Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory

We review and compare several representative and effective randomized projection iteration methods, including the randomized Kaczmarz method, the randomized coordinate descent method, and their modifications and extensions, for solving the large, sparse, consistent or inconsistent systems of linear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Japan journal of industrial and applied mathematics Ročník 40; číslo 3; s. 1421 - 1443
Hlavní autoři: Bai, Zhong-Zhi, Wu, Wen-Ting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.09.2023
Springer Nature B.V
Témata:
ISSN:0916-7005, 1868-937X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We review and compare several representative and effective randomized projection iteration methods, including the randomized Kaczmarz method, the randomized coordinate descent method, and their modifications and extensions, for solving the large, sparse, consistent or inconsistent systems of linear equations. We also anatomize, extract, and purify the asymptotic convergence theories of these iteration methods, and discuss, analyze, and summarize their advantages and disadvantages from the viewpoints of both theory and computations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0916-7005
1868-937X
DOI:10.1007/s13160-023-00586-7