Best path in mountain environment based on parallel A algorithm and Apache Spark

Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or optimal path. Pathfinding problem deals with a large amount of data since it considers every point located in 2D or 3D scenes. The number of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 78; číslo 4; s. 5075 - 5094
Hlavní autoři: Alazzam, Hadeel, AbuAlghanam, Orieb, Sharieh, Ahmad
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or optimal path. Pathfinding problem deals with a large amount of data since it considers every point located in 2D or 3D scenes. The number of possibilities in such a problem is huge. Moreover, it depends on determining standards of best path definition. In this paper, we introduce a parallel A* algorithm to find the optimal path using Apache Spark. The proposed algorithm is evaluated in terms of runtime, speedup, efficiency, and cost on a generated dataset with different sizes (small, medium, and large). The generated dataset considers real terrain challenges, such as the slope and obstacles. Hadoop Insight cluster provided by Azure has been used to run the application. The proposed algorithm reached a speedup up to 4.85 running on six worker nodes.
AbstractList Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or optimal path. Pathfinding problem deals with a large amount of data since it considers every point located in 2D or 3D scenes. The number of possibilities in such a problem is huge. Moreover, it depends on determining standards of best path definition. In this paper, we introduce a parallel A* algorithm to find the optimal path using Apache Spark. The proposed algorithm is evaluated in terms of runtime, speedup, efficiency, and cost on a generated dataset with different sizes (small, medium, and large). The generated dataset considers real terrain challenges, such as the slope and obstacles. Hadoop Insight cluster provided by Azure has been used to run the application. The proposed algorithm reached a speedup up to 4.85 running on six worker nodes.
Author Alazzam, Hadeel
AbuAlghanam, Orieb
Sharieh, Ahmad
Author_xml – sequence: 1
  givenname: Hadeel
  orcidid: 0000-0002-6768-9696
  surname: Alazzam
  fullname: Alazzam, Hadeel
  email: hdy9160095@ju.edu.jo
  organization: Department of Computer Science, University of Jordan
– sequence: 2
  givenname: Orieb
  surname: AbuAlghanam
  fullname: AbuAlghanam, Orieb
  organization: Department of Networks and Information Security, Al-Ahliyya Amman University
– sequence: 3
  givenname: Ahmad
  surname: Sharieh
  fullname: Sharieh, Ahmad
  organization: Department of Information Technology, University of Jordan
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXldPkqZJL-fwCwYK6nVI23TrbJOZZIL_3mgFwYtd5eSc9zkf7wxNrLMGoXMClwRAXAVCKBUZUJJBDoJmcISmhAuWvjKfoCmUFDLJc3qCZiFsASBngk3R07UJEe903ODO4sHtbdQpMPaj884OxkZc6WAa7GxSed33pscLrPu1813cDFjbBi92ut4Y_JwEb6fouNV9MGe_7xy93t68LO-z1ePdw3KxymomecxkpaGUjZHQMl7RIjetKNqS0xwakhKmBWN4qrZCFERTWYqqBdlUDeWVKGo2Rxdj35137_t0hNq6vbdppKIFK3nCSp5UdFTV3oXgTat2vhu0_1QE1LdzanROJefUj3MKEiT_QXUXdeycjV53_WGUjWhIc-za-L-tDlBf2omECQ
CitedBy_id crossref_primary_10_32604_cmc_2023_038462
crossref_primary_10_3390_info12120517
crossref_primary_10_1007_s40747_023_01241_x
crossref_primary_10_1007_s11227_022_04395_6
crossref_primary_10_3390_app14010452
crossref_primary_10_3390_machines10050375
crossref_primary_10_3390_s24175643
crossref_primary_10_1109_ACCESS_2025_3579566
crossref_primary_10_2478_amns_2023_1_00397
crossref_primary_10_1109_ACCESS_2022_3233786
crossref_primary_10_1109_JSTARS_2022_3226527
Cites_doi 10.7763/IJCTE.2010.V2.178
10.1007/s11227-020-03150-z
10.1109/LRA.2020.3011912
10.1088/1757-899X/1086/1/012003
10.1109/SC41405.2020.00031
10.1016/j.compchemeng.2019.04.003
10.1016/S0004-3702(01)00108-4
10.1007/s13369-020-04437-2
10.1007/s11126-020-09859-7
10.14569/IJACSA.2020.0110913
10.1007/s13198-021-01186-9
10.1145/3184066.3184083
10.1002/cpe.4429
10.1093/mnras/stab2447
10.1109/VNIS.1994.396824
10.1007/s11227-020-03328-5
10.1109/TSSC.1968.300136
10.1109/TSSA.2017.8272918
10.1109/CEC.2015.7256934
10.1109/AIKE48582.2020.00041
10.1088/1757-899X/1111/1/012033
10.1007/s11227-020-03505-6
10.1109/ICTAI.2015.125
10.1109/CSCS.2019.00129
10.14569/IJACSA.2017.081225
10.1186/s40537-019-0240-1
10.1007/s11036-013-0489-0
10.1016/j.jpdc.2020.04.009
10.1109/TSMC.1983.6313112
10.1109/ACCESS.2020.2965579
10.1109/ACCESS.2021.3059221
10.1016/j.eswa.2009.12.023
10.1016/j.procs.2015.03.206
10.1006/inco.1996.0092
10.1007/11941439_114
10.1007/978-981-15-9927-9_33
10.1109/DATABIA50434.2020.9190342
10.1016/j.procs.2021.01.034
10.3390/s21072460
10.1007/s10586-019-02998-y
10.1007/s10846-014-0124-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-021-04072-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 5094
ExternalDocumentID 10_1007_s11227_021_04072_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c385t-8ba098de80f35b264ef76f95240d15b2ef0ee580ff7761a2897bf08dbd25b76c3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696141200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:51:22 EDT 2025
Tue Nov 18 21:22:03 EST 2025
Sat Nov 29 04:27:41 EST 2025
Fri Feb 21 02:47:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cluster
Parallel A algorithm
Apache Spark
Pathfinding problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-8ba098de80f35b264ef76f95240d15b2ef0ee580ff7761a2897bf08dbd25b76c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6768-9696
PQID 2639577695
PQPubID 2043774
PageCount 20
ParticipantIDs proquest_journals_2639577695
crossref_primary_10_1007_s11227_021_04072_0
crossref_citationtrail_10_1007_s11227_021_04072_0
springer_journals_10_1007_s11227_021_04072_0
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FoeadDGhifariAKusumaMBHanafiahNGunawanEA systematic literature review of A* pathfindingProcedia Comput Sci202117950751410.1016/j.procs.2021.01.034
Spark A (2018) Apache spark
AlnafessahACasaleGArtificial neural networks based techniques for anomaly detection in apache sparkCluster Comput20202321345136010.1007/s10586-019-02998-y
MontielOSepúlvedaROrozco-RosasUOptimal path planning generation for mobile robots using parallel evolutionary artificial potential fieldJ Intell Robot Syst201579223725710.1007/s10846-014-0124-8
Phan T, Do P (2018) Improving the shortest path finding algorithm in apache spark graphx. In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, pp 67–71
WanLZhangGLiHLiCA novel bearing fault diagnosis method using spark-based parallel ACO-k-means clustering algorithmIEEE Access20219287532876810.1109/ACCESS.2021.3059221
LaneyD3d data management: controlling data volume, velocity and varietyMETA Group Res arch Note20016701
Goldberg AV, Harrelson C (2005) Computing the shortest path: a search meets graph theory. In: SODA, vol 5. Citeseer, pp 156–165
Ashish DS, Munjal S, Mani M, Srivastava S (2021) Path finding algorithms. In: Emerging technologies in data mining and information security. Springer, pp 331–338
MezzoudjSBehloulASeghirRSaadnaYA parallel content-based image retrieval system using spark and tachyon frameworksJ King Saud Univ Comput Inf Sci2021332141149
RajitaBRanjanYUmeshCTPandaSSpark-based parallel method for prediction of eventsArab J Sci Eng20204543437345310.1007/s13369-020-04437-2
Stan C-S, Pandelica A-E, Zamfir V-A, Stan R-G,  Negru C (2019) Apache spark and apache ignite performance analysis. In: 2019 22nd International Conference on Control Systems and Computer Science (CSCS). IEEE, pp 726–733
Kang M, Lee J-G (2020) Effect of garbage collection in iterative algorithms on spark: an experimental analysis. J Supercomput, pp 1–15
Garling CT, Peter AH, Kochanek CS, Sand DJ, Crnojević D (2021) A search for satellite galaxies of nearby star-forming galaxies with resolved stars in lbt-song. arXiv preprint arXiv:2105.01082
Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation. In: Australasian Joint Conference on Artificial Intelligence. Springer, pp 1015–1021
Salzman O, Stern R, (2020) Research challenges and opportunities in multi-agent path finding and multi-agent pickup and delivery problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp 1711–1715
MathewGEDirection based heuristic for pathfinding in video gamesProcedia Comput Sci20154726227110.1016/j.procs.2015.03.206
AlazzamHShariehAParallel DNA sequence approximate matching with multi-length sequence aware approachInt J Comput Appl20189758887
MandloiDAryaRVermaAKUnmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environmentInt J Syst Assur Eng Manag20211211110.1007/s13198-021-01186-9
Yao Y, Ni Q, Lv Q, Huang K (2015) A novel heterogeneous feature ant colony optimization and its application on robot path planning. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 522–528
MalatheshBCIbrahimFANirishaPLKumarCNChandPKManjunathaNMathSBThirthalliJManjappaAAParthasarathyREmbracing technology for capacity building in mental health: new path, newer challengesPsychiatric Q202192384385010.1007/s11126-020-09859-7
NosratiMKarimiRHasanvandHAInvestigation of the*(star) search algorithms: characteristics, methods and approachesWorld Appl Program201224251256
AzizKZaidouniDBellafkihMLeveraging resource management for efficient performance of apache sparkJ Big Data20196112310.1186/s40537-019-0240-1
ZhangYAzadABuluçAParallel algorithms for finding connected components using linear algebraJ Parallel Distrib Comput2020144142710.1016/j.jpdc.2020.04.009
KaoM-YReifJHTateSRSearching in an unknown environment: an optimal randomized algorithm for the cow-path problemInf Comput199613116379142581510.1006/inco.1996.0092
BrooksRASolving the find-path problem by good representation of free spaceIEEE Trans Syst Man Cybern1983219019771169310.1109/TSMC.1983.6313112
Candra A, Budiman MA, Hartanto K (2020) Dijkstra’s and a-star in finding the shortest path: a tutorial. In: 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). IEEE, pp 28–32
QinSJChiangLHAdvances and opportunities in machine learning for process data analyticsComput Chem Eng201912646547310.1016/j.compchemeng.2019.04.003
ChenMMaoSLiuYBig data: a surveyMobile Netw Appl201419217120910.1007/s11036-013-0489-0
Yang C-T, Chen T-Y, Kristiani E, Wu SF (2020) The implementation of data storage and analytics platform for big data lake of electricity usage with spark. J Supercomput, pp 1–26
WangZZhaoYLiuYLvCA speculative parallel simulated annealing algorithm based on apache sparkConcurr Comput Pract Exp20183014e442910.1002/cpe.4429
Zhigalov K, Bataev DK, Klochkova E, Svirbutovich O, Ivashchenko G (2021) Problem solution of optimal pathfinding for the movement of vehicles over rough mountainous areas. In: IOP Conference Series: Materials Science and Engineering, vol 1111. IOP Publishing, p 012033
AbuAlghanam O, Qatawneh M, Al Ofeishat HA, Adwan O, Huneiti A (2017) A new parallel matrix multiplication algorithm on tree-hypercube network using iman1 supercomputer. Int J Adv Comput Sci Appl 8(12):201–205
JiangXLinZHeTMaXMaSLiSOptimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategiesIEEE Access20208154591547110.1109/ACCESS.2020.2965579
HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans Syst Sci Cybern19684210010710.1109/TSSC.1968.300136
Mostafaeipour A, Jahangard Rafsanjani A, Ahmadi M, Arockia Dhanraj J, (2020) Investigating the performance of hadoop and spark platforms on machine learning algorithms. J Supercomput, pp 1–28
Sazaki Y, Satria H, Syahroyni M (2017) Comparison of A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}- and dynamic pathfinding algorithm with dynamic pathfinding algorithm for NPC on car racing game. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA). IEEE, pp 1–6
Masadeh R, Sharieh A, Jamal S, Qasem MH, Alsaaidah B (2020) Best path in mountain environment based on parallel hill climbing algorithm. Int J Adv Comput Sci Appl 11(9)
MocholiJAJaenJCatalaANavarroEAn emotionally biased ant colony algorithm for pathfinding in gamesExp Syst Appl20103774921492710.1016/j.eswa.2009.12.023
Besta M, Schneider M, Konieczny M, Cynk K, Henriksson E, Di Girolamo S, Singla A, Hoefler T (2020) Fatpaths: routing in supercomputers and data centers when shortest paths fall short. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 1–18
GrenouilleauFvan HoeveW-JHookerJNA multi-label A* algorithm for multi-agent pathfindingProc Int Conf Autom Plan Schedul201929181185
RishiwalVYadavMAryaKFinding optimal paths on terrain maps using ant colony algorithmInt J Comput Theory Eng20102341610.7763/IJCTE.2010.V2.178
Jong D, Kwon I, Goo D, Lee D (2015) Safe pathfinding using abstract hierarchical graph and influence map. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, pp 860–865
Sinodkin A, Evdokimova T, Tiurikov M (2021) A method for constructing a global motion path and planning a route for a self-driving vehicle. In: IOP Conference Series: Materials Science and Engineering, vol 1086. IOP Publishing, p 012003
SataiHAZahraMMARasoolZIAbd-AliRSPruncuCIBézier curves-based optimal trajectory design for multirotor UAVs with any-angle pathfinding algorithmsSensors2021217246010.3390/s21072460
Ikeda T, Hsu M-Y, Imai H, Nishimura S, Shimoura H, Hashimoto T, Tenmoku K, Mitoh K (1994)A fast algorithm for finding better routes by AI search techniques. In: Proceedings of VNIS’94-1994 vehicle navigation and information systems conference. IEEE, pp 291–296
Yiu YF, Mahapatra R (2020) Multi-agent pathfinding with hierarchical evolutionary hueristic a. In: 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, pp 9–16
JosefSDeganiADeep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrainIEEE Robot Autom Lett2020546748675510.1109/LRA.2020.3011912
BonetBGeffnerHPlanning as heuristic searchArtif Intell20011291–2533183577110.1016/S0004-3702(01)00108-4
Liu X, Gong D (2011) A comparative study of a-star algorithms for search and rescue in perfect maze. In: 2011 International Conference on Electric Information and Control Engineering. IEEE, pp 24–27
B Rajita (4072_CR25) 2020; 45
GE Mathew (4072_CR17) 2015; 47
Z Wang (4072_CR38) 2018; 30
4072_CR6
4072_CR4
JA Mocholi (4072_CR36) 2010; 37
4072_CR1
4072_CR22
4072_CR26
S Josef (4072_CR31) 2020; 5
4072_CR29
4072_CR27
M Chen (4072_CR9) 2014; 19
K Aziz (4072_CR24) 2019; 6
H Alazzam (4072_CR5) 2018; 975
F Grenouilleau (4072_CR28) 2019; 29
M Nosrati (4072_CR44) 2012; 2
4072_CR32
4072_CR33
4072_CR30
RA Brooks (4072_CR15) 1983; 2
4072_CR37
D Foead (4072_CR13) 2021; 179
4072_CR39
L Wan (4072_CR23) 2021; 9
4072_CR40
HA Satai (4072_CR11) 2021; 21
4072_CR43
O Montiel (4072_CR34) 2015; 79
4072_CR41
4072_CR47
4072_CR48
4072_CR45
4072_CR49
A Alnafessah (4072_CR21) 2020; 23
BC Malathesh (4072_CR18) 2021; 92
PE Hart (4072_CR46) 1968; 4
S Mezzoudj (4072_CR8) 2021; 33
D Mandloi (4072_CR12) 2021; 12
4072_CR50
V Rishiwal (4072_CR35) 2010; 2
B Bonet (4072_CR16) 2001; 129
D Laney (4072_CR20) 2001; 6
SJ Qin (4072_CR42) 2019; 126
4072_CR10
X Jiang (4072_CR2) 2020; 8
4072_CR14
M-Y Kao (4072_CR3) 1996; 131
4072_CR19
Y Zhang (4072_CR7) 2020; 144
References_xml – reference: BonetBGeffnerHPlanning as heuristic searchArtif Intell20011291–2533183577110.1016/S0004-3702(01)00108-4
– reference: MathewGEDirection based heuristic for pathfinding in video gamesProcedia Comput Sci20154726227110.1016/j.procs.2015.03.206
– reference: Mostafaeipour A, Jahangard Rafsanjani A, Ahmadi M, Arockia Dhanraj J, (2020) Investigating the performance of hadoop and spark platforms on machine learning algorithms. J Supercomput, pp 1–28
– reference: ChenMMaoSLiuYBig data: a surveyMobile Netw Appl201419217120910.1007/s11036-013-0489-0
– reference: Jong D, Kwon I, Goo D, Lee D (2015) Safe pathfinding using abstract hierarchical graph and influence map. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, pp 860–865
– reference: WangZZhaoYLiuYLvCA speculative parallel simulated annealing algorithm based on apache sparkConcurr Comput Pract Exp20183014e442910.1002/cpe.4429
– reference: AbuAlghanam O, Qatawneh M, Al Ofeishat HA, Adwan O, Huneiti A (2017) A new parallel matrix multiplication algorithm on tree-hypercube network using iman1 supercomputer. Int J Adv Comput Sci Appl 8(12):201–205
– reference: Garling CT, Peter AH, Kochanek CS, Sand DJ, Crnojević D (2021) A search for satellite galaxies of nearby star-forming galaxies with resolved stars in lbt-song. arXiv preprint arXiv:2105.01082
– reference: AlazzamHShariehAParallel DNA sequence approximate matching with multi-length sequence aware approachInt J Comput Appl20189758887
– reference: ZhangYAzadABuluçAParallel algorithms for finding connected components using linear algebraJ Parallel Distrib Comput2020144142710.1016/j.jpdc.2020.04.009
– reference: Ashish DS, Munjal S, Mani M, Srivastava S (2021) Path finding algorithms. In: Emerging technologies in data mining and information security. Springer, pp 331–338
– reference: RajitaBRanjanYUmeshCTPandaSSpark-based parallel method for prediction of eventsArab J Sci Eng20204543437345310.1007/s13369-020-04437-2
– reference: MandloiDAryaRVermaAKUnmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environmentInt J Syst Assur Eng Manag20211211110.1007/s13198-021-01186-9
– reference: Salzman O, Stern R, (2020) Research challenges and opportunities in multi-agent path finding and multi-agent pickup and delivery problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp 1711–1715
– reference: MezzoudjSBehloulASeghirRSaadnaYA parallel content-based image retrieval system using spark and tachyon frameworksJ King Saud Univ Comput Inf Sci2021332141149
– reference: QinSJChiangLHAdvances and opportunities in machine learning for process data analyticsComput Chem Eng201912646547310.1016/j.compchemeng.2019.04.003
– reference: Stan C-S, Pandelica A-E, Zamfir V-A, Stan R-G,  Negru C (2019) Apache spark and apache ignite performance analysis. In: 2019 22nd International Conference on Control Systems and Computer Science (CSCS). IEEE, pp 726–733
– reference: Sinodkin A, Evdokimova T, Tiurikov M (2021) A method for constructing a global motion path and planning a route for a self-driving vehicle. In: IOP Conference Series: Materials Science and Engineering, vol 1086. IOP Publishing, p 012003
– reference: Spark A (2018) Apache spark
– reference: Yiu YF, Mahapatra R (2020) Multi-agent pathfinding with hierarchical evolutionary hueristic a. In: 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, pp 9–16
– reference: JosefSDeganiADeep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrainIEEE Robot Autom Lett2020546748675510.1109/LRA.2020.3011912
– reference: MocholiJAJaenJCatalaANavarroEAn emotionally biased ant colony algorithm for pathfinding in gamesExp Syst Appl20103774921492710.1016/j.eswa.2009.12.023
– reference: LaneyD3d data management: controlling data volume, velocity and varietyMETA Group Res arch Note20016701
– reference: Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation. In: Australasian Joint Conference on Artificial Intelligence. Springer, pp 1015–1021
– reference: WanLZhangGLiHLiCA novel bearing fault diagnosis method using spark-based parallel ACO-k-means clustering algorithmIEEE Access20219287532876810.1109/ACCESS.2021.3059221
– reference: Sazaki Y, Satria H, Syahroyni M (2017) Comparison of A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}- and dynamic pathfinding algorithm with dynamic pathfinding algorithm for NPC on car racing game. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA). IEEE, pp 1–6
– reference: MontielOSepúlvedaROrozco-RosasUOptimal path planning generation for mobile robots using parallel evolutionary artificial potential fieldJ Intell Robot Syst201579223725710.1007/s10846-014-0124-8
– reference: NosratiMKarimiRHasanvandHAInvestigation of the*(star) search algorithms: characteristics, methods and approachesWorld Appl Program201224251256
– reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans Syst Sci Cybern19684210010710.1109/TSSC.1968.300136
– reference: Zhigalov K, Bataev DK, Klochkova E, Svirbutovich O, Ivashchenko G (2021) Problem solution of optimal pathfinding for the movement of vehicles over rough mountainous areas. In: IOP Conference Series: Materials Science and Engineering, vol 1111. IOP Publishing, p 012033
– reference: Besta M, Schneider M, Konieczny M, Cynk K, Henriksson E, Di Girolamo S, Singla A, Hoefler T (2020) Fatpaths: routing in supercomputers and data centers when shortest paths fall short. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 1–18
– reference: Candra A, Budiman MA, Hartanto K (2020) Dijkstra’s and a-star in finding the shortest path: a tutorial. In: 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). IEEE, pp 28–32
– reference: SataiHAZahraMMARasoolZIAbd-AliRSPruncuCIBézier curves-based optimal trajectory design for multirotor UAVs with any-angle pathfinding algorithmsSensors2021217246010.3390/s21072460
– reference: Phan T, Do P (2018) Improving the shortest path finding algorithm in apache spark graphx. In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, pp 67–71
– reference: RishiwalVYadavMAryaKFinding optimal paths on terrain maps using ant colony algorithmInt J Comput Theory Eng20102341610.7763/IJCTE.2010.V2.178
– reference: KaoM-YReifJHTateSRSearching in an unknown environment: an optimal randomized algorithm for the cow-path problemInf Comput199613116379142581510.1006/inco.1996.0092
– reference: BrooksRASolving the find-path problem by good representation of free spaceIEEE Trans Syst Man Cybern1983219019771169310.1109/TSMC.1983.6313112
– reference: Goldberg AV, Harrelson C (2005) Computing the shortest path: a search meets graph theory. In: SODA, vol 5. Citeseer, pp 156–165
– reference: AzizKZaidouniDBellafkihMLeveraging resource management for efficient performance of apache sparkJ Big Data20196112310.1186/s40537-019-0240-1
– reference: Yang C-T, Chen T-Y, Kristiani E, Wu SF (2020) The implementation of data storage and analytics platform for big data lake of electricity usage with spark. J Supercomput, pp 1–26
– reference: JiangXLinZHeTMaXMaSLiSOptimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategiesIEEE Access20208154591547110.1109/ACCESS.2020.2965579
– reference: MalatheshBCIbrahimFANirishaPLKumarCNChandPKManjunathaNMathSBThirthalliJManjappaAAParthasarathyREmbracing technology for capacity building in mental health: new path, newer challengesPsychiatric Q202192384385010.1007/s11126-020-09859-7
– reference: Masadeh R, Sharieh A, Jamal S, Qasem MH, Alsaaidah B (2020) Best path in mountain environment based on parallel hill climbing algorithm. Int J Adv Comput Sci Appl 11(9)
– reference: Liu X, Gong D (2011) A comparative study of a-star algorithms for search and rescue in perfect maze. In: 2011 International Conference on Electric Information and Control Engineering. IEEE, pp 24–27
– reference: AlnafessahACasaleGArtificial neural networks based techniques for anomaly detection in apache sparkCluster Comput20202321345136010.1007/s10586-019-02998-y
– reference: Kang M, Lee J-G (2020) Effect of garbage collection in iterative algorithms on spark: an experimental analysis. J Supercomput, pp 1–15
– reference: Yao Y, Ni Q, Lv Q, Huang K (2015) A novel heterogeneous feature ant colony optimization and its application on robot path planning. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 522–528
– reference: FoeadDGhifariAKusumaMBHanafiahNGunawanEA systematic literature review of A* pathfindingProcedia Comput Sci202117950751410.1016/j.procs.2021.01.034
– reference: GrenouilleauFvan HoeveW-JHookerJNA multi-label A* algorithm for multi-agent pathfindingProc Int Conf Autom Plan Schedul201929181185
– reference: Ikeda T, Hsu M-Y, Imai H, Nishimura S, Shimoura H, Hashimoto T, Tenmoku K, Mitoh K (1994)A fast algorithm for finding better routes by AI search techniques. In: Proceedings of VNIS’94-1994 vehicle navigation and information systems conference. IEEE, pp 291–296
– volume: 2
  start-page: 416
  issue: 3
  year: 2010
  ident: 4072_CR35
  publication-title: Int J Comput Theory Eng
  doi: 10.7763/IJCTE.2010.V2.178
– ident: 4072_CR41
  doi: 10.1007/s11227-020-03150-z
– volume: 5
  start-page: 6748
  issue: 4
  year: 2020
  ident: 4072_CR31
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.3011912
– ident: 4072_CR32
  doi: 10.1088/1757-899X/1086/1/012003
– ident: 4072_CR49
  doi: 10.1109/SC41405.2020.00031
– volume: 126
  start-page: 465
  year: 2019
  ident: 4072_CR42
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.04.003
– volume: 129
  start-page: 5
  issue: 1–2
  year: 2001
  ident: 4072_CR16
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(01)00108-4
– volume: 45
  start-page: 3437
  issue: 4
  year: 2020
  ident: 4072_CR25
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04437-2
– volume: 92
  start-page: 843
  issue: 3
  year: 2021
  ident: 4072_CR18
  publication-title: Psychiatric Q
  doi: 10.1007/s11126-020-09859-7
– ident: 4072_CR33
  doi: 10.14569/IJACSA.2020.0110913
– volume: 12
  start-page: 1
  year: 2021
  ident: 4072_CR12
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-021-01186-9
– ident: 4072_CR39
  doi: 10.1145/3184066.3184083
– volume: 30
  start-page: e4429
  issue: 14
  year: 2018
  ident: 4072_CR38
  publication-title: Concurr Comput Pract Exp
  doi: 10.1002/cpe.4429
– ident: 4072_CR45
  doi: 10.1093/mnras/stab2447
– ident: 4072_CR1
  doi: 10.1109/VNIS.1994.396824
– ident: 4072_CR26
  doi: 10.1007/s11227-020-03328-5
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 4072_CR46
  publication-title: IEEE Trans Syst Sci Cybern
  doi: 10.1109/TSSC.1968.300136
– ident: 4072_CR22
  doi: 10.1109/TSSA.2017.8272918
– volume: 975
  start-page: 8887
  year: 2018
  ident: 4072_CR5
  publication-title: Int J Comput Appl
– volume: 33
  start-page: 141
  issue: 2
  year: 2021
  ident: 4072_CR8
  publication-title: J King Saud Univ Comput Inf Sci
– ident: 4072_CR37
  doi: 10.1109/CEC.2015.7256934
– volume: 6
  start-page: 1
  issue: 70
  year: 2001
  ident: 4072_CR20
  publication-title: META Group Res arch Note
– ident: 4072_CR14
  doi: 10.1109/AIKE48582.2020.00041
– ident: 4072_CR30
  doi: 10.1088/1757-899X/1111/1/012033
– ident: 4072_CR40
  doi: 10.1007/s11227-020-03505-6
– ident: 4072_CR27
  doi: 10.1109/ICTAI.2015.125
– ident: 4072_CR50
  doi: 10.1109/CSCS.2019.00129
– ident: 4072_CR6
  doi: 10.14569/IJACSA.2017.081225
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 4072_CR24
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0240-1
– ident: 4072_CR4
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  ident: 4072_CR9
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-013-0489-0
– volume: 2
  start-page: 251
  issue: 4
  year: 2012
  ident: 4072_CR44
  publication-title: World Appl Program
– volume: 144
  start-page: 14
  year: 2020
  ident: 4072_CR7
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2020.04.009
– volume: 2
  start-page: 190
  year: 1983
  ident: 4072_CR15
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1983.6313112
– volume: 29
  start-page: 181
  year: 2019
  ident: 4072_CR28
  publication-title: Proc Int Conf Autom Plan Schedul
– volume: 8
  start-page: 15459
  year: 2020
  ident: 4072_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965579
– volume: 9
  start-page: 28753
  year: 2021
  ident: 4072_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059221
– volume: 37
  start-page: 4921
  issue: 7
  year: 2010
  ident: 4072_CR36
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2009.12.023
– ident: 4072_CR47
– volume: 47
  start-page: 262
  year: 2015
  ident: 4072_CR17
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.03.206
– volume: 131
  start-page: 63
  issue: 1
  year: 1996
  ident: 4072_CR3
  publication-title: Inf Comput
  doi: 10.1006/inco.1996.0092
– ident: 4072_CR43
  doi: 10.1007/11941439_114
– ident: 4072_CR10
  doi: 10.1007/978-981-15-9927-9_33
– ident: 4072_CR29
– ident: 4072_CR48
  doi: 10.1109/DATABIA50434.2020.9190342
– volume: 179
  start-page: 507
  year: 2021
  ident: 4072_CR13
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2021.01.034
– volume: 21
  start-page: 2460
  issue: 7
  year: 2021
  ident: 4072_CR11
  publication-title: Sensors
  doi: 10.3390/s21072460
– ident: 4072_CR19
– volume: 23
  start-page: 1345
  issue: 2
  year: 2020
  ident: 4072_CR21
  publication-title: Cluster Comput
  doi: 10.1007/s10586-019-02998-y
– volume: 79
  start-page: 237
  issue: 2
  year: 2015
  ident: 4072_CR34
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-014-0124-8
SSID ssj0004373
Score 2.3509507
Snippet Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5075
SubjectTerms Algorithms
Compilers
Computer Science
Datasets
Interpreters
Mountain environments
Processor Architectures
Programming Languages
Shortest-path problems
Virtual environments
Title Best path in mountain environment based on parallel A algorithm and Apache Spark
URI https://link.springer.com/article/10.1007/s11227-021-04072-0
https://www.proquest.com/docview/2639577695
Volume 78
WOSCitedRecordID wos000696141200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQ4cCFsopCQT5wA0vZvORYEBWnqqKAeoscL1CRplUb-H7GaUIAARLconiJNbbzxhq_eQid-Q71FKPEgjdPIhtJEgMKEMOoVVJZExlVik3wwUCMx_GwIoUt69vudUiy_FM3ZDc_CDhxVwo8l9WLwEF9HeBOOMGG29FDw4YMV3HlGA5GgkZBRZX5vo_PcNT4mF_CoiXa9Nv_G-c22qq8S9xbLYcdtGbyXdSulRtwtZH30PASPo-dGjGe5Hjq9CIkPHxgvWEHbxrPcuySg2eZgV6xzB5ni0nxNMUy17g3d8mg8QgqPO-j-_713dUNqbQViAoFLYhIJZhOG-HZkKbgFRnLmY0pALz24YWxnjEUSi3nzJcwkTy1ntCpDmjKmQoPUCuf5eYQYamlF0oTa8fqTUNfMsojCi1SJSLBog7yaxMnqko87vQvsqRJmexMloDJktJkiddB5-9t5qu0G7_W7tYzl1RbcJkEzIUgOYtpB13UM9UU_9zb0d-qH6PNwFEiyntpXdQqFi_mBG2o12KyXJyWS_MNjiPbJQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBX1xXnE6NQ--aaCX3Po4xTFRx3BT9lbSNNFh142t-vtNutaqqKBvpbk0nCT9Tjj5vgPAiWtRT1KCtPHmEdZYoMCgAFKUaCmkVljJPNkE63b5cBj0ClLYvLztXoYk8z91RXZzPY8he6XAsapeyBzUl7FBLKuYf9d_qNiQ_iKuHJiDESfYK6gy3_fxGY4qH_NLWDRHm3b9f-PcAOuFdwlbi-WwCZZUugXqZeYGWGzkbdA7N5-HNhsxHKVwbPNFCPPwgfUGLbzFcJJCKw6eJMr0CkXyOJmNsqcxFGkMW1MrBg37psLzDrhvXw4uOqjIrYCkz0mGeCScgMeKO9onkfGKlGZUB8QAfOyaF0o7ShFTqhmjrjATySLt8DiKPRIxKv1dUEsnqdoDUMTC8YUKYsvqjXxXUMIwMS0iyTGnuAHc0sShLITHbf6LJKwkk63JQmOyMDdZ6DTA6Xub6UJ249fazXLmwmILzkOP2hAkowFpgLNypqrin3vb_1v1Y7DaGdzehDdX3esDsOZZekR-R60JatnsRR2CFfmajeazo3yZvgHc0N4J
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd1XHnusj6IopVCV3pZsHlrcbku7-vtNtrtuFRXE27JJhjBJmBlmvm8AOHGt1RMEI228eRTogKPQWAGkCNaCC60CJfJmE7TbZYNB2FtA8efV7mVKco5psCxNadaaSN2qgG-u51Fkywscy_CFTNC-HNhCehuv9x8rZKQ_zzGHJkhiOPAK2Mz3Mj6bpsrf_JIizS1Pp_7_PW-A9cLrhO35NdkESyrdAvWyowMsHvg26J2brUDbpRgOUziyfSS4-VhAw0Fr9iQcp9CShieJMlIhT57G02H2PII8lbA9sSTRsG8mvOyAh87V_cU1KnouIOEznCEWcydkUjFH-zg23pLSlOgQG8MvXfNDaUcpbEY1pcTl5oBprB0mY-nhmBLh74JaOk7VHoBccsfnKpQW7Rv7LieYBtisiAULGAkawC3VHYmCkNz2xUiiikrZqiwyKotylUVOA5x-rJnM6Th-nd0sTzEqnuYs8ohNTVIS4gY4K0-tGv5Z2v7fph-D1d5lJ7q76d4egDXPoiby0rUmqGXTV3UIVsRbNpxNj_Ib-w5OP-bt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+path+in+mountain+environment+based+on+parallel+A+algorithm+and+Apache+Spark&rft.jtitle=The+Journal+of+supercomputing&rft.au=Alazzam+Hadeel&rft.au=AbuAlghanam+Orieb&rft.au=Sharieh+Ahmad&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=4&rft.spage=5075&rft.epage=5094&rft_id=info:doi/10.1007%2Fs11227-021-04072-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon