; 232 4221_CR32 S Kaur (4221_CR67) 2020; 90 CM Lambert (4221_CR57) 2006; 70 E-SM El-kenawy (4221_CR13) 2023; 45 S Mirjalili (4221_CR28) 2017; 114 FA Hashim (4221_CR46) 2019; 101 H Yapici (4221_CR21) 2019; 78 Q Zhang (4221_CR49) 2017; 221 A Törn (4221_CR2) 1989 K Deb (4221_CR8) 2013 RA Formato (4221_CR43) 2007; 77 S Mirjalili (4221_CR64) 2014; 69 TD Bartnick (4221_CR53) 2013; 91 N Khodadadi (4221_CR18) 2023 S Kirkpatrick (4221_CR41) 1983; 220 M Balachandran (4221_CR71) 2012; 35 SS Rao (4221_CR17) 2019 M Dehghani (4221_CR45) 2022; 12 KM Murphy (4221_CR55) 1998; 10 AT Salawudeen (4221_CR70) 2021; 232 A José-García (4221_CR74) 2016; 41 P Kim (4221_CR77) 2017; 465 B Abdollahzadeh (4221_CR34) 2021; 158 JO Agushaka (4221_CR66) 2022; 391 P Trojovský (4221_CR23) 2022; 8 MA LaRue (4221_CR58) 2012; 76 X-S Yang (4221_CR24) 2009 WL Robinette (4221_CR51) 1959; 23 CR Anderson Jr (4221_CR60) 2003; 67 A Lancichinetti (4221_CR78) 2008; 78 P Trojovský (4221_CR11) 2022; 22 D Karaboga (4221_CR27) 2007; 39 M Dehghani (4221_CR39) 2023; 259 S Mirjalili (4221_CR65) 2016; 96 E Rashedi (4221_CR12) 2009; 179 JH Holland (4221_CR36) 1992; 267 KE Parsopoulos (4221_CR3) 2002; 1 OK Erol (4221_CR42) 2006; 37 FS Gharehchopogh (4221_CR5) 2019; 48 N Khodadadi (4221_CR7) 2022 RL Rardin (4221_CR16) 1998 B Abdollahzadeh (4221_CR29) 2022; 174 B Abdollahzadeh (4221_CR31) 2021; 36 BB Ackerman (4221_CR50) 1984; 48 X Yao (4221_CR62) 1999; 3 4221_CR10 DH Wolpert (4221_CR19) 1997; 1 R Storn (4221_CR9) 1997; 11 E-G Talbi (4221_CR6) 2009 C Gambella (4221_CR72) 2021; 290 O Monroy-Vilchis (4221_CR56) 2009; 59 N Kumar (4221_CR33) 2021; 25 JQ Jiang (4221_CR76) 2012; 391 RV Rao (4221_CR14) 2011; 43 D Simon (4221_CR40) 2008; 12 M Yazdani (4221_CR30) 2016; 3 A Faramarzi (4221_CR22) 2020; 191 H Abedinpourshotorban (4221_CR44) 2016; 26 SJ Nanda (4221_CR73) 2014; 16 KE Kunkel (4221_CR54) 1999; 63 H-G Beyer (4221_CR4) 2007; 196 A Faramarzi (4221_CR35) 2020; 152 D Tang (4221_CR38) 2015; 36 D Lusseau (4221_CR79) 2007; 21 A Cheraghalipour (4221_CR37) 2018; 72 M Kumar (4221_CR48) 2018; 81 M Azizi (4221_CR69) 2023; 56 MA Porter (4221_CR80) 2009; 56 S Mirjalili (4221_CR47) 2016; 27 S Mirjalili (4221_CR68) 2015; 89 H Zhou (4221_CR75) 2018; 117 S Mirjalili (4221_CR26) 2016; 95 S Mirjalili (4221_CR20) 2015; 83 CA Floudas (4221_CR1) 2009; 45 JH Drake (4221_CR61) 2012 M Dorigo (4221_CR25) 2006; 1 KH Knopff (4221_CR52) 2010; 74 H Shayanfar (4221_CR15) 2018; 71 JG Digalakis (4221_CR63) 2001; 77 A Demers (4221_CR59) 2003; 32 |
| References_xml | – volume: 56 start-page: 287 issue: 1 year: 2023 end-page: 363 ident: CR69 article-title: Fire hawk optimizer: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. – volume: 12 start-page: 9924 issue: 1 year: 2022 ident: CR45 article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process publication-title: Sci. Rep. – volume: 76 start-page: 1364 issue: 7 year: 2012 end-page: 1369 ident: CR58 article-title: Cougars are recolonizing the midwest: analysis of cougar confirmations during 1990–2008 publication-title: J. Wildl. Manag. – volume: 22 start-page: 855 issue: 3 year: 2022 ident: CR11 article-title: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications publication-title: Sensors – volume: 77 start-page: 425 issue: 1 year: 2007 end-page: 491 ident: CR43 article-title: Central force optimization publication-title: Prog. Electromagn. Res. – volume: 72 start-page: 393 year: 2018 end-page: 414 ident: CR37 article-title: Tree growth algorithm (TGA): a novel approach for solving optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 25 start-page: 6179 issue: 8 year: 2021 end-page: 6201 ident: CR33 article-title: Artificial lizard search optimization (ALSO): a novel nature-inspired meta-heuristic algorithm publication-title: Soft. Comput. – volume: 37 start-page: 106 issue: 2 year: 2006 end-page: 111 ident: CR42 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. – volume: 36 start-page: 5887 issue: 10 year: 2021 end-page: 5958 ident: CR31 article-title: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Int. J. Intell. Syst. – volume: 158 year: 2021 ident: CR34 article-title: African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Comput. Ind. Eng. – volume: 41 start-page: 192 year: 2016 end-page: 213 ident: CR74 article-title: Automatic clustering using nature-inspired metaheuristics: a survey publication-title: Appl. Soft Comput. – volume: 191 year: 2020 ident: CR22 article-title: Equilibrium optimizer: a novel optimization algorithm publication-title: Knowl. Based Syst. – volume: 56 start-page: 1082 issue: 9 year: 2009 end-page: 1097 ident: CR80 article-title: Communities in networks publication-title: Notices of the AMS – year: 2009 ident: CR6 publication-title: Metaheuristics: from design to implementation – year: 1998 ident: CR16 publication-title: Optimization in operations research – volume: 63 start-page: 901 year: 1999 end-page: 910 ident: CR54 article-title: Winter prey selection by wolves and cougars in and near Glacier National Park Montana publication-title: J. Wildl. Manag. – volume: 267 start-page: 66 issue: 1 year: 1992 end-page: 73 ident: CR36 article-title: Genetic algorithms publication-title: Sci. Am. – volume: 11 start-page: 341 issue: 4 year: 1997 ident: CR9 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 259 year: 2023 ident: CR39 article-title: Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems publication-title: Knowl. Based Syst. – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR19 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 78 start-page: 545 year: 2019 end-page: 568 ident: CR21 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: CR46 article-title: Henry gas solubility optimization: a novel physics-based algorithm publication-title: Futur. Gener. Comput. Syst. – volume: 1 start-page: 235 year: 2002 end-page: 306 ident: CR3 article-title: Recent approaches to global optimization problems through particle swarm optimization publication-title: Nat. Comput. – volume: 91 start-page: 82 issue: 2 year: 2013 end-page: 93 ident: CR53 article-title: Variation in cougar (Puma concolor) predation habits during wolf ( ) recovery in the southern greater yellowstone ecosystem publication-title: Can. J. Zool. – volume: 32 start-page: 53 issue: 4 year: 2003 end-page: 59 ident: CR59 article-title: The cougar project: a work-in-progress report publication-title: ACM SIGMOD Rec. – volume: 81 start-page: 252 year: 2018 end-page: 272 ident: CR48 article-title: Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology publication-title: Futur. Gener. Comput. Syst. – volume: 74 start-page: 1435 issue: 7 year: 2010 end-page: 1447 ident: CR52 article-title: Cougar kill rate and prey composition in a multiprey system publication-title: J. Wildl. Manag. – year: 2023 ident: CR18 article-title: ANNA advanced neural network algorithm for optimisation of structures publication-title: Proc. Inst. Civil Eng. Struct. Build. doi: 10.1680/jstbu.22.00083 – volume: 152 year: 2020 ident: CR35 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst. Appl. – year: 2022 ident: CR7 article-title: Chaotic stochastic paint optimizer (CSPO) publication-title: Proceedings of 7th International Conference on Harmony Search Soft Computing and Applications: ICHSA 2022 – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: CR47 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR28 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 174 year: 2022 ident: CR29 article-title: Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Adv. Eng. Softw. – year: 2019 ident: CR17 publication-title: Engineering optimization: theory and practice – volume: 35 start-page: 854 year: 2012 end-page: 862 ident: CR71 article-title: Optimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite design publication-title: Mater. Des. – ident: CR32 – volume: 71 start-page: 728 year: 2018 end-page: 746 ident: CR15 article-title: Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems publication-title: Appl. Soft Comput. – volume: 391 start-page: 854 issue: 3 year: 2012 end-page: 865 ident: CR76 article-title: Modularity functions maximization with nonnegative relaxation facilitates community detection in networks publication-title: Phys. A – volume: 232 year: 2021 ident: CR70 article-title: A novel smell agent optimization (SAO): an extensive CEC study and engineering application publication-title: Knowl. Based Syst. – volume: 43 start-page: 303 issue: 3 year: 2011 end-page: 315 ident: CR14 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 90 year: 2020 ident: CR67 article-title: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 48 start-page: 147 year: 1984 end-page: 155 ident: CR50 article-title: Cougar food habits in southern Utah publication-title: J. Wildl. Manag. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR65 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 290 start-page: 807 issue: 3 year: 2021 end-page: 828 ident: CR72 article-title: Optimization problems for machine learning: a survey publication-title: Eur. J. Oper. Res. – volume: 12 start-page: 702 issue: 6 year: 2008 end-page: 713 ident: CR40 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – volume: 45 start-page: 3 year: 2009 end-page: 38 ident: CR1 article-title: A review of recent advances in global optimization publication-title: J. Global Optim. – volume: 78 issue: 4 year: 2008 ident: CR78 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E – volume: 465 start-page: 525 year: 2017 end-page: 542 ident: CR77 article-title: Detecting community structure in complex networks using an interaction optimization process publication-title: Phys. A – volume: 36 start-page: 670 year: 2015 end-page: 698 ident: CR38 article-title: ITGO: invasive tumor growth optimization algorithm publication-title: Appl. Soft Comput. – year: 2012 ident: CR61 article-title: An improved choice function heuristic selection for cross domain heuristic search publication-title: Parallel Problem Solving from Nature-PPSN XII: 12th International Conference, Taormina, Italy – start-page: 26 year: 2009 end-page: 28 ident: CR24 article-title: Firefly algorithms for multimodal optimization publication-title: Stochastic Algorithms: Foundations and Applications: 5th International Symposium, SAGA 2009, Sapporo, Japan – volume: 67 start-page: 307 year: 2003 end-page: 316 ident: CR60 article-title: Estimating cougar predation rates from GPS location clusters publication-title: J. Wildl. Manag. – volume: 3 start-page: 82 issue: 2 year: 1999 end-page: 102 ident: CR62 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – start-page: 403 year: 2013 end-page: 449 ident: CR8 article-title: Multi-objective optimization publication-title: Search methodologies: introductory tutorials in optimization and decision support techniques – volume: 1 start-page: 28 issue: 4 year: 2006 end-page: 39 ident: CR25 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 70 start-page: 246 issue: 1 year: 2006 end-page: 254 ident: CR57 article-title: Cougar population dynamics and viability in the Pacific Northwest publication-title: J. Wildl. Manag. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR26 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – ident: CR10 – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: CR27 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 59 start-page: 145 issue: 2 year: 2009 end-page: 157 ident: CR56 article-title: Cougar and jaguar habitat use and activity patterns in central Mexico publication-title: Anim. Biol. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: CR73 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. – volume: 23 start-page: 261 issue: 3 year: 1959 end-page: 273 ident: CR51 article-title: Food habits of the cougar in Utah and Nevada publication-title: J. Wildl. Manag. – volume: 391 year: 2022 ident: CR66 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. – volume: 179 start-page: 2232 issue: 13 year: 2009 end-page: 2248 ident: CR12 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 10 start-page: 55 year: 1998 end-page: 60 ident: CR55 article-title: Encounter competition between bears and cougars: some ecological implications publication-title: Ursus – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR20 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. – volume: 26 start-page: 8 year: 2016 end-page: 22 ident: CR44 article-title: Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm publication-title: Swarm Evol. Comput. – volume: 45 start-page: 1917 year: 2023 end-page: 1934 ident: CR13 article-title: Al-Biruni Earth Radius (BER) metaheuristic search optimization algorithm publication-title: Comput. Syst. Sci. Eng. – volume: 21 start-page: 357 year: 2007 end-page: 366 ident: CR79 article-title: Evidence for social role in a dolphin social network publication-title: Evol. Ecol. – volume: 8 year: 2022 ident: CR23 article-title: A new optimization algorithm based on mimicking the voting process for leader selection publication-title: PeerJ Comput. Sci. – year: 1989 ident: CR2 publication-title: Global optimization – volume: 3 start-page: 24 issue: 1 year: 2016 end-page: 36 ident: CR30 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Design Eng. – volume: 220 start-page: 671 issue: 4598 year: 1983 end-page: 680 ident: CR41 article-title: Optimization by simulated annealing publication-title: Science – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: CR68 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl. Based Syst. – volume: 48 start-page: 1 year: 2019 end-page: 24 ident: CR5 article-title: A comprehensive survey: whale optimization algorithm and its applications publication-title: Swarm Evol. Comput. – volume: 117 start-page: 183 year: 2018 end-page: 194 ident: CR75 article-title: An overlapping community detection algorithm in complex networks based on information theory publication-title: Data Knowl. Eng. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR64 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 221 start-page: 123 year: 2017 end-page: 137 ident: CR49 article-title: Collective decision optimization algorithm: a new heuristic optimization method publication-title: Neurocomputing – volume: 196 start-page: 3190 issue: 33–34 year: 2007 end-page: 3218 ident: CR4 article-title: Robust optimization—a comprehensive survey publication-title: Comput. Methods Appl. Mech. Eng. – volume: 77 start-page: 481 issue: 4 year: 2001 end-page: 506 ident: CR63 article-title: On benchmarking functions for genetic algorithms publication-title: Int. J. Comput. Math. – ident: 4221_CR32 doi: 10.1007/s00366-020-01179-5 – volume: 23 start-page: 261 issue: 3 year: 1959 ident: 4221_CR51 publication-title: J. Wildl. Manag. doi: 10.2307/3796884 – year: 2023 ident: 4221_CR18 publication-title: Proc. Inst. Civil Eng. Struct. Build. doi: 10.1680/jstbu.22.00083 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 4221_CR36 publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 391 start-page: 854 issue: 3 year: 2012 ident: 4221_CR76 publication-title: Phys. A doi: 10.1016/j.physa.2011.08.043 – volume: 56 start-page: 1082 issue: 9 year: 2009 ident: 4221_CR80 publication-title: Notices of the AMS – volume: 45 start-page: 1917 year: 2023 ident: 4221_CR13 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.032497 – volume: 41 start-page: 192 year: 2016 ident: 4221_CR74 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.001 – volume-title: Metaheuristics: from design to implementation year: 2009 ident: 4221_CR6 doi: 10.1002/9780470496916 – volume: 36 start-page: 5887 issue: 10 year: 2021 ident: 4221_CR31 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – volume: 56 start-page: 287 issue: 1 year: 2023 ident: 4221_CR69 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10173-w – volume: 196 start-page: 3190 issue: 33–34 year: 2007 ident: 4221_CR4 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.03.003 – volume: 26 start-page: 8 year: 2016 ident: 4221_CR44 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.07.002 – volume: 83 start-page: 80 year: 2015 ident: 4221_CR20 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 25 start-page: 6179 issue: 8 year: 2021 ident: 4221_CR33 publication-title: Soft. Comput. doi: 10.1007/s00500-021-05606-7 – volume: 90 year: 2020 ident: 4221_CR67 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 4221_CR19 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 78 start-page: 545 year: 2019 ident: 4221_CR21 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.012 – start-page: 403 volume-title: Search methodologies: introductory tutorials in optimization and decision support techniques year: 2013 ident: 4221_CR8 – volume: 114 start-page: 163 year: 2017 ident: 4221_CR28 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – start-page: 26 volume-title: Stochastic Algorithms: Foundations and Applications: 5th International Symposium, SAGA 2009, Sapporo, Japan year: 2009 ident: 4221_CR24 – volume: 101 start-page: 646 year: 2019 ident: 4221_CR46 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 74 start-page: 1435 issue: 7 year: 2010 ident: 4221_CR52 publication-title: J. Wildl. Manag. – volume-title: Global optimization year: 1989 ident: 4221_CR2 doi: 10.1007/3-540-50871-6 – volume: 78 issue: 4 year: 2008 ident: 4221_CR78 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.046110 – volume: 67 start-page: 307 year: 2003 ident: 4221_CR60 publication-title: J. Wildl. Manag. doi: 10.2307/3802772 – volume: 174 year: 2022 ident: 4221_CR29 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103282 – volume: 22 start-page: 855 issue: 3 year: 2022 ident: 4221_CR11 publication-title: Sensors doi: 10.3390/s22030855 – volume: 72 start-page: 393 year: 2018 ident: 4221_CR37 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.021 – volume: 16 start-page: 1 year: 2014 ident: 4221_CR73 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.11.003 – volume: 81 start-page: 252 year: 2018 ident: 4221_CR48 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.10.052 – volume: 35 start-page: 854 year: 2012 ident: 4221_CR71 publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.03.077 – volume: 39 start-page: 459 year: 2007 ident: 4221_CR27 publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 21 start-page: 357 year: 2007 ident: 4221_CR79 publication-title: Evol. Ecol. doi: 10.1007/s10682-006-9105-0 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 4221_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 191 year: 2020 ident: 4221_CR22 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 27 start-page: 495 year: 2016 ident: 4221_CR47 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 36 start-page: 670 year: 2015 ident: 4221_CR38 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.045 – volume: 158 year: 2021 ident: 4221_CR34 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 71 start-page: 728 year: 2018 ident: 4221_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.033 – volume: 95 start-page: 51 year: 2016 ident: 4221_CR26 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 91 start-page: 82 issue: 2 year: 2013 ident: 4221_CR53 publication-title: Can. J. Zool. doi: 10.1139/cjz-2012-0147 – volume: 10 start-page: 55 year: 1998 ident: 4221_CR55 publication-title: Ursus – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 4221_CR25 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 12 start-page: 9924 issue: 1 year: 2022 ident: 4221_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-022-14225-7 – volume: 32 start-page: 53 issue: 4 year: 2003 ident: 4221_CR59 publication-title: ACM SIGMOD Rec. doi: 10.1145/959060.959070 – volume: 48 start-page: 147 year: 1984 ident: 4221_CR50 publication-title: J. Wildl. Manag. doi: 10.2307/3808462 – volume-title: Engineering optimization: theory and practice year: 2019 ident: 4221_CR17 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 4221_CR62 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 4221_CR40 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 59 start-page: 145 issue: 2 year: 2009 ident: 4221_CR56 publication-title: Anim. Biol. doi: 10.1163/157075609X437673 – volume: 63 start-page: 901 year: 1999 ident: 4221_CR54 publication-title: J. Wildl. Manag. doi: 10.2307/3802804 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 4221_CR14 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 77 start-page: 425 issue: 1 year: 2007 ident: 4221_CR43 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER07082403 – volume: 45 start-page: 3 year: 2009 ident: 4221_CR1 publication-title: J. Global Optim. doi: 10.1007/s10898-008-9332-8 – volume: 259 year: 2023 ident: 4221_CR39 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.110011 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 4221_CR9 publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume-title: Parallel Problem Solving from Nature-PPSN XII: 12th International Conference, Taormina, Italy year: 2012 ident: 4221_CR61 – ident: 4221_CR10 – volume: 465 start-page: 525 year: 2017 ident: 4221_CR77 publication-title: Phys. A doi: 10.1016/j.physa.2016.08.012 – volume: 48 start-page: 1 year: 2019 ident: 4221_CR5 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.004 – volume: 77 start-page: 481 issue: 4 year: 2001 ident: 4221_CR63 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160108805080 – volume: 1 start-page: 235 year: 2002 ident: 4221_CR3 publication-title: Nat. Comput. doi: 10.1023/A:1016568309421 – volume: 232 year: 2021 ident: 4221_CR70 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107486 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 4221_CR41 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 69 start-page: 46 year: 2014 ident: 4221_CR64 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 152 year: 2020 ident: 4221_CR35 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 70 start-page: 246 issue: 1 year: 2006 ident: 4221_CR57 publication-title: J. Wildl. Manag. doi: 10.2193/0022-541X(2006)70[246:CPDAVI]2.0.CO;2 – volume: 96 start-page: 120 year: 2016 ident: 4221_CR65 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 89 start-page: 228 year: 2015 ident: 4221_CR68 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 117 start-page: 183 year: 2018 ident: 4221_CR75 publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2018.07.009 – volume: 221 start-page: 123 year: 2017 ident: 4221_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.068 – volume: 3 start-page: 24 issue: 1 year: 2016 ident: 4221_CR30 publication-title: J. Comput. Design Eng. doi: 10.1016/j.jcde.2015.06.003 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 4221_CR42 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 290 start-page: 807 issue: 3 year: 2021 ident: 4221_CR72 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2020.08.045 – volume-title: Optimization in operations research year: 1998 ident: 4221_CR16 – volume: 76 start-page: 1364 issue: 7 year: 2012 ident: 4221_CR58 publication-title: J. Wildl. Manag. doi: 10.1002/jwmg.396 – volume: 8 year: 2022 ident: 4221_CR23 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.976 – volume: 391 year: 2022 ident: 4221_CR66 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114570 – volume-title: Proceedings of 7th International Conference on Harmony Search Soft Computing and Applications: ICHSA 2022 year: 2022 ident: 4221_CR7 |
| SSID | ssj0009729 |
| Score | 2.6792498 |
| Snippet | Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5235 |
| SubjectTerms | Algorithms Animals Benchmarks Clustering Computer Communication Networks Computer Science Data mining Datasets Heuristic Heuristic methods Linear programming Machine learning Mathematical models Methods Operating Systems Optimization Optimization algorithms Optimization techniques Phase change Popularity Processor Architectures Statistical tests Teaching |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCY6PXhx_ozTaTh40CjJWmih3oxx8TQXXcxuDaV0a7K2Zu128K8XaGunURM98yD0PR58DY_vA-C8F2GsgLhANPQwIhGPECecISdQ-6XtRSHBwohN0MGAjcfesHoUltfV7vWVpNmpVx67OUwXzGKkeass5KyDDXXcMS3Y8PT80lDtUqNNZmFlTZlDq6cy34_x-ThqMOaXa1Fz2vTb_5vnDtiu0CW8LZfDLliT6R5o18oNsErkfRAPFwmHmdoukvhNNVwMHy9vIIdptpQzmMiCT-Wi5HCurUwEIZ9NsnlcTBPI0xDGRQ5XbsBhnMLEFGdKWKlRTA7AqH8_untAlegCEpg5BfLcwMYiVKiQu9KSXCW96LmCSkZZYEuvFzKVw1RTiDqRhyURkfrMwCHCtRmn-BC00iyVRwByhQSJgkcWdSVRoeeqU09ENib6N4jQDrBq1_uiIiTXuhgzv6FS1q70lSt940rf6YCrjz6vJR3Hr9bdOqJ-lZq5rykQiRYYsTvguo5g0_zzaMd_Mz8BW7YCQGVpbxe0ivlCnoJNsSzifH5mluw7verjMw priority: 102 providerName: Springer Nature |
| Title | Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning |
| URI | https://link.springer.com/article/10.1007/s10586-023-04221-5 https://www.proquest.com/docview/3087442782 |
| Volume | 27 |
| WOSCitedRecordID | wos001145076400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: P5Z dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: K7- dateStart: 19980101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsQgFL3xtXDj2zg-JixcaJQ4LVCoG6NGY2IyNmqMcdMwlGqTaUedjgu_XuhQqya6cdMNhTY9cDmFyzkA252UEEPEFeZJSDBNZYollQKznomXfpgmlKjKbIJ3u-L-PozcgtvQpVXWMbEK1MlA2TXyA6tcR60vhH_0_IKta5TdXXUWGpMwbVUSrHVDxB4a0V1euZR5RASYC8bdoRl3dI4Jm35LsFXB8jD7PjE1bPPHBmk175zP__eNF2DOMU50PO4iizChiyWYr90ckBvcy5BFo1yigQkhefZuCnaiq91DJFExeNN9lOtSPunRWNe5vqtCFcn-o3ls-ZQjWSQoK4foy644ygqUVwmbGjmHiscVuD0_uz29wM6IASsiWInDoOcTlRimKAPtaWkCgeoEimvBRc_XYScRZlxzKyvK0pBoqlLzUXuMqsAXkpNVmCoGhV4DJA07pIYyeTzQ1HQHaSp1VOoTan-NKG-BV4MQKydSbr0y-nEjr2yBiw1wcQVczFqw91nneSzR8efdmzVasRuuw7iBqgX7Nd5N8e-trf_d2gbM-oYEjdN7N2GqfB3pLZhRb2U2fG3D9MlZN7puw-Qlx-2q65rr9c3dByAI8Oo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dTxQxFL1BMJEXwK-wgNoHTTTauNN2ph0SQ4xKIIvrPuwDb02304FJdmaBnYXgf_I_cjsfjJrIGw8-9yPp9PT2dHp7DsDrfso5EnFLZRJzKlKTUiOMouEE4yWL00RwW5lNyOFQHR_HoyX41b6F8WmVbUysAnUys_4f-UevXCe8LwTbOzun3jXK3662Fho1LAbu-gqPbPNPh19xft8wtv9t_OWANq4C1HIVljSOJozbBGmPiVzgDKLa9iMrnZJqwlzcTxSCVHqNzDCNuRM2RWBPQmEjpozk2O0DWBFcSb-sBpJ2Gr-yMkULuIqoVKFs3ug0L_VC5bN9OfWiWwEN_9wHO3L7131stc3tr_9nH2gD1ho-TT7XC-AxLLniCay3XhWkCV1PIRstckNmGCDz7CcWvB39eLdLDClml25KcleaU7eoVavbWhVmiZme4CjL05yYIiFZOSe_3fmTrCB5lY7qSOO_cfIMxvcx3uewXMwKtwnEIPcVSAgDGTmBYDfYqG9TxoU_-AnZg6Cdc20bCXbvBDLVnXi0x4lGnOgKJzrswfvbNme1AMmdtXdacOgmGM11h4wefGjh1RX_u7etu3t7BY8Oxt-P9NHhcLANqwzpXp3IvAPL5cXCvYCH9rLM5hcvq3VCQN8z7G4AHyBHBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFuzivefBB0bC1SZvUN1GHosyBQ_ZWsjSdhbWTrduDv96kFzdFBfE5J6HNOUm-kHO-D-C4HhKigbjELPAIpqEIsaCCY6er90vbCwNKZCY2wZpN3ul4rZkq_izbvXySzGsaDEtTktZeg7A2U_jmcJM8S7DhsLKwMw8L1CTSm_v60_OUdpdlOmUW0daMO6wom_l-jM9H0xRvfnkizU6exur_v3kNVgrUiS7zMFmHOZVswGqp6ICKBb4JUWscCzTQ20gcvemGk9bj6QUSKBlMVB_FKhUvapxzO5dWmWeR6PcGwyh9iZFIAhSlIzTzMo6iBMVZ0qZChUpFbwvajZv21S0uxBiwJNxJsed2bSIDjRaFqywl9GYg665kijPetZVXD7he28xQizqhRxSVof7NrkOla3PByDZUkkGidgAJjRCphk0WcxXVISF0p7oMbULN9YiyKlilG3xZEJUbvYy-P6VYNlPp66n0s6n0nSqcffR5zWk6frXeL73rF0t25BtqRGqER-wqnJfenDb_PNru38yPYKl13fAf7pr3e7Bsa4yUZ__uQyUdjtUBLMpJGo2Gh1kkvwOvOe77 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Puma+optimizer+%28PO%29%3A+a+novel+metaheuristic+optimization+algorithm+and+its+application+in+machine+learning&rft.jtitle=Cluster+computing&rft.au=Abdollahzadeh%2C+Benyamin&rft.au=Khodadadi%2C+Nima&rft.au=Barshandeh%2C+Saeid&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=4&rft.spage=5235&rft.epage=5283&rft_id=info:doi/10.1007%2Fs10586-023-04221-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |