2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors

Object recognition is a key research area in the field of image processing and computer vision, which recognizes the object in an image and provides a proper label. In the paper, three popular feature descriptor algorithms that are Scale Invariant Feature Transform (SIFT), Speeded Up Robust Feature...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 80; no. 12; pp. 18839 - 18857
Main Authors: Bansal, Monika, Kumar, Munish, Kumar, Manish
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2021
Springer Nature B.V
Subjects:
ISSN:1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Object recognition is a key research area in the field of image processing and computer vision, which recognizes the object in an image and provides a proper label. In the paper, three popular feature descriptor algorithms that are Scale Invariant Feature Transform (SIFT), Speeded Up Robust Feature (SURF) and Oriented Fast and Rotated BRIEF (ORB) are used for experimental work of an object recognition system. A comparison among these three descriptors is exhibited in the paper by determining them individually and with different combinations of these three methodologies. The amount of the features extracted using these feature extraction methods are further reduced using a feature selection (k-means clustering) and a dimensionality reduction method (Locality Preserving Projection). Various classifiers i.e. K-Nearest Neighbor, Naïve Bayes, Decision Tree, and Random Forest are used to classify objects based on their similarity. The focus of this article is to present a study of the performance comparison among these three feature extraction methods, particularly when their combination derives in recognizing the object more efficiently. In this paper, the authors have presented a comparative analysis view among various feature descriptors algorithms and classification models for 2D object recognition. The Caltech-101 public dataset is considered in this article for experimental work. The experiment reveals that a hybridization of SIFT, SURF and ORB method with Random Forest classification model accomplishes the best results as compared to other state-of-the-art work. The comparative analysis has been presented in terms of recognition accuracy, True Positive Rate (TPR), False Positive Rate (FPR), and Area Under Curve (AUC) parameters.
AbstractList Object recognition is a key research area in the field of image processing and computer vision, which recognizes the object in an image and provides a proper label. In the paper, three popular feature descriptor algorithms that are Scale Invariant Feature Transform (SIFT), Speeded Up Robust Feature (SURF) and Oriented Fast and Rotated BRIEF (ORB) are used for experimental work of an object recognition system. A comparison among these three descriptors is exhibited in the paper by determining them individually and with different combinations of these three methodologies. The amount of the features extracted using these feature extraction methods are further reduced using a feature selection (k-means clustering) and a dimensionality reduction method (Locality Preserving Projection). Various classifiers i.e. K-Nearest Neighbor, Naïve Bayes, Decision Tree, and Random Forest are used to classify objects based on their similarity. The focus of this article is to present a study of the performance comparison among these three feature extraction methods, particularly when their combination derives in recognizing the object more efficiently. In this paper, the authors have presented a comparative analysis view among various feature descriptors algorithms and classification models for 2D object recognition. The Caltech-101 public dataset is considered in this article for experimental work. The experiment reveals that a hybridization of SIFT, SURF and ORB method with Random Forest classification model accomplishes the best results as compared to other state-of-the-art work. The comparative analysis has been presented in terms of recognition accuracy, True Positive Rate (TPR), False Positive Rate (FPR), and Area Under Curve (AUC) parameters.
Author Bansal, Monika
Kumar, Munish
Kumar, Manish
Author_xml – sequence: 1
  givenname: Monika
  surname: Bansal
  fullname: Bansal, Monika
  organization: Department of Computer Science, Punjabi University
– sequence: 2
  givenname: Munish
  orcidid: 0000-0003-0115-1620
  surname: Kumar
  fullname: Kumar, Munish
  email: munishcse@gmail.com
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
– sequence: 3
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  organization: Department of Computer Science, Baba Farid College
BookMark eNp9kE1LAzEQhoNUsK3-AU8Br0YnySbZetNqVSgU-oHHkGazZUu7qUkq9N-7dQXBQ08zDO8zMzw91Kl97RC6pnBHAdR9pBQyRoBRQkFmksAZ6lKhOFGK0U7T8xyIEkAvUC_GNQCVgmVd9MGesV-unU04OOtXdZUqXz9gg63f7kwwqfpy2NRmc4hVxL7Es_fR_BbPFtNRMy7wZPqES2fSPjhcuGhDtUs-xEt0XppNdFe_tY8Wo5f58I2MJ6_vw8cxsTwXiQw4FSUwIynnGc-YEUqWJqNCSs4KUCpbCmpzqXihpOHKSgncMpmzgbDgOO-jm3bvLvjPvYtJr_0-NO9GzQQbSBCUqybF2pQNPsbgSr0L1daEg6agjwJ1K1A3AvWPQA0NlP-DbJXMUU8KptqcRnmLxuZOvXLh76sT1DeF5oNF
CitedBy_id crossref_primary_10_1007_s11042_022_13995_6
crossref_primary_10_1051_wujns_2023282141
crossref_primary_10_1177_09544062221095687
crossref_primary_10_1007_s11042_022_14083_5
crossref_primary_10_3390_diagnostics13193142
crossref_primary_10_3390_s24010161
crossref_primary_10_1007_s11042_022_12909_w
crossref_primary_10_1093_bib_bbac185
crossref_primary_10_3389_fnbot_2025_1531894
crossref_primary_10_1108_IR_11_2022_0289
crossref_primary_10_1007_s10278_023_00781_5
crossref_primary_10_1109_TITS_2021_3135006
crossref_primary_10_32604_cmc_2023_042963
crossref_primary_10_1051_wujns_2024294338
crossref_primary_10_1007_s11042_022_13667_5
crossref_primary_10_1007_s42154_023_00245_0
crossref_primary_10_1080_02533839_2021_2012525
crossref_primary_10_3390_app12073457
crossref_primary_10_1007_s11042_023_14462_6
crossref_primary_10_1038_s41598_025_12861_3
crossref_primary_10_1016_j_bspc_2024_106220
crossref_primary_10_1038_s41598_023_49001_8
crossref_primary_10_3390_machines11020157
crossref_primary_10_1016_j_heliyon_2024_e24627
crossref_primary_10_1016_j_optlastec_2023_109346
crossref_primary_10_1007_s00170_022_09219_8
crossref_primary_10_1007_s11042_022_12124_7
crossref_primary_10_1007_s00500_022_07079_8
crossref_primary_10_1007_s11042_022_13946_1
crossref_primary_10_1109_ACCESS_2024_3442157
crossref_primary_10_3390_app14125032
crossref_primary_10_1007_s11042_022_12871_7
crossref_primary_10_1109_TGRS_2023_3326153
crossref_primary_10_3390_s22155467
crossref_primary_10_1109_TIM_2024_3470045
crossref_primary_10_1007_s11042_023_15546_z
crossref_primary_10_1007_s11042_022_13652_y
crossref_primary_10_3390_info15120793
crossref_primary_10_1109_LRA_2023_3329355
crossref_primary_10_1016_j_cviu_2023_103716
crossref_primary_10_1007_s11042_022_13994_7
crossref_primary_10_1007_s11042_023_16224_w
crossref_primary_10_3390_asi8020043
crossref_primary_10_1007_s11760_023_02490_6
crossref_primary_10_1016_j_jrras_2025_101602
crossref_primary_10_1109_TBME_2022_3232068
crossref_primary_10_1109_ACCESS_2024_3398803
crossref_primary_10_1080_0954898X_2025_2480299
crossref_primary_10_1007_s11760_022_02217_z
crossref_primary_10_1016_j_neucom_2024_128448
crossref_primary_10_1109_ACCESS_2024_3474529
crossref_primary_10_1177_14727978251364415
crossref_primary_10_2478_amns_2024_2721
crossref_primary_10_1007_s00500_023_08285_8
crossref_primary_10_1109_TGRS_2025_3539846
crossref_primary_10_1007_s11227_024_06437_7
crossref_primary_10_1109_TGRS_2024_3458452
crossref_primary_10_1016_j_bspc_2024_107416
crossref_primary_10_1007_s11042_022_11947_8
crossref_primary_10_1007_s11042_022_12660_2
crossref_primary_10_1007_s11432_024_4056_8
crossref_primary_10_1007_s42979_024_02601_1
crossref_primary_10_1016_j_ress_2025_111183
crossref_primary_10_31466_kfbd_1620640
crossref_primary_10_3390_rs16163038
crossref_primary_10_3390_rs13122314
crossref_primary_10_1038_s41598_024_55927_4
crossref_primary_10_1109_TIM_2022_3150590
crossref_primary_10_3390_a17080363
crossref_primary_10_3390_bioengineering11080786
crossref_primary_10_3390_buildings15050837
crossref_primary_10_1007_s10278_021_00564_w
crossref_primary_10_3389_fphy_2024_1287050
crossref_primary_10_1007_s11042_022_12944_7
crossref_primary_10_1088_1742_6596_3079_1_012068
crossref_primary_10_1007_s11042_022_12880_6
crossref_primary_10_3390_s23020879
crossref_primary_10_1007_s11042_022_12922_z
crossref_primary_10_3390_s23020632
crossref_primary_10_1007_s12596_023_01170_5
crossref_primary_10_1007_s11042_023_17486_0
crossref_primary_10_3390_app12199761
crossref_primary_10_1002_cpe_8232
crossref_primary_10_1016_j_optlastec_2024_110669
crossref_primary_10_1007_s11760_023_02890_8
crossref_primary_10_1155_2022_7299309
crossref_primary_10_3390_math10244716
crossref_primary_10_1007_s11042_023_15930_9
crossref_primary_10_3390_s24134053
crossref_primary_10_1038_s41598_022_13957_w
crossref_primary_10_1007_s11370_024_00532_7
crossref_primary_10_1007_s11042_022_12433_x
crossref_primary_10_3390_electronics12071700
crossref_primary_10_1007_s11042_022_13568_7
crossref_primary_10_1007_s11042_022_12220_8
crossref_primary_10_1109_ACCESS_2023_3277547
crossref_primary_10_1109_ACCESS_2025_3586802
crossref_primary_10_20965_jaciii_2023_p1216
crossref_primary_10_1007_s11042_022_12413_1
crossref_primary_10_1016_j_bspc_2025_107612
crossref_primary_10_1177_03064190231175231
crossref_primary_10_3389_fpubh_2022_915615
crossref_primary_10_3390_rs15061591
crossref_primary_10_1007_s11042_023_15027_3
crossref_primary_10_12688_f1000research_162911_1
crossref_primary_10_1080_13682199_2023_2171555
crossref_primary_10_12688_f1000research_162911_2
crossref_primary_10_1007_s11042_022_13957_y
crossref_primary_10_1016_j_patcog_2022_108546
crossref_primary_10_1007_s11760_022_02270_8
crossref_primary_10_1109_ACCESS_2023_3284463
crossref_primary_10_3390_s24020676
crossref_primary_10_3390_app132413286
crossref_primary_10_1038_s41598_025_95570_1
crossref_primary_10_1016_j_compmedimag_2024_102334
crossref_primary_10_3390_s23010136
crossref_primary_10_32628_IJSRST24113115
crossref_primary_10_3390_app13063396
crossref_primary_10_1007_s11042_023_14715_4
crossref_primary_10_1007_s41230_025_4145_7
crossref_primary_10_1007_s42417_022_00630_9
crossref_primary_10_1016_j_bspc_2023_105419
crossref_primary_10_1007_s11042_022_12833_z
crossref_primary_10_1007_s11042_022_13902_z
crossref_primary_10_1007_s10115_023_01894_7
crossref_primary_10_12677_sea_2025_143054
crossref_primary_10_1007_s11042_021_11773_4
crossref_primary_10_1109_TGRS_2024_3359350
crossref_primary_10_1007_s11042_022_12932_x
crossref_primary_10_3390_rs17050905
crossref_primary_10_1007_s10489_021_03095_7
crossref_primary_10_1002_admt_202300568
crossref_primary_10_1007_s00414_025_03564_5
crossref_primary_10_1017_S1431927621013817
crossref_primary_10_1007_s10489_022_03682_2
crossref_primary_10_1007_s11042_022_13380_3
crossref_primary_10_1109_ACCESS_2023_3311346
crossref_primary_10_3390_app14072750
crossref_primary_10_1007_s11042_022_13773_4
crossref_primary_10_1155_acis_4767052
crossref_primary_10_1080_13682199_2025_2522611
crossref_primary_10_51173_ijds_v2i2_35
crossref_primary_10_3390_rs17152693
crossref_primary_10_7717_peerj_cs_2415
crossref_primary_10_1155_2022_7247757
crossref_primary_10_1007_s11760_022_02135_0
crossref_primary_10_1007_s10278_025_01419_4
crossref_primary_10_1007_s11042_023_18085_9
crossref_primary_10_1002_cpe_70128
crossref_primary_10_1016_j_smhl_2025_100556
crossref_primary_10_1109_ACCESS_2023_3283031
crossref_primary_10_3390_buildings14113635
crossref_primary_10_3390_asi7060127
crossref_primary_10_1016_j_optcom_2023_129993
crossref_primary_10_3390_en18081898
crossref_primary_10_1142_S0219467825500548
crossref_primary_10_3390_jmse12050782
crossref_primary_10_3390_agronomy15071549
Cites_doi 10.1007/s10044-020-00879-4
10.1587/transinf.2016EDL8167
10.1109/ICCV.2005.77
10.1007/s11042-018-6793-8
10.1023/B:VISI.0000029664.99615.94
10.1016/j.cviu.2007.09.014
10.4236/jdaip.2016.42005
10.1007/s00371-018-1503-0
10.1007/s11042-019-08232-6
10.1007/s11042-017-4344-3
10.1109/ICOMET.2018.8346440
10.1007/11744023_34
10.3906/elk-1602-225
10.1007/978-3-319-68935-7_39
10.1109/ASET.2018.8379825
10.1109/ICCV.2011.6126544
10.1109/CVPR.2010.5540018
10.1145/3301506.3301513
10.5244/C.22.54
10.1007/978-3-642-15561-1_56
10.1109/ICCV.2007.4409066
10.1007/s11831-020-09409-1
10.1007/978-981-15-6876-3_16
10.1109/CVPR.2016.90
10.1109/ICCV.2011.6126542
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-021-10646-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 18857
ExternalDocumentID 10_1007_s11042_021_10646_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-9315f02a61334342a576fa4156632d0774b51c8673d76a37c6603c268295c0e33
IEDL.DBID RSV
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619905700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 23:32:19 EST 2025
Tue Nov 18 22:01:15 EST 2025
Sat Nov 29 06:20:10 EST 2025
Fri Feb 21 02:48:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords K-means
SURF
SIFT
LPP
ORB
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-9315f02a61334342a576fa4156632d0774b51c8673d76a37c6603c268295c0e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0115-1620
PQID 2529605137
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_2529605137
crossref_primary_10_1007_s11042_021_10646_0
crossref_citationtrail_10_1007_s11042_021_10646_0
springer_journals_10_1007_s11042_021_10646_0
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kulkarni, Jagtap, Harpale (CR19) 2013; 3
Gupta, Kumar, Garg (CR9) 2019; 78
Yang, XIE (CR35) 2017; 100
CR17
CR16
CR14
CR13
Kabbai, Abdellaoui, Douik (CR15) 2019; 35
CR12
CR34
CR11
CR33
Kim, Hong, Psannis (CR18) 2017; 76
CR30
Shermina (CR28) 2010; 1
Chien, Chuang, Chen, Klette (CR8) 2016
CR2
Shivakanth (CR29) 2014; 1
Sivic, Russell, Efros, Zisserman, Freeman (CR31) 2005; 1
Srivastava, Bakthula, Agarwal (CR32) 2019; 78
CR3
CR6
CR5
CR7
CR27
Zhang, Berg, Maire, Malik (CR36) 2006; 2
CR26
CR25
Bay, Ess, Tuytelaars, Van (CR4) 2008; 110
Park (CR23) 2016; 4
Gupta, Roy, Dogra, Kim (CR10) 2020; 23
CR21
CR20
Abdelmajed (CR1) 2016; 4
Patil, Kolhe (CR24) 2014; 11
Lowe (CR22) 2004; 60
DG Lowe (10646_CR22) 2004; 60
S Gupta (10646_CR9) 2019; 78
F Yang (10646_CR35) 2017; 100
J Shermina (10646_CR28) 2010; 1
10646_CR21
10646_CR20
HJ Chien (10646_CR8) 2016
10646_CR3
10646_CR27
10646_CR2
S Gupta (10646_CR10) 2020; 23
10646_CR26
AV Kulkarni (10646_CR19) 2013; 3
10646_CR25
10646_CR7
10646_CR6
10646_CR5
H Bay (10646_CR4) 2008; 110
MP Patil (10646_CR24) 2014; 11
B Kim (10646_CR18) 2017; 76
DC Park (10646_CR23) 2016; 4
10646_CR13
AKA Abdelmajed (10646_CR1) 2016; 4
10646_CR12
10646_CR34
10646_CR11
10646_CR33
L Kabbai (10646_CR15) 2019; 35
10646_CR30
H Zhang (10646_CR36) 2006; 2
AM Shivakanth (10646_CR29) 2014; 1
D Srivastava (10646_CR32) 2019; 78
10646_CR17
10646_CR16
J Sivic (10646_CR31) 2005; 1
10646_CR14
References_xml – volume: 4
  start-page: 135
  issue: 3
  year: 2016
  end-page: 139
  ident: CR23
  article-title: Image classification using Naïve Bayes classifier
  publication-title: Int J Comput Sci Electronics Engineering (IJCSEE)
– volume: 23
  start-page: 1569
  year: 2020
  end-page: 1585
  ident: CR10
  article-title: Retrieval of colour and texture images using local directional peak valley binary pattern
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-020-00879-4
– ident: CR14
– volume: 100
  start-page: 927
  issue: 4
  year: 2017
  end-page: 930
  ident: CR35
  article-title: Codebook learning for image recognition based on parallel key SIFT analysis
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2016EDL8167
– ident: CR2
– ident: CR16
– volume: 1
  start-page: 370
  year: 2005
  end-page: 377
  ident: CR31
  article-title: Discovering objects and their location in images
  publication-title: Proc Tenth IEEE Int Conf Computer Vision
  doi: 10.1109/ICCV.2005.77
– volume: 78
  start-page: 14129
  issue: 11
  year: 2019
  end-page: 14153
  ident: CR32
  article-title: Image classification using SURF and bag of LBP features constructed by clustering with fixed centers
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6793-8
– ident: CR12
– ident: CR30
– volume: 2
  start-page: 2126
  year: 2006
  end-page: 2136
  ident: CR36
  article-title: SVM-KNN: discriminative nearest neighbor classification for visual category recognition
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– ident: CR33
– ident: CR6
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  ident: CR22
  article-title: Distinctive image features from scale-invariant Keypoints
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: CR25
– ident: CR27
– volume: 3
  start-page: 164
  issue: 3
  year: 2013
  ident: CR19
