Multi-Component Temporal-Correlation Seismic Data Compression Algorithm Based on the PCA and DWT
Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in enormous datasets, often exceeding terabytes of data. The storage and communication demands these data require can only be achieved through compres...
Uloženo v:
| Vydáno v: | Algorithms Ročník 18; číslo 1; s. 33 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2025
|
| Témata: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in enormous datasets, often exceeding terabytes of data. The storage and communication demands these data require can only be achieved through compression. Careful consideration must be given to minimize the reconstruction error of compressed data caused by lossy compression. This paper investigates the combination of principal component analysis (PCA), discrete wavelet transform (DWT), thresholding, quantization, and entropy encoding to compress such datasets. The proposed method is a lossy compression algorithm tuned by evaluating the reconstruction error in frequency ranges of interest, namely 0–20 Hz and 15–65 Hz. The PCA compression and decompression acts as a noise filter while the DWT drives the compression. The proposed method can be tuned through threshold and quantization percentages and the number of principal components to achieve compression rates of up to 31:1 with reconstruction residues energy of less than 4% in the frequency ranges of 0–20 Hz, 15–65 Hz, and 60–105 Hz. |
|---|---|
| AbstractList | Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in enormous datasets, often exceeding terabytes of data. The storage and communication demands these data require can only be achieved through compression. Careful consideration must be given to minimize the reconstruction error of compressed data caused by lossy compression. This paper investigates the combination of principal component analysis (PCA), discrete wavelet transform (DWT), thresholding, quantization, and entropy encoding to compress such datasets. The proposed method is a lossy compression algorithm tuned by evaluating the reconstruction error in frequency ranges of interest, namely 0–20 Hz and 15–65 Hz. The PCA compression and decompression acts as a noise filter while the DWT drives the compression. The proposed method can be tuned through threshold and quantization percentages and the number of principal components to achieve compression rates of up to 31:1 with reconstruction residues energy of less than 4% in the frequency ranges of 0–20 Hz, 15–65 Hz, and 60–105 Hz. |
| Audience | Academic |
| Author | Wagner, Matheus Ribeiro, Josafat Leal Lucena, Mateus Martinez de Fröhlich, Antônio Augusto |
| Author_xml | – sequence: 1 givenname: Mateus Martinez de orcidid: 0000-0002-8315-689X surname: Lucena fullname: Lucena, Mateus Martinez de – sequence: 2 givenname: Josafat Leal orcidid: 0009-0008-6563-0050 surname: Ribeiro fullname: Ribeiro, Josafat Leal – sequence: 3 givenname: Matheus orcidid: 0000-0003-3985-0451 surname: Wagner fullname: Wagner, Matheus – sequence: 4 givenname: Antônio Augusto orcidid: 0000-0002-4063-1339 surname: Fröhlich fullname: Fröhlich, Antônio Augusto |
| BookMark | eNptkUFvEzEQhVeolWgLB_6BJU4ctrXX9q59DCktlYqoRBBHM7HHqaPddbCdA_8eh1QFJOSDR89vPo3fnDcnc5yxad4wesm5plfAFGWUcv6iOWNa61YozU_-ql825zlvKe2l7tlZ8_3TfiyhXcZpV0FzISusVYKxSinhCCXEmXzBkKdgyTUUIAdvwpwPD4txE1MojxN5DxkdqVJ5RPKwXBCYHbn-tnrVnHoYM75-ui-arzcfVsuP7f3n27vl4r61XMnSamp7P6CUinbohFfgAb1W0vaqF0562fWdkhKoHXANa0eFdd4N0ntGpbD8ork7cl2ErdmlMEH6aSIE81uIaWMglWBHNJQ5pj2nYsBBME3XNTNecRZBgcCust4eWbsUf-wxF7ON-zTX8Q1nUnddp5T449pAhYbZx5LATiFbs1Cd1lRyoavr8j-uehzWRGvmPlT9n4Z3xwabYs4J_fNnGDWHHZvnHfNfn2mYHw |
| Cites_doi | 10.1109/ACCESS.2020.3003682 10.1016/B978-012620861-0/50020-6 10.1016/j.petlm.2018.11.001 10.17487/rfc1951 10.1109/BigData.2018.8622520 10.1109/IEEEGCC.2017.8448168 10.1109/30.125072 10.17230/ingciencia.11.21.11 10.1109/TGRS.2018.2789354 10.1109/ICCA59364.2023.10401790 10.1190/sbgf2013-188 10.1017/CBO9780511804441 10.1109/PEMWA.2009.5208325 10.1109/TPAMI.2013.50 10.1016/j.jappgeo.2016.03.033 10.1109/TIE.2014.2327917 10.1109/ICDE51399.2021.00145 10.1190/1.3255623 10.1137/18M1168832 10.1007/s12517-021-08675-y 10.1109/TBDATA.2022.3201176 10.1109/MSP.2017.2784458 10.1109/TVCG.2014.2346458 10.1190/1.9781560803447 10.1088/1742-2132/13/2/135 10.20944/preprints202308.0165.v1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/a18010033 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_01d19f3047e74190b18034cdcea8a4e2 A829905349 10_3390_a18010033 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c385t-90c6f7e55802ed4f8afaef985c6864d5f5262855a0c7ebabd04cdfd75ff1054c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403984200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:53:02 EDT 2025 Fri Jul 25 11:52:44 EDT 2025 Tue Nov 11 10:52:34 EST 2025 Tue Nov 04 18:13:52 EST 2025 Sat Nov 29 07:20:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-90c6f7e55802ed4f8afaef985c6864d5f5262855a0c7ebabd04cdfd75ff1054c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3985-0451 0000-0002-4063-1339 0009-0008-6563-0050 0000-0002-8315-689X |
| OpenAccessLink | https://doaj.org/article/01d19f3047e74190b18034cdcea8a4e2 |
| PQID | 3159222884 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_01d19f3047e74190b18034cdcea8a4e2 proquest_journals_3159222884 gale_infotracmisc_A829905349 gale_infotracacademiconefile_A829905349 crossref_primary_10_3390_a18010033 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xiong (ref_12) 2020; 8 Liang (ref_29) 2023; 9 ref_14 ref_13 Liu (ref_18) 2018; 56 Liu (ref_17) 2016; 13 ref_31 ref_30 ref_19 Mohammadpoor (ref_5) 2020; 6 ref_16 Diffenderfer (ref_28) 2019; 41 Lindstrom (ref_27) 2014; 20 Payani (ref_4) 2018; 35 ref_25 Javed (ref_3) 2015; 62 ref_24 ref_23 ref_21 Nuha (ref_11) 2021; 14 ref_20 ref_1 ref_2 Bengio (ref_22) 2013; 35 Wallace (ref_8) 1992; 38 Fajardo (ref_6) 2015; 11 ref_26 ref_9 Gan (ref_15) 2016; 130 ref_7 Sze (ref_10) 2014; Volume 39 |
| References_xml | – volume: 8 start-page: 114443 year: 2020 ident: ref_12 article-title: High Bit-Depth Seismic Data Compression: A Novel Codec Under the Framework of HEVC publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003682 – ident: ref_9 – ident: ref_24 doi: 10.1016/B978-012620861-0/50020-6 – volume: 6 start-page: 321 year: 2020 ident: ref_5 article-title: Big Data analytics in oil and gas industry: An emerging trend publication-title: Petroleum doi: 10.1016/j.petlm.2018.11.001 – ident: ref_25 doi: 10.17487/rfc1951 – ident: ref_31 doi: 10.1109/BigData.2018.8622520 – ident: ref_7 doi: 10.1109/IEEEGCC.2017.8448168 – volume: 38 start-page: xviii year: 1992 ident: ref_8 article-title: The JPEG still picture compression standard publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/30.125072 – volume: Volume 39 start-page: 40 year: 2014 ident: ref_10 article-title: High efficiency video coding (HEVC) publication-title: Integrated Circuit and Systems, Algorithms and Architectures – ident: ref_14 – volume: 11 start-page: 221 year: 2015 ident: ref_6 article-title: Seismic Data Compression Using 2D Lifting-Wavelet Algorithms publication-title: Ingeniería Cienc. doi: 10.17230/ingciencia.11.21.11 – ident: ref_21 – volume: 56 start-page: 3020 year: 2018 ident: ref_18 article-title: A Distributed Principal Component Analysis Compression for Smart Seismic Acquisition Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2789354 – ident: ref_20 doi: 10.1109/ICCA59364.2023.10401790 – ident: ref_26 doi: 10.1190/sbgf2013-188 – ident: ref_23 doi: 10.1017/CBO9780511804441 – ident: ref_2 doi: 10.1109/PEMWA.2009.5208325 – volume: 35 start-page: 1798 year: 2013 ident: ref_22 article-title: Representation Learning: A Review and New Perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 130 start-page: 194 year: 2016 ident: ref_15 article-title: Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2016.03.033 – volume: 62 start-page: 647 year: 2015 ident: ref_3 article-title: Enabling Health Monitoring Approach Based on Vibration Data for Accurate Prognostics publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2327917 – ident: ref_30 doi: 10.1109/ICDE51399.2021.00145 – ident: ref_16 doi: 10.1190/1.3255623 – volume: 41 start-page: A1867 year: 2019 ident: ref_28 article-title: Error Analysis of ZFP Compression for Floating-Point Data publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1168832 – ident: ref_13 – volume: 14 start-page: 2542 year: 2021 ident: ref_11 article-title: Seismic data modeling and compression using particle swarm optimization publication-title: Arab. J. Geosci. doi: 10.1007/s12517-021-08675-y – volume: 9 start-page: 485 year: 2023 ident: ref_29 article-title: SZ3: A Modular Framework for Composing Prediction-Based Error-Bounded Lossy Compressors publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2022.3201176 – volume: 35 start-page: 51 year: 2018 ident: ref_4 article-title: Advances in seismic data compression via learning from data: Compression for seismic data acquisition publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2784458 – volume: 20 start-page: 2674 year: 2014 ident: ref_27 article-title: Fixed-Rate Compressed Floating-Point Arrays publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2014.2346458 – ident: ref_1 doi: 10.1190/1.9781560803447 – volume: 13 start-page: 135 year: 2016 ident: ref_17 article-title: An effective approach to attenuate random noise based on compressive sensing and curvelet transform publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/13/2/135 – ident: ref_19 doi: 10.20944/preprints202308.0165.v1 |
| SSID | ssj0065961 |
| Score | 2.3259952 |
| Snippet | Industrial application data acquisition systems can be sources of vast amounts of data. The seismic surveys conducted by oil and gas companies result in... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 33 |
| SubjectTerms | Algorithms Case studies Compressed gas compression algorithms Data acquisition Data compression Datasets Decomposition Discrete Wavelet Transform Eigenvalues Entropy Error analysis Frequency ranges Industrial applications Information storage and retrieval Machine learning Noise threshold Performance evaluation principal component analysis Principal components analysis Reconstruction Seismic surveys Time series Wavelet analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCKQ9124IshMQpahLHiX2qti1VT1WlLqI3M_GjrNRmSzbw-zvjOEV7gAtXP2Qr43lkPP4-xj4F4aWrZZmB95IozJoMpMuzMkADvm58Y0Mkm2guLtT1tb5MCbd1KqucbGI01G5lKUd-KNDvUrZCVUf3PzNijaLb1USh8ZQ9I5SEIpbuXU2WuJa6LkY0IYG_9odQoDkm8rINHxSh-v9mkKOXOdv-3_29Yi9TfMnn44HYYU9895ptT9wNPKnyG_Y9vrzNqGPVoePhixGj6hab-j5VyPErv1zfLS0_hQE4jR2rZjs-v73BxYcfd_wY3aDj2ISRJL88mXPoHD_9tnjLvp59WZycZ4ltIbNCySHTua1D46VUeeldFRQE8EEraWtVV04GWdJzSwm5bXwLrcsr64JrZAgYo1VWvGNbHe54l3GRO-G1rsoWAzRRt0oU0GIcJIL1OEnM2Mfp-5v7EVTD4M8ICck8CmnGjkkyjwMIBzs2rPobk9TK5IUrdKCrQ4-hkc5bnC1wCetBQeXLGftMcjWkrUMPFtKjA9wn4V6ZuSJ3LEWlZ-xgYyRqmd3snsRukpavzR-Z7_27e5-9KIk3OKZuDtjW0P_y79lz-3tYrvsP8dA-AB5s9g0 priority: 102 providerName: ProQuest |
| Title | Multi-Component Temporal-Correlation Seismic Data Compression Algorithm Based on the PCA and DWT |
| URI | https://www.proquest.com/docview/3159222884 https://doaj.org/article/01d19f3047e74190b18034cdcea8a4e2 |
| Volume | 18 |
| WOSCitedRecordID | wos001403984200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq6KGXFvpQl8LKqir1FOHEcWwfd2FREeoqKluVnlzHD1gJQpVNOfLbmUmyiD1UvfTigx_SaCbjGTvj7yPkU-RB-EJkiQ1BIIWZTKzwLMmilTYUMkgXO7IJOZ-riwtdPqH6wpqwHh64V9whS32qI_4cChD8NKtSxXjuvAtW2Tx0uy-Ten2Y6vfgQugi7XGEOBzqDy0sSpG2bCP6dCD9f9uKu_hyskNeDokhnfQC7ZJnoX5NXq1JF-jgg2_Ir-7JbIIDtzVEDLrowaWuoatphtI2eh6Wq5ulo8e2tRTn9uWuNZ1cX942y_bqhk4hfnkKXZAC0vJoQm3t6fGPxVvy_WS2OPqSDDQJieNKtIlmrogyCKFYFnwelY02RK2EK1SRexFFhu8khWVOhspWnoH6opciRkiucsffka0aJH5PKGeeB63zrILMiheV4qmtIIHh0QVYxEfk41p95nePhmHgFIE6No86HpEpKvZxAgJYdx1gVjOY1fzLrCPyGc1i0M3axjo7vBYAORGwykwUxlHBcz0i-xszwT3c5vDasGZwz5XhkMTh1ZfK9_6HsB_IiwxpgbubmX2y1TZ_wgF57u7a5aoZk-3pbF5-G3dfKLRnMhljiek5tvczGC9Pv5Y_HwCa7e3R |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXllfFlgIWAnGKmsRxbB8Q2napWm1ZVWIRvaWOH2WldrdkA4g_xW9kJo-iPcCtB65-JHH8-Zvxaz6AV4F74XKRRsZ7QRJmMjLCxVEajDQ-l17a0IhNyMlEnZ7qkzX41d-FoWOVPSc2RO0WltbIdznaXVqtUNm7q68RqUbR7movodHCYux__sAp2_Lt0Qj793WaHryf7h9GnapAZLkSdaRjmwfphVBx6l0WlAnGB62EzVWeORFEStcKhYmt9KUpXZxZF5wUIaAvklmOz70FtzOuJI2rsYx65s-FzpM2ehHnOt41CdI_iaWt2LxGGuBvBqCxageb_9v_uA8bnf_Mhi3gH8Canz-EzV6bgnVU9QjOmpvFEWUs5mhY2bSNwXWBSVXVnQBkH_1seTmzbGRqw6hseyp4zoYX59jY-ssl20Mz7xgmoafMTvaHzMwdG32ePoZPN9LOLVif4xc_AcZjx73WWVqiA8rzUvHElOjn8WA9VuIDeNn3d3HVBg0pcLJFoCiuQTGAPULCdQGK890kLKrzoqONIk5cogNtjXp0_XRcYm2Or7DeKJP5dABvCEcFsVFdGWu6SxX4nRTXqxgqcjcEz_QAdlZKIovY1eweZkXHYsviD8a2_539Au4eTj8cF8dHk_FTuJeSRnKzTLUD63X1zT-DO_Z7PVtWz5sBw-DsphH5GwwXVP8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4TYtLwqphSwEIhVNIkdJ_ECoWmHEaPCKBKDKCvX8aOM1GZKJoD4Nb6O6zyKZgG7Ltj6kcTx8b3Hr3sAnjtmuUk4DZS13EuYpYHiJgyoU6mySWpT7RqxiXQ-z05ORL4Fv_q7MP5YZW8TG0NtVtqvkY8Y-l2_WpHFI9cdi8gn09eXXwOvIOV3Wns5jRYix_bnD5y-rV_NJtjXLyidvlkcvQ06hYFAs4zXgQh14lLLeRZSa2KXKaesExnXSZbEhjtO_RVDrkKd2kIVJoy1cSblziEviTXD596AbaTkMR3Adj57n3_u_UDCRRK1sYwYE-FIRegMvHTahgdshAL-5g4aHzfd_Z__zh3Y6Zg1GbdD4S5s2fIe7PaqFaQzYvfhtLlzHPiMVYkulyza6FznmFRV3dlA8sEu1xdLTSaqVsSXbc8Ll2R8foaNrb9ckEMkAIZgEnJokh-NiSoNmXxaPICP19LOPRiU-MUPgbDQMCtETAukpiwpMhapAhkgc9piJTaEZ33fy8s2nIjEaZgHiLwCyBAOPSquCvgI4E3CqjqTnUGRYWQi4fymqUVSKMICazN8hbYqU7GlQ3jpMSW9naorpVV33QK_00f8kuPMExHOYjGEg42SaF_0ZnYPOdnZt7X8g7f9f2c_hVsIRPluNj9-BLepF09u1q8OYFBX3-xjuKm_18t19aQbPQROrxuSvwHQMV-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Component+Temporal-Correlation+Seismic+Data+Compression+Algorithm+Based+on+the+PCA+and+DWT&rft.jtitle=Algorithms&rft.au=Lucena%2C+Mateus+Martinez+de&rft.au=Ribeiro%2C+Josafat+Leal&rft.au=Wagner%2C+Matheus&rft.au=Fr%C3%B6hlich%2C+Ant%C3%B4nio+Augusto&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=18&rft.issue=1&rft_id=info:doi/10.3390%2Fa18010033&rft.externalDocID=A829905349 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |