Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory

We review and compare several representative and effective randomized projection iteration methods, including the randomized Kaczmarz method, the randomized coordinate descent method, and their modifications and extensions, for solving the large, sparse, consistent or inconsistent systems of linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics Jg. 40; H. 3; S. 1421 - 1443
Hauptverfasser: Bai, Zhong-Zhi, Wu, Wen-Ting
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Tokyo Springer Japan 01.09.2023
Springer Nature B.V
Schlagworte:
ISSN:0916-7005, 1868-937X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review and compare several representative and effective randomized projection iteration methods, including the randomized Kaczmarz method, the randomized coordinate descent method, and their modifications and extensions, for solving the large, sparse, consistent or inconsistent systems of linear equations. We also anatomize, extract, and purify the asymptotic convergence theories of these iteration methods, and discuss, analyze, and summarize their advantages and disadvantages from the viewpoints of both theory and computations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0916-7005
1868-937X
DOI:10.1007/s13160-023-00586-7