  article-title: Object recognition with ORB and its implementation on FPGA
  publication-title: Int J Adv Comput Res
– ident: CR21
– volume: 110
  start-page: 346
  issue: 3
  year: 2008
  end-page: 359
  ident: CR4
  article-title: Speeded-up robust features (SURF)
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2007.09.014
– ident: CR3
– volume: 4
  start-page: 55
  issue: 2
  year: 2016
  end-page: 63
  ident: CR1
  article-title: A comparative study of locality preserving projection and principle component analysis on classification performance using logistic regression
  publication-title: J Data Anal Inform Process
  doi: 10.4236/jdaip.2016.42005
– ident: CR17
– start-page: 1
  year: 2016
  end-page: 6
  ident: CR8
  article-title: When to use what feature? SIFT, SURF, ORB, or A-KAZE features for monocular visual odometry
  publication-title: Proceedings of the International Conference on Image and Vision Computing
– ident: CR13
– ident: CR11
– volume: 11
  start-page: 38
  issue: 2
  year: 2014
  end-page: 49
  ident: CR24
  article-title: Automatic image annotation using decision trees and rough sets
  publication-title: Int J Comput Sci Appl (IJCSA)
– volume: 35
  start-page: 679
  issue: 5
  year: 2019
  end-page: 693
  ident: CR15
  article-title: Image classification by combining local and global features
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1503-0
– ident: CR34
– volume: 1
  start-page: 82
  issue: 3
  year: 2010
  end-page: 85
  ident: CR28
  article-title: Application of locality preserving projections in face recognition
  publication-title: Int J Adv Comput Sci Appl
– volume: 78
  start-page: 34157
  year: 2019
  end-page: 34171
  ident: CR9
  article-title: Improved Object Recognition Results using SIFT and ORB Feature Detector
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08232-6
– ident: CR5
– ident: CR7
– volume: 76
  start-page: 22741
  year: 2017
  end-page: 22759
  ident: CR18
  article-title: Design of efficient shape feature for object-based watermarking technology
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4344-3
– ident: CR26
– volume: 1
  start-page: 378
  issue: 4
  year: 2014
  end-page: 381
  ident: CR29
  article-title: Object recognition using SIFT
  publication-title: Int J Innovat Sci Eng Technol (IJISET)
– ident: CR20
– ident: 10646_CR33
  doi: 10.1109/ICOMET.2018.8346440
– ident: 10646_CR25
  doi: 10.1007/11744023_34
– volume: 23
  start-page: 1569
  year: 2020
  ident: 10646_CR10
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-020-00879-4
– volume: 2
  start-page: 2126
  year: 2006
  ident: 10646_CR36
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 78
  start-page: 14129
  issue: 11
  year: 2019
  ident: 10646_CR32
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6793-8
– ident: 10646_CR5
  doi: 10.3906/elk-1602-225
– ident: 10646_CR17
– ident: 10646_CR13
  doi: 10.1007/978-3-319-68935-7_39
– ident: 10646_CR11
– volume: 78
  start-page: 34157
  year: 2019
  ident: 10646_CR9
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08232-6
– ident: 10646_CR21
  doi: 10.1109/ASET.2018.8379825
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10646_CR22
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 4
  start-page: 135
  issue: 3
  year: 2016
  ident: 10646_CR23
  publication-title: Int J Comput Sci Electronics Engineering (IJCSEE)
– ident: 10646_CR26
  doi: 10.1109/ICCV.2011.6126544
– volume: 1
  start-page: 378
  issue: 4
  year: 2014
  ident: 10646_CR29
  publication-title: Int J Innovat Sci Eng Technol (IJISET)
– ident: 10646_CR34
  doi: 10.1109/CVPR.2010.5540018
– ident: 10646_CR14
  doi: 10.1145/3301506.3301513
– ident: 10646_CR27
  doi: 10.5244/C.22.54
– ident: 10646_CR30
– ident: 10646_CR7
  doi: 10.1007/978-3-642-15561-1_56
– ident: 10646_CR6
  doi: 10.1109/ICCV.2007.4409066
– ident: 10646_CR16
– volume: 35
  start-page: 679
  issue: 5
  year: 2019
  ident: 10646_CR15
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1503-0
– ident: 10646_CR2
  doi: 10.1007/s11831-020-09409-1
– ident: 10646_CR3
  doi: 10.1007/978-981-15-6876-3_16
– volume: 76
  start-page: 22741
  year: 2017
  ident: 10646_CR18
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4344-3
– volume: 100
  start-page: 927
  issue: 4
  year: 2017
  ident: 10646_CR35
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2016EDL8167
– start-page: 1
  volume-title: Proceedings of the International Conference on Image and Vision Computing
  year: 2016
  ident: 10646_CR8
– volume: 4
  start-page: 55
  issue: 2
  year: 2016
  ident: 10646_CR1
  publication-title: J Data Anal Inform Process
  doi: 10.4236/jdaip.2016.42005
– volume: 1
  start-page: 370
  year: 2005
  ident: 10646_CR31
  publication-title: Proc Tenth IEEE Int Conf Computer Vision
  doi: 10.1109/ICCV.2005.77
– volume: 3
  start-page: 164
  issue: 3
  year: 2013
  ident: 10646_CR19
  publication-title: Int J Adv Comput Res
– volume: 1
  start-page: 82
  issue: 3
  year: 2010
  ident: 10646_CR28
  publication-title: Int J Adv Comput Sci Appl
– ident: 10646_CR12
  doi: 10.1109/CVPR.2016.90
– volume: 110
  start-page: 346
  issue: 3
  year: 2008
  ident: 10646_CR4
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2007.09.014
– ident: 10646_CR20
  doi: 10.1109/ICCV.2011.6126542
– volume: 11
  start-page: 38
  issue: 2
  year: 2014
  ident: 10646_CR24
  publication-title: Int J Comput Sci Appl (IJCSA)
SSID ssj0016524
Score 2.6050148
Snippet Object recognition is a key research area in the field of image processing and computer vision, which recognizes the object in an image and provides a proper...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18839
SubjectTerms Algorithms
Classification
Cluster analysis
Clustering
Comparative analysis
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Decision trees
Feature extraction
Feature recognition
Image processing
Multimedia Information Systems
Object recognition
Special Purpose and Application-Based Systems
Two dimensional analysis
Two dimensional models
Vector quantization
SummonAdditionalLinks – databaseName: Computer Science Database (ProQuest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgMiqOGzl402CadEm9iNugCKPMgt5KmqQgyHScjv5-kzadqqAX6a1NQuF7eUvey_cAjkRgbAgnGSaKRtj3hTZ6MKWYBIqlSnDfT1XZbCLqdvnzc_zoDtwKV1ZZ68RSUatc2jPyU2oThEaCWHQ-fsO2a5TNrroWGvOw6FHqWTm_j_AsixAGrqktJ9hYRs9dmqmuznn2YootUDBBkW-i6u-GqfE2fyRIS7vTWfvvH6_DqvM40UUlIhswp0ctWKu7OSC3uVuw8oWacBOe6DXKU3tIg2Y1RvnoDAkkG75wJBylCcoz1L_rDE5Qf9jrmNcKPfQuUaZL2lCkdKWc8kmxBcPOzeDqFrsmDFgyHkxxzLwgI1QYs8985lNhApRMlGEfo4oY7zENPMnDiKkoFCySYUiYpCGncSCJZmwbFkb5SO8AshN880gtrGOguKJcpHEYq0x7Warb4NUIJNIxlNtGGa9Jw61sUUsMakmJWkLacDybM674Of4cvV9Dlbi9WiQNTm04qcFuPv--2u7fq-3BMrXyVVZH7sPCdPKuD2BJfkxfislhKamfETPplw
  priority: 102
  providerName: ProQuest
Title 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors
URI https://link.springer.com/article/10.1007/s11042-021-10646-0
https://www.proquest.com/docview/2529605137
Volume 80
WOSCitedRecordID wos000619905700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidI48-KaFNOlH6psfG4q4jc359VLSJAVBVtmmf79Jl64qKiiFQNsklEtyH7273wEccF_LEIZTB0sSOp7HleaDCXGwL2kiOfO8RObFJsJOh93fRz2bFDYpot0Ll2TOqctkN9ekkpiQAm3GeNoOXoQlLe6YOY79we3cdxD4tpQtw46Wh65Nlfl-js_iqNQxv7hFc2nTrv7vO9dhzWqX6GS2HTZgQY1qUC0qNyB7kGuw-gGGcBPuyDnKEvNDBs3jibLRMeJIlNjgiFv4EpSlaHDZvjlCg2G_rR9L1O2folTlEKFIqhkjysaTLRi2WzdnF44tuOAIyvypE1HXTzHhWsRTj3qEa2Mk5bmJR4nEWlNMfFewIKQyDDgNRRBgKkjASOQLrCjdhsooG6kdQGaApy-huFECJJOE8SQKIpkqN01UHdyC7rGwaOSmKMZzXOIoGzrGmo5xTscY1-FwPuZlhsXxa-9GsZyxPZeTmBg3s-ZDNKzDUbF85eufZ9v9W_c9WCFmB-SRkQ2oTMevah-Wxdv0aTJuwmJ499CEpdNWp9fXd1eho9trfGZa0tVtz39s5rv6HWTC5fc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH6ICurBXRzXHPSkxTRJ21QQcRsc1FF0RG81TVIQZKozo-Kf8jeadJmqoDcP0lvbBNp8eUve8gGsCc_oEI4TBysSOIwJbeRgTBzsKRorwRmLVUY2ETSb_PY2vBiA97IWxqZVljIxE9QqlfaMfIvYAKFBEA12H58cyxplo6slhUYOixP99mpctu5O49Cs7zoh9aPWwbFTsAo4knKv54TU9RJMhNFjlFFGhLG4E5H5MZQobMyh2HMl9wOqAl_QQPo-ppL4nISexNoegBqRP8SY2Q42VRAf9KMWvleQ6HLsGE3sFkU6eameawthbEKEccKY8eK_KsLKuv0WkM30XH3iv_2hSRgvLGq0l2-BKRjQ7WmYKNkqUCG8pmHsU-vFGbghhyiN7SEU6udQpe1tJJCs-qEjUbRsQWmCrhr11ia6ur6sm9sKnV_uo0RnbVGR0rnwTTvdWbj-k4-dg8F22tbzgOwAZi6phTV8FFeEizj0Q5VoN4l1DdxyxSNZdGC3RCAPUdU72qIkMiiJMpREuAYb_TGPef-RX99eKqERFbKoG1W4qMFmCa7q8c-zLfw-2yqMHLfOTqPTRvNkEUaJxXaWCboEg73Os16GYfnSu-92VrJdguDur0H3AXCzQL4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qSoXgQEsBMXTBBzhRq46dxalUVaXTiNGgoeoieguO7UiVqkmZGaj61_rr-pw4E6hEbz2g3JLYUuLPb_FbPoAPKkIdIllJmeEJDUNlUQ4WnLLIiMIoGYaFqckmktFInp-nRwtw29bCuLTKVibWgtpU2p2Rb3MXIEQEiWS79GkRR_1s7-ondQxSLtLa0mk0EBnam2t036a7gz6u9UfOs8PTgy_UMwxQLWQ0o6kIopJxhTpNhCLkCq3vUtU-jeCGoWlURIGWcSJMEiuR6DhmQvNY8jTSzLrDUBT_T1ALR26PDRM6j2DEkSfUlYyiVg58wU5Tthe4ohiXHIEOWYge_d9KsbN07wVna52XLf_Pf2sFXnhLm-w3W-MlLNjxKiy3LBbEC7VVeP5HS8ZX8J33SVW4wykyz62qxjtEEd31SSfKt3IhVUlOBtnpFjk5O87wtiHfjj-T0tbtUomxjVCuJtPXcPYoH_sGFsfV2L4F4gaEeGmrnEFkpOFSFWmcmtIGZWF7ELSrn2vfmd0RhFzmXU9ph5gcEZPXiMlZDz7Nx1w1fUkefHu9hUnuZdQ07zDSg60WaN3jf8_27uHZ3sNTxFr-dTAarsEz7mBeJ4iuw-Js8stuwJL-PbuYTjbrDUPgx2Nj7g7Eyklk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+object+recognition%3A+a+comparative+analysis+of+SIFT%2C+SURF+and+ORB+feature+descriptors&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bansal%2C+Monika&rft.au=Kumar%2C+Munish&rft.au=Kumar%2C+Manish&rft.date=2021-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=12&rft.spage=18839&rft.epage=18857&rft_id=info:doi/10.1007%2Fs11042-021-10646-0&rft.externalDocID=10_1007_s11042_021_10646_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon