Multi-Component Temporal-Correlation Seismic Data Compression Algorithm Based on the PCA and DWT

Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in enormous datasets, often exceeding terabytes of data. The storage and communication demands these data require can only be achieved through compres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithms Ročník 18; číslo 1; s. 33
Hlavní autoři: Lucena, Mateus Martinez de, Ribeiro, Josafat Leal, Wagner, Matheus, Fröhlich, Antônio Augusto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2025
Témata:
ISSN:1999-4893, 1999-4893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in enormous datasets, often exceeding terabytes of data. The storage and communication demands these data require can only be achieved through compression. Careful consideration must be given to minimize the reconstruction error of compressed data caused by lossy compression. This paper investigates the combination of principal component analysis (PCA), discrete wavelet transform (DWT), thresholding, quantization, and entropy encoding to compress such datasets. The proposed method is a lossy compression algorithm tuned by evaluating the reconstruction error in frequency ranges of interest, namely 0–20 Hz and 15–65 Hz. The PCA compression and decompression acts as a noise filter while the DWT drives the compression. The proposed method can be tuned through threshold and quantization percentages and the number of principal components to achieve compression rates of up to 31:1 with reconstruction residues energy of less than 4% in the frequency ranges of 0–20 Hz, 15–65 Hz, and 60–105 Hz.
AbstractList Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in enormous datasets, often exceeding terabytes of data. The storage and communication demands these data require can only be achieved through compression. Careful consideration must be given to minimize the reconstruction error of compressed data caused by lossy compression. This paper investigates the combination of principal component analysis (PCA), discrete wavelet transform (DWT), thresholding, quantization, and entropy encoding to compress such datasets. The proposed method is a lossy compression algorithm tuned by evaluating the reconstruction error in frequency ranges of interest, namely 0–20 Hz and 15–65 Hz. The PCA compression and decompression acts as a noise filter while the DWT drives the compression. The proposed method can be tuned through threshold and quantization percentages and the number of principal components to achieve compression rates of up to 31:1 with reconstruction residues energy of less than 4% in the frequency ranges of 0–20 Hz, 15–65 Hz, and 60–105 Hz.
Audience Academic
Author Wagner, Matheus
Ribeiro, Josafat Leal
Lucena, Mateus Martinez de
Fröhlich, Antônio Augusto
Author_xml – sequence: 1
  givenname: Mateus Martinez de
  orcidid: 0000-0002-8315-689X
  surname: Lucena
  fullname: Lucena, Mateus Martinez de
– sequence: 2
  givenname: Josafat Leal
  orcidid: 0009-0008-6563-0050
  surname: Ribeiro
  fullname: Ribeiro, Josafat Leal
– sequence: 3
  givenname: Matheus
  orcidid: 0000-0003-3985-0451
  surname: Wagner
  fullname: Wagner, Matheus
– sequence: 4
  givenname: Antônio Augusto
  orcidid: 0000-0002-4063-1339
  surname: Fröhlich
  fullname: Fröhlich, Antônio Augusto
BookMark eNptkUFvEzEQhVeolWgLB_6BJU4ctrXX9q59DCktlYqoRBBHM7HHqaPddbCdA_8eh1QFJOSDR89vPo3fnDcnc5yxad4wesm5plfAFGWUcv6iOWNa61YozU_-ql825zlvKe2l7tlZ8_3TfiyhXcZpV0FzISusVYKxSinhCCXEmXzBkKdgyTUUIAdvwpwPD4txE1MojxN5DxkdqVJ5RPKwXBCYHbn-tnrVnHoYM75-ui-arzcfVsuP7f3n27vl4r61XMnSamp7P6CUinbohFfgAb1W0vaqF0562fWdkhKoHXANa0eFdd4N0ntGpbD8ork7cl2ErdmlMEH6aSIE81uIaWMglWBHNJQ5pj2nYsBBME3XNTNecRZBgcCust4eWbsUf-wxF7ON-zTX8Q1nUnddp5T449pAhYbZx5LATiFbs1Cd1lRyoavr8j-uehzWRGvmPlT9n4Z3xwabYs4J_fNnGDWHHZvnHfNfn2mYHw
Cites_doi 10.1109/ACCESS.2020.3003682
10.1016/B978-012620861-0/50020-6
10.1016/j.petlm.2018.11.001
10.17487/rfc1951
10.1109/BigData.2018.8622520
10.1109/IEEEGCC.2017.8448168
10.1109/30.125072
10.17230/ingciencia.11.21.11
10.1109/TGRS.2018.2789354
10.1109/ICCA59364.2023.10401790
10.1190/sbgf2013-188
10.1017/CBO9780511804441
10.1109/PEMWA.2009.5208325
10.1109/TPAMI.2013.50
10.1016/j.jappgeo.2016.03.033
10.1109/TIE.2014.2327917
10.1109/ICDE51399.2021.00145
10.1190/1.3255623
10.1137/18M1168832
10.1007/s12517-021-08675-y
10.1109/TBDATA.2022.3201176
10.1109/MSP.2017.2784458
10.1109/TVCG.2014.2346458
10.1190/1.9781560803447
10.1088/1742-2132/13/2/135
10.20944/preprints202308.0165.v1
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a18010033
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_01d19f3047e74190b18034cdcea8a4e2
A829905349
10_3390_a18010033
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-90c6f7e55802ed4f8afaef985c6864d5f5262855a0c7ebabd04cdfd75ff1054c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403984200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:53:02 EDT 2025
Fri Jul 25 11:52:44 EDT 2025
Tue Nov 11 10:52:34 EST 2025
Tue Nov 04 18:13:52 EST 2025
Sat Nov 29 07:20:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-90c6f7e55802ed4f8afaef985c6864d5f5262855a0c7ebabd04cdfd75ff1054c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3985-0451
0000-0002-4063-1339
0009-0008-6563-0050
0000-0002-8315-689X
OpenAccessLink https://doaj.org/article/01d19f3047e74190b18034cdcea8a4e2
PQID 3159222884
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_01d19f3047e74190b18034cdcea8a4e2
proquest_journals_3159222884
gale_infotracmisc_A829905349
gale_infotracacademiconefile_A829905349
crossref_primary_10_3390_a18010033
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xiong (ref_12) 2020; 8
Liang (ref_29) 2023; 9
ref_14
ref_13
Liu (ref_18) 2018; 56
Liu (ref_17) 2016; 13
ref_31
ref_30
ref_19
Mohammadpoor (ref_5) 2020; 6
ref_16
Diffenderfer (ref_28) 2019; 41
Lindstrom (ref_27) 2014; 20
Payani (ref_4) 2018; 35
ref_25
Javed (ref_3) 2015; 62
ref_24
ref_23
ref_21
Nuha (ref_11) 2021; 14
ref_20
ref_1
ref_2
Bengio (ref_22) 2013; 35
Wallace (ref_8) 1992; 38
Fajardo (ref_6) 2015; 11
ref_26
ref_9
Gan (ref_15) 2016; 130
ref_7
Sze (ref_10) 2014; Volume 39
References_xml – volume: 8
  start-page: 114443
  year: 2020
  ident: ref_12
  article-title: High Bit-Depth Seismic Data Compression: A Novel Codec Under the Framework of HEVC
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003682
– ident: ref_9
– ident: ref_24
  doi: 10.1016/B978-012620861-0/50020-6
– volume: 6
  start-page: 321
  year: 2020
  ident: ref_5
  article-title: Big Data analytics in oil and gas industry: An emerging trend
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2018.11.001
– ident: ref_25
  doi: 10.17487/rfc1951
– ident: ref_31
  doi: 10.1109/BigData.2018.8622520
– ident: ref_7
  doi: 10.1109/IEEEGCC.2017.8448168
– volume: 38
  start-page: xviii
  year: 1992
  ident: ref_8
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.125072
– volume: Volume 39
  start-page: 40
  year: 2014
  ident: ref_10
  article-title: High efficiency video coding (HEVC)
  publication-title: Integrated Circuit and Systems, Algorithms and Architectures
– ident: ref_14
– volume: 11
  start-page: 221
  year: 2015
  ident: ref_6
  article-title: Seismic Data Compression Using 2D Lifting-Wavelet Algorithms
  publication-title: Ingeniería Cienc.
  doi: 10.17230/ingciencia.11.21.11
– ident: ref_21
– volume: 56
  start-page: 3020
  year: 2018
  ident: ref_18
  article-title: A Distributed Principal Component Analysis Compression for Smart Seismic Acquisition Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2789354
– ident: ref_20
  doi: 10.1109/ICCA59364.2023.10401790
– ident: ref_26
  doi: 10.1190/sbgf2013-188
– ident: ref_23
  doi: 10.1017/CBO9780511804441
– ident: ref_2
  doi: 10.1109/PEMWA.2009.5208325
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_22
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 130
  start-page: 194
  year: 2016
  ident: ref_15
  article-title: Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2016.03.033
– volume: 62
  start-page: 647
  year: 2015
  ident: ref_3
  article-title: Enabling Health Monitoring Approach Based on Vibration Data for Accurate Prognostics
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2327917
– ident: ref_30
  doi: 10.1109/ICDE51399.2021.00145
– ident: ref_16
  doi: 10.1190/1.3255623
– volume: 41
  start-page: A1867
  year: 2019
  ident: ref_28
  article-title: Error Analysis of ZFP Compression for Floating-Point Data
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1168832
– ident: ref_13
– volume: 14
  start-page: 2542
  year: 2021
  ident: ref_11
  article-title: Seismic data modeling and compression using particle swarm optimization
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-021-08675-y
– volume: 9
  start-page: 485
  year: 2023
  ident: ref_29
  article-title: SZ3: A Modular Framework for Composing Prediction-Based Error-Bounded Lossy Compressors
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2022.3201176
– volume: 35
  start-page: 51
  year: 2018
  ident: ref_4
  article-title: Advances in seismic data compression via learning from data: Compression for seismic data acquisition
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2784458
– volume: 20
  start-page: 2674
  year: 2014
  ident: ref_27
  article-title: Fixed-Rate Compressed Floating-Point Arrays
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346458
– ident: ref_1
  doi: 10.1190/1.9781560803447
– volume: 13
  start-page: 135
  year: 2016
  ident: ref_17
  article-title: An effective approach to attenuate random noise based on compressive sensing and curvelet transform
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/13/2/135
– ident: ref_19
  doi: 10.20944/preprints202308.0165.v1
SSID ssj0065961
Score 2.3260887
Snippet Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 33
SubjectTerms Algorithms
Case studies
Compressed gas
compression algorithms
Data acquisition
Data compression
Datasets
Decomposition
Discrete Wavelet Transform
Eigenvalues
Entropy
Error analysis
Frequency ranges
Industrial applications
Information storage and retrieval
Machine learning
Noise threshold
Performance evaluation
principal component analysis
Principal components analysis
Reconstruction
Seismic surveys
Time series
Wavelet analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZa2kMvQF9iKVQWqsQpIg87sU_VAkU9ISQWwc2d-EFXgixkA7-fmcQB7aFcerUdZZTxPDIefx9jP1KfSRUAkoDJciIgDUld-5K6CKEsRJ3nfiCbqE5P1dWVPosFt2Vsqxx9Yu-o3cJSjfygwLhL1Qolft7dJ8QaRaerkULjLXtHKAlZ37p3PnriUuoyG9CECvy1P4AM3TGRl63EoB6q_18OuY8yJxv_K98mW4_5JZ8OG-Ije-ObT2xj5G7g0ZQ_sz_9zduEJhYNBh4-GzCqbnCobWOHHD_38-Xt3PJj6IDT2qFrtuHTm2t8eff3lh9iGHQchzCT5GdHUw6N48eXsy_s4uTX7Oh3EtkWElso2SU6tWWovJQqzb0TQUEAH7SStlSlcDLInK5bSkht5WuoXSqsC66SIWCOJmzxla01KPEW46K0DoS1GionaqVrpyqXF97nIdPO6gnbG7-_uRtANQz-jJCSzLOSJuyQNPO8gHCw-4FFe22iWZk0c5kOdHToMTXSaY1PFyiX9aBA-HzC9kmvhqy1a8FCvHSAchLulZkqCseyECjTzspKtDK7Oj2q3UQrX5oXnW-_Pv2NfciJN7gv3eywta598LvsvX3s5sv2e79pnwCkaPaG
  priority: 102
  providerName: ProQuest
Title Multi-Component Temporal-Correlation Seismic Data Compression Algorithm Based on the PCA and DWT
URI https://www.proquest.com/docview/3159222884
https://doaj.org/article/01d19f3047e74190b18034cdcea8a4e2
Volume 18
WOSCitedRecordID wos001403984200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQy4ELb8RCu7IQEqeoTmIn9nG33QqEWEV0EeUUJn6UldoUZUOP_e3MxNmKPSAuXHwYO9JoJvOwPf6GsbfCp0oHgCRgspxIECFpGl9QFSEUuWyyzMdmE-Vyqc_PTfVHqy-qCYvwwFFwRyJ1qQl0OeQx-BnRpFrk0jrrQYP0g_cVpdlupqIPLpQp0ogjlOOm_gjwo5Talu1EnwGk_2-ueIgvp4_ZwzEx5LPI0BN2z7dP2aNt0wU-2uAz9n14MpvQxHWLEYOvIrjUJZK6bixt42d-vblaW34CPXBaG8tdWz67vLju1v2PKz7H-OU4kjAF5NXxjEPr-MnX1XP25XSxOn6fjG0SEptr1SdG2CKUXiktMu9k0BDAB6OVLXQhnQoqo3eSCoQtfQONEyi-4EoVAiZX0uYv2F6LHL9kXBbWgbTWQOlko03jdOmy3PsspMZZM2FvtuKrf0Y0jBp3ESTj-k7GEzYnwd4tIADrgYBqrUe11v9S64S9I7XUZGZ9BxbG1wLIJwFW1TNNcVTlEnk62FmJ5mF3p7eKrUfz3NQ5JnF09KXlq__B7Gv2IKO2wMPJzAHb67tf_pDdtzf9etNN2f58saw-T4c_FMePZTKlEtMzGm8XOF99-FR9-w1pRu5K
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYJLy6tiSwELgThFTfxI7ANC2y5Vqy2rSiyiN9fxo6zU7pZsAPGn-I3M5FG0B7j1wNV2okn8-ZuxPQ9CXqUhkypam0QwlhNh05iUZcjRi9DmXJSMhbbYRDGZqNNTfbJGfvWxMOhW2XNiQ9R-4fCMfJeD3sXTCiXeXX1NsGoU3q72JTRaWIzDzx-wZVu-PRrB_L5m7OD9dP8w6aoKJI4rWSc6dXksgpQqZcGLqGy0IWolXa5y4WWUDMMKpU1dEUpb-lQ4H30hYwRbRDgO771FbguuClxX4yLpmT-XOs_a7EWc63TXZkD_WCxtRec1pQH-pgAarXaw-b_9j_tko7Of6bAF_AOyFuYPyWZfm4J2VPWInDWRxQl2LOagWOm0zcF1AU1V1XkA0o9htrycOTqytaU4tvUKntPhxTl8bP3lku6BmvcUmsBSpif7Q2rnno4-Tx-TTzfynVtkfQ4SPyFU5M5b4Zy2hRel0qVXhWc8BBYz7Z0ekJf9fJurNmmIgc0WgsJcg2JA9hAJ1wMwz3fTsKjOTUcbJs18piNejQYw_XRawtMc5HLBKisCG5A3iCODbFRX1tkuqALkxLxeZqjQ3JBcgEw7KyOBRdxqdw8z07HY0vzB2Pa_u1-Qu4fTD8fm-GgyfkruMayR3BxT7ZD1uvoWnpE77ns9W1bPmwVDydlNI_I3TcpVeA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJcWl4VWwpYCMQp2sSxE_uA0LbLilVhFYlFlFPq-FFWarMlG0D8NX4d4zyK9gC3HrjaTjSJP898tucB8Dy0ERdOqcAhWQ6YCl1QFDbxXoQqiVlBqW2LTaTzuTg5kdkW_OpjYbxbZa8TG0VtVtqfkY9itLv-tEKwkevcIrLJ9PXl18BXkPI3rX05jRYix_bnD9y-rV_NJjjXLyidvlkcvQ26CgOBjgWvAxnqxKWWcxFSa5gTyinrpOA6EQkz3HHqQwy5CnVqC1WYkGnjTMqdQ17CdIzvvQHbSMkZHcB2Nnuffe7tQMJlErW5jOJYhiMVoTHwpdM2LGBTKOBv5qCxcdPd__nv3IGdjlmTcbsU7sKWLe_Bbl-1gnRK7D6cNjHHge9YlWhyyaLNznWOTVXV-QaSD3a5vlhqMlG1In5s6y9ckvH5GX5s_eWCHCIBMASbkEOT7GhMVGnI5NPiAXy8lu_cg0GJEj8EwhJtFNNaqtSwQsjCiNTQ2FrqImm0HMKzfu7zyzadSI7bMA-Q_AogQzj0qLga4DOANw2r6izvFEoeRiaSzl-aWiSFMizw6Rjl0lYJxSwdwkuPqdzrqbpSWnXhFiinz_iVj4UnIjxmKNPBxkjUL3qzu4dc3um3df4Hb_v_7n4KtxCI-bvZ_PgR3Ka-eHJzfnUAg7r6Zh_DTf29Xq6rJ93qIXB63ZD8DQRoX_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Component+Temporal-Correlation+Seismic+Data+Compression+Algorithm+Based+on+the+PCA+and+DWT&rft.jtitle=Algorithms&rft.au=Mateus+Martinez+de+Lucena&rft.au=Josafat+Leal+Ribeiro&rft.au=Matheus+Wagner&rft.au=Ant%C3%B4nio+Augusto+Fr%C3%B6hlich&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=1&rft.spage=33&rft_id=info:doi/10.3390%2Fa18010033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_01d19f3047e74190b18034cdcea8a4e2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon