Best path in mountain environment based on parallel A algorithm and Apache Spark
Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or optimal path. Pathfinding problem deals with a large amount of data since it considers every point located in 2D or 3D scenes. The number of...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 78; číslo 4; s. 5075 - 5094 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or optimal path. Pathfinding problem deals with a large amount of data since it considers every point located in 2D or 3D scenes. The number of possibilities in such a problem is huge. Moreover, it depends on determining standards of best path definition. In this paper, we introduce a parallel A* algorithm to find the optimal path using Apache Spark. The proposed algorithm is evaluated in terms of runtime, speedup, efficiency, and cost on a generated dataset with different sizes (small, medium, and large). The generated dataset considers real terrain challenges, such as the slope and obstacles. Hadoop Insight cluster provided by Azure has been used to run the application. The proposed algorithm reached a speedup up to 4.85 running on six worker nodes. |
|---|---|
| AbstractList | Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or optimal path. Pathfinding problem deals with a large amount of data since it considers every point located in 2D or 3D scenes. The number of possibilities in such a problem is huge. Moreover, it depends on determining standards of best path definition. In this paper, we introduce a parallel A* algorithm to find the optimal path using Apache Spark. The proposed algorithm is evaluated in terms of runtime, speedup, efficiency, and cost on a generated dataset with different sizes (small, medium, and large). The generated dataset considers real terrain challenges, such as the slope and obstacles. Hadoop Insight cluster provided by Azure has been used to run the application. The proposed algorithm reached a speedup up to 4.85 running on six worker nodes. |
| Author | Alazzam, Hadeel AbuAlghanam, Orieb Sharieh, Ahmad |
| Author_xml | – sequence: 1 givenname: Hadeel orcidid: 0000-0002-6768-9696 surname: Alazzam fullname: Alazzam, Hadeel email: hdy9160095@ju.edu.jo organization: Department of Computer Science, University of Jordan – sequence: 2 givenname: Orieb surname: AbuAlghanam fullname: AbuAlghanam, Orieb organization: Department of Networks and Information Security, Al-Ahliyya Amman University – sequence: 3 givenname: Ahmad surname: Sharieh fullname: Sharieh, Ahmad organization: Department of Information Technology, University of Jordan |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXldPkqZJL-fwCwYK6nVI23TrbJOZZIL_3mgFwYtd5eSc9zkf7wxNrLMGoXMClwRAXAVCKBUZUJJBDoJmcISmhAuWvjKfoCmUFDLJc3qCZiFsASBngk3R07UJEe903ODO4sHtbdQpMPaj884OxkZc6WAa7GxSed33pscLrPu1813cDFjbBi92ut4Y_JwEb6fouNV9MGe_7xy93t68LO-z1ePdw3KxymomecxkpaGUjZHQMl7RIjetKNqS0xwakhKmBWN4qrZCFERTWYqqBdlUDeWVKGo2Rxdj35137_t0hNq6vbdppKIFK3nCSp5UdFTV3oXgTat2vhu0_1QE1LdzanROJefUj3MKEiT_QXUXdeycjV53_WGUjWhIc-za-L-tDlBf2omECQ |
| CitedBy_id | crossref_primary_10_32604_cmc_2023_038462 crossref_primary_10_3390_info12120517 crossref_primary_10_1007_s40747_023_01241_x crossref_primary_10_1007_s11227_022_04395_6 crossref_primary_10_3390_app14010452 crossref_primary_10_3390_machines10050375 crossref_primary_10_3390_s24175643 crossref_primary_10_1109_ACCESS_2025_3579566 crossref_primary_10_2478_amns_2023_1_00397 crossref_primary_10_1109_ACCESS_2022_3233786 crossref_primary_10_1109_JSTARS_2022_3226527 |
| Cites_doi | 10.7763/IJCTE.2010.V2.178 10.1007/s11227-020-03150-z 10.1109/LRA.2020.3011912 10.1088/1757-899X/1086/1/012003 10.1109/SC41405.2020.00031 10.1016/j.compchemeng.2019.04.003 10.1016/S0004-3702(01)00108-4 10.1007/s13369-020-04437-2 10.1007/s11126-020-09859-7 10.14569/IJACSA.2020.0110913 10.1007/s13198-021-01186-9 10.1145/3184066.3184083 10.1002/cpe.4429 10.1093/mnras/stab2447 10.1109/VNIS.1994.396824 10.1007/s11227-020-03328-5 10.1109/TSSC.1968.300136 10.1109/TSSA.2017.8272918 10.1109/CEC.2015.7256934 10.1109/AIKE48582.2020.00041 10.1088/1757-899X/1111/1/012033 10.1007/s11227-020-03505-6 10.1109/ICTAI.2015.125 10.1109/CSCS.2019.00129 10.14569/IJACSA.2017.081225 10.1186/s40537-019-0240-1 10.1007/s11036-013-0489-0 10.1016/j.jpdc.2020.04.009 10.1109/TSMC.1983.6313112 10.1109/ACCESS.2020.2965579 10.1109/ACCESS.2021.3059221 10.1016/j.eswa.2009.12.023 10.1016/j.procs.2015.03.206 10.1006/inco.1996.0092 10.1007/11941439_114 10.1007/978-981-15-9927-9_33 10.1109/DATABIA50434.2020.9190342 10.1016/j.procs.2021.01.034 10.3390/s21072460 10.1007/s10586-019-02998-y 10.1007/s10846-014-0124-8 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-021-04072-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 5094 |
| ExternalDocumentID | 10_1007_s11227_021_04072_0 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c385t-8ba098de80f35b264ef76f95240d15b2ef0ee580ff7761a2897bf08dbd25b76c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696141200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:51:22 EDT 2025 Tue Nov 18 21:22:03 EST 2025 Sat Nov 29 04:27:41 EST 2025 Fri Feb 21 02:47:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Cluster Parallel A algorithm Apache Spark Pathfinding problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-8ba098de80f35b264ef76f95240d15b2ef0ee580ff7761a2897bf08dbd25b76c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6768-9696 |
| PQID | 2639577695 |
| PQPubID | 2043774 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2639577695 crossref_primary_10_1007_s11227_021_04072_0 crossref_citationtrail_10_1007_s11227_021_04072_0 springer_journals_10_1007_s11227_021_04072_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FoeadDGhifariAKusumaMBHanafiahNGunawanEA systematic literature review of A* pathfindingProcedia Comput Sci202117950751410.1016/j.procs.2021.01.034 Spark A (2018) Apache spark AlnafessahACasaleGArtificial neural networks based techniques for anomaly detection in apache sparkCluster Comput20202321345136010.1007/s10586-019-02998-y MontielOSepúlvedaROrozco-RosasUOptimal path planning generation for mobile robots using parallel evolutionary artificial potential fieldJ Intell Robot Syst201579223725710.1007/s10846-014-0124-8 Phan T, Do P (2018) Improving the shortest path finding algorithm in apache spark graphx. In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, pp 67–71 WanLZhangGLiHLiCA novel bearing fault diagnosis method using spark-based parallel ACO-k-means clustering algorithmIEEE Access20219287532876810.1109/ACCESS.2021.3059221 LaneyD3d data management: controlling data volume, velocity and varietyMETA Group Res arch Note20016701 Goldberg AV, Harrelson C (2005) Computing the shortest path: a search meets graph theory. In: SODA, vol 5. Citeseer, pp 156–165 Ashish DS, Munjal S, Mani M, Srivastava S (2021) Path finding algorithms. In: Emerging technologies in data mining and information security. Springer, pp 331–338 MezzoudjSBehloulASeghirRSaadnaYA parallel content-based image retrieval system using spark and tachyon frameworksJ King Saud Univ Comput Inf Sci2021332141149 RajitaBRanjanYUmeshCTPandaSSpark-based parallel method for prediction of eventsArab J Sci Eng20204543437345310.1007/s13369-020-04437-2 Stan C-S, Pandelica A-E, Zamfir V-A, Stan R-G, Negru C (2019) Apache spark and apache ignite performance analysis. In: 2019 22nd International Conference on Control Systems and Computer Science (CSCS). IEEE, pp 726–733 Kang M, Lee J-G (2020) Effect of garbage collection in iterative algorithms on spark: an experimental analysis. J Supercomput, pp 1–15 Garling CT, Peter AH, Kochanek CS, Sand DJ, Crnojević D (2021) A search for satellite galaxies of nearby star-forming galaxies with resolved stars in lbt-song. arXiv preprint arXiv:2105.01082 Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation. In: Australasian Joint Conference on Artificial Intelligence. Springer, pp 1015–1021 Salzman O, Stern R, (2020) Research challenges and opportunities in multi-agent path finding and multi-agent pickup and delivery problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp 1711–1715 MathewGEDirection based heuristic for pathfinding in video gamesProcedia Comput Sci20154726227110.1016/j.procs.2015.03.206 AlazzamHShariehAParallel DNA sequence approximate matching with multi-length sequence aware approachInt J Comput Appl20189758887 MandloiDAryaRVermaAKUnmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environmentInt J Syst Assur Eng Manag20211211110.1007/s13198-021-01186-9 Yao Y, Ni Q, Lv Q, Huang K (2015) A novel heterogeneous feature ant colony optimization and its application on robot path planning. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 522–528 MalatheshBCIbrahimFANirishaPLKumarCNChandPKManjunathaNMathSBThirthalliJManjappaAAParthasarathyREmbracing technology for capacity building in mental health: new path, newer challengesPsychiatric Q202192384385010.1007/s11126-020-09859-7 NosratiMKarimiRHasanvandHAInvestigation of the*(star) search algorithms: characteristics, methods and approachesWorld Appl Program201224251256 AzizKZaidouniDBellafkihMLeveraging resource management for efficient performance of apache sparkJ Big Data20196112310.1186/s40537-019-0240-1 ZhangYAzadABuluçAParallel algorithms for finding connected components using linear algebraJ Parallel Distrib Comput2020144142710.1016/j.jpdc.2020.04.009 KaoM-YReifJHTateSRSearching in an unknown environment: an optimal randomized algorithm for the cow-path problemInf Comput199613116379142581510.1006/inco.1996.0092 BrooksRASolving the find-path problem by good representation of free spaceIEEE Trans Syst Man Cybern1983219019771169310.1109/TSMC.1983.6313112 Candra A, Budiman MA, Hartanto K (2020) Dijkstra’s and a-star in finding the shortest path: a tutorial. In: 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). IEEE, pp 28–32 QinSJChiangLHAdvances and opportunities in machine learning for process data analyticsComput Chem Eng201912646547310.1016/j.compchemeng.2019.04.003 ChenMMaoSLiuYBig data: a surveyMobile Netw Appl201419217120910.1007/s11036-013-0489-0 Yang C-T, Chen T-Y, Kristiani E, Wu SF (2020) The implementation of data storage and analytics platform for big data lake of electricity usage with spark. J Supercomput, pp 1–26 WangZZhaoYLiuYLvCA speculative parallel simulated annealing algorithm based on apache sparkConcurr Comput Pract Exp20183014e442910.1002/cpe.4429 Zhigalov K, Bataev DK, Klochkova E, Svirbutovich O, Ivashchenko G (2021) Problem solution of optimal pathfinding for the movement of vehicles over rough mountainous areas. In: IOP Conference Series: Materials Science and Engineering, vol 1111. IOP Publishing, p 012033 AbuAlghanam O, Qatawneh M, Al Ofeishat HA, Adwan O, Huneiti A (2017) A new parallel matrix multiplication algorithm on tree-hypercube network using iman1 supercomputer. Int J Adv Comput Sci Appl 8(12):201–205 JiangXLinZHeTMaXMaSLiSOptimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategiesIEEE Access20208154591547110.1109/ACCESS.2020.2965579 HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans Syst Sci Cybern19684210010710.1109/TSSC.1968.300136 Mostafaeipour A, Jahangard Rafsanjani A, Ahmadi M, Arockia Dhanraj J, (2020) Investigating the performance of hadoop and spark platforms on machine learning algorithms. J Supercomput, pp 1–28 Sazaki Y, Satria H, Syahroyni M (2017) Comparison of A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}- and dynamic pathfinding algorithm with dynamic pathfinding algorithm for NPC on car racing game. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA). IEEE, pp 1–6 Masadeh R, Sharieh A, Jamal S, Qasem MH, Alsaaidah B (2020) Best path in mountain environment based on parallel hill climbing algorithm. Int J Adv Comput Sci Appl 11(9) MocholiJAJaenJCatalaANavarroEAn emotionally biased ant colony algorithm for pathfinding in gamesExp Syst Appl20103774921492710.1016/j.eswa.2009.12.023 Besta M, Schneider M, Konieczny M, Cynk K, Henriksson E, Di Girolamo S, Singla A, Hoefler T (2020) Fatpaths: routing in supercomputers and data centers when shortest paths fall short. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 1–18 GrenouilleauFvan HoeveW-JHookerJNA multi-label A* algorithm for multi-agent pathfindingProc Int Conf Autom Plan Schedul201929181185 RishiwalVYadavMAryaKFinding optimal paths on terrain maps using ant colony algorithmInt J Comput Theory Eng20102341610.7763/IJCTE.2010.V2.178 Jong D, Kwon I, Goo D, Lee D (2015) Safe pathfinding using abstract hierarchical graph and influence map. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, pp 860–865 Sinodkin A, Evdokimova T, Tiurikov M (2021) A method for constructing a global motion path and planning a route for a self-driving vehicle. In: IOP Conference Series: Materials Science and Engineering, vol 1086. IOP Publishing, p 012003 SataiHAZahraMMARasoolZIAbd-AliRSPruncuCIBézier curves-based optimal trajectory design for multirotor UAVs with any-angle pathfinding algorithmsSensors2021217246010.3390/s21072460 Ikeda T, Hsu M-Y, Imai H, Nishimura S, Shimoura H, Hashimoto T, Tenmoku K, Mitoh K (1994)A fast algorithm for finding better routes by AI search techniques. In: Proceedings of VNIS’94-1994 vehicle navigation and information systems conference. IEEE, pp 291–296 Yiu YF, Mahapatra R (2020) Multi-agent pathfinding with hierarchical evolutionary hueristic a. In: 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, pp 9–16 JosefSDeganiADeep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrainIEEE Robot Autom Lett2020546748675510.1109/LRA.2020.3011912 BonetBGeffnerHPlanning as heuristic searchArtif Intell20011291–2533183577110.1016/S0004-3702(01)00108-4 Liu X, Gong D (2011) A comparative study of a-star algorithms for search and rescue in perfect maze. In: 2011 International Conference on Electric Information and Control Engineering. IEEE, pp 24–27 B Rajita (4072_CR25) 2020; 45 GE Mathew (4072_CR17) 2015; 47 Z Wang (4072_CR38) 2018; 30 4072_CR6 4072_CR4 JA Mocholi (4072_CR36) 2010; 37 4072_CR1 4072_CR22 4072_CR26 S Josef (4072_CR31) 2020; 5 4072_CR29 4072_CR27 M Chen (4072_CR9) 2014; 19 K Aziz (4072_CR24) 2019; 6 H Alazzam (4072_CR5) 2018; 975 F Grenouilleau (4072_CR28) 2019; 29 M Nosrati (4072_CR44) 2012; 2 4072_CR32 4072_CR33 4072_CR30 RA Brooks (4072_CR15) 1983; 2 4072_CR37 D Foead (4072_CR13) 2021; 179 4072_CR39 L Wan (4072_CR23) 2021; 9 4072_CR40 HA Satai (4072_CR11) 2021; 21 4072_CR43 O Montiel (4072_CR34) 2015; 79 4072_CR41 4072_CR47 4072_CR48 4072_CR45 4072_CR49 A Alnafessah (4072_CR21) 2020; 23 BC Malathesh (4072_CR18) 2021; 92 PE Hart (4072_CR46) 1968; 4 S Mezzoudj (4072_CR8) 2021; 33 D Mandloi (4072_CR12) 2021; 12 4072_CR50 V Rishiwal (4072_CR35) 2010; 2 B Bonet (4072_CR16) 2001; 129 D Laney (4072_CR20) 2001; 6 SJ Qin (4072_CR42) 2019; 126 4072_CR10 X Jiang (4072_CR2) 2020; 8 4072_CR14 M-Y Kao (4072_CR3) 1996; 131 4072_CR19 Y Zhang (4072_CR7) 2020; 144 |
| References_xml | – reference: BonetBGeffnerHPlanning as heuristic searchArtif Intell20011291–2533183577110.1016/S0004-3702(01)00108-4 – reference: MathewGEDirection based heuristic for pathfinding in video gamesProcedia Comput Sci20154726227110.1016/j.procs.2015.03.206 – reference: Mostafaeipour A, Jahangard Rafsanjani A, Ahmadi M, Arockia Dhanraj J, (2020) Investigating the performance of hadoop and spark platforms on machine learning algorithms. J Supercomput, pp 1–28 – reference: ChenMMaoSLiuYBig data: a surveyMobile Netw Appl201419217120910.1007/s11036-013-0489-0 – reference: Jong D, Kwon I, Goo D, Lee D (2015) Safe pathfinding using abstract hierarchical graph and influence map. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, pp 860–865 – reference: WangZZhaoYLiuYLvCA speculative parallel simulated annealing algorithm based on apache sparkConcurr Comput Pract Exp20183014e442910.1002/cpe.4429 – reference: AbuAlghanam O, Qatawneh M, Al Ofeishat HA, Adwan O, Huneiti A (2017) A new parallel matrix multiplication algorithm on tree-hypercube network using iman1 supercomputer. Int J Adv Comput Sci Appl 8(12):201–205 – reference: Garling CT, Peter AH, Kochanek CS, Sand DJ, Crnojević D (2021) A search for satellite galaxies of nearby star-forming galaxies with resolved stars in lbt-song. arXiv preprint arXiv:2105.01082 – reference: AlazzamHShariehAParallel DNA sequence approximate matching with multi-length sequence aware approachInt J Comput Appl20189758887 – reference: ZhangYAzadABuluçAParallel algorithms for finding connected components using linear algebraJ Parallel Distrib Comput2020144142710.1016/j.jpdc.2020.04.009 – reference: Ashish DS, Munjal S, Mani M, Srivastava S (2021) Path finding algorithms. In: Emerging technologies in data mining and information security. Springer, pp 331–338 – reference: RajitaBRanjanYUmeshCTPandaSSpark-based parallel method for prediction of eventsArab J Sci Eng20204543437345310.1007/s13369-020-04437-2 – reference: MandloiDAryaRVermaAKUnmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environmentInt J Syst Assur Eng Manag20211211110.1007/s13198-021-01186-9 – reference: Salzman O, Stern R, (2020) Research challenges and opportunities in multi-agent path finding and multi-agent pickup and delivery problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp 1711–1715 – reference: MezzoudjSBehloulASeghirRSaadnaYA parallel content-based image retrieval system using spark and tachyon frameworksJ King Saud Univ Comput Inf Sci2021332141149 – reference: QinSJChiangLHAdvances and opportunities in machine learning for process data analyticsComput Chem Eng201912646547310.1016/j.compchemeng.2019.04.003 – reference: Stan C-S, Pandelica A-E, Zamfir V-A, Stan R-G, Negru C (2019) Apache spark and apache ignite performance analysis. In: 2019 22nd International Conference on Control Systems and Computer Science (CSCS). IEEE, pp 726–733 – reference: Sinodkin A, Evdokimova T, Tiurikov M (2021) A method for constructing a global motion path and planning a route for a self-driving vehicle. In: IOP Conference Series: Materials Science and Engineering, vol 1086. IOP Publishing, p 012003 – reference: Spark A (2018) Apache spark – reference: Yiu YF, Mahapatra R (2020) Multi-agent pathfinding with hierarchical evolutionary hueristic a. In: 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, pp 9–16 – reference: JosefSDeganiADeep reinforcement learning for safe local planning of a ground vehicle in unknown rough terrainIEEE Robot Autom Lett2020546748675510.1109/LRA.2020.3011912 – reference: MocholiJAJaenJCatalaANavarroEAn emotionally biased ant colony algorithm for pathfinding in gamesExp Syst Appl20103774921492710.1016/j.eswa.2009.12.023 – reference: LaneyD3d data management: controlling data volume, velocity and varietyMETA Group Res arch Note20016701 – reference: Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation. In: Australasian Joint Conference on Artificial Intelligence. Springer, pp 1015–1021 – reference: WanLZhangGLiHLiCA novel bearing fault diagnosis method using spark-based parallel ACO-k-means clustering algorithmIEEE Access20219287532876810.1109/ACCESS.2021.3059221 – reference: Sazaki Y, Satria H, Syahroyni M (2017) Comparison of A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}- and dynamic pathfinding algorithm with dynamic pathfinding algorithm for NPC on car racing game. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA). IEEE, pp 1–6 – reference: MontielOSepúlvedaROrozco-RosasUOptimal path planning generation for mobile robots using parallel evolutionary artificial potential fieldJ Intell Robot Syst201579223725710.1007/s10846-014-0124-8 – reference: NosratiMKarimiRHasanvandHAInvestigation of the*(star) search algorithms: characteristics, methods and approachesWorld Appl Program201224251256 – reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans Syst Sci Cybern19684210010710.1109/TSSC.1968.300136 – reference: Zhigalov K, Bataev DK, Klochkova E, Svirbutovich O, Ivashchenko G (2021) Problem solution of optimal pathfinding for the movement of vehicles over rough mountainous areas. In: IOP Conference Series: Materials Science and Engineering, vol 1111. IOP Publishing, p 012033 – reference: Besta M, Schneider M, Konieczny M, Cynk K, Henriksson E, Di Girolamo S, Singla A, Hoefler T (2020) Fatpaths: routing in supercomputers and data centers when shortest paths fall short. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 1–18 – reference: Candra A, Budiman MA, Hartanto K (2020) Dijkstra’s and a-star in finding the shortest path: a tutorial. In: 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). IEEE, pp 28–32 – reference: SataiHAZahraMMARasoolZIAbd-AliRSPruncuCIBézier curves-based optimal trajectory design for multirotor UAVs with any-angle pathfinding algorithmsSensors2021217246010.3390/s21072460 – reference: Phan T, Do P (2018) Improving the shortest path finding algorithm in apache spark graphx. In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, pp 67–71 – reference: RishiwalVYadavMAryaKFinding optimal paths on terrain maps using ant colony algorithmInt J Comput Theory Eng20102341610.7763/IJCTE.2010.V2.178 – reference: KaoM-YReifJHTateSRSearching in an unknown environment: an optimal randomized algorithm for the cow-path problemInf Comput199613116379142581510.1006/inco.1996.0092 – reference: BrooksRASolving the find-path problem by good representation of free spaceIEEE Trans Syst Man Cybern1983219019771169310.1109/TSMC.1983.6313112 – reference: Goldberg AV, Harrelson C (2005) Computing the shortest path: a search meets graph theory. In: SODA, vol 5. Citeseer, pp 156–165 – reference: AzizKZaidouniDBellafkihMLeveraging resource management for efficient performance of apache sparkJ Big Data20196112310.1186/s40537-019-0240-1 – reference: Yang C-T, Chen T-Y, Kristiani E, Wu SF (2020) The implementation of data storage and analytics platform for big data lake of electricity usage with spark. J Supercomput, pp 1–26 – reference: JiangXLinZHeTMaXMaSLiSOptimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategiesIEEE Access20208154591547110.1109/ACCESS.2020.2965579 – reference: MalatheshBCIbrahimFANirishaPLKumarCNChandPKManjunathaNMathSBThirthalliJManjappaAAParthasarathyREmbracing technology for capacity building in mental health: new path, newer challengesPsychiatric Q202192384385010.1007/s11126-020-09859-7 – reference: Masadeh R, Sharieh A, Jamal S, Qasem MH, Alsaaidah B (2020) Best path in mountain environment based on parallel hill climbing algorithm. Int J Adv Comput Sci Appl 11(9) – reference: Liu X, Gong D (2011) A comparative study of a-star algorithms for search and rescue in perfect maze. In: 2011 International Conference on Electric Information and Control Engineering. IEEE, pp 24–27 – reference: AlnafessahACasaleGArtificial neural networks based techniques for anomaly detection in apache sparkCluster Comput20202321345136010.1007/s10586-019-02998-y – reference: Kang M, Lee J-G (2020) Effect of garbage collection in iterative algorithms on spark: an experimental analysis. J Supercomput, pp 1–15 – reference: Yao Y, Ni Q, Lv Q, Huang K (2015) A novel heterogeneous feature ant colony optimization and its application on robot path planning. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 522–528 – reference: FoeadDGhifariAKusumaMBHanafiahNGunawanEA systematic literature review of A* pathfindingProcedia Comput Sci202117950751410.1016/j.procs.2021.01.034 – reference: GrenouilleauFvan HoeveW-JHookerJNA multi-label A* algorithm for multi-agent pathfindingProc Int Conf Autom Plan Schedul201929181185 – reference: Ikeda T, Hsu M-Y, Imai H, Nishimura S, Shimoura H, Hashimoto T, Tenmoku K, Mitoh K (1994)A fast algorithm for finding better routes by AI search techniques. In: Proceedings of VNIS’94-1994 vehicle navigation and information systems conference. IEEE, pp 291–296 – volume: 2 start-page: 416 issue: 3 year: 2010 ident: 4072_CR35 publication-title: Int J Comput Theory Eng doi: 10.7763/IJCTE.2010.V2.178 – ident: 4072_CR41 doi: 10.1007/s11227-020-03150-z – volume: 5 start-page: 6748 issue: 4 year: 2020 ident: 4072_CR31 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.3011912 – ident: 4072_CR32 doi: 10.1088/1757-899X/1086/1/012003 – ident: 4072_CR49 doi: 10.1109/SC41405.2020.00031 – volume: 126 start-page: 465 year: 2019 ident: 4072_CR42 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.04.003 – volume: 129 start-page: 5 issue: 1–2 year: 2001 ident: 4072_CR16 publication-title: Artif Intell doi: 10.1016/S0004-3702(01)00108-4 – volume: 45 start-page: 3437 issue: 4 year: 2020 ident: 4072_CR25 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04437-2 – volume: 92 start-page: 843 issue: 3 year: 2021 ident: 4072_CR18 publication-title: Psychiatric Q doi: 10.1007/s11126-020-09859-7 – ident: 4072_CR33 doi: 10.14569/IJACSA.2020.0110913 – volume: 12 start-page: 1 year: 2021 ident: 4072_CR12 publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-021-01186-9 – ident: 4072_CR39 doi: 10.1145/3184066.3184083 – volume: 30 start-page: e4429 issue: 14 year: 2018 ident: 4072_CR38 publication-title: Concurr Comput Pract Exp doi: 10.1002/cpe.4429 – ident: 4072_CR45 doi: 10.1093/mnras/stab2447 – ident: 4072_CR1 doi: 10.1109/VNIS.1994.396824 – ident: 4072_CR26 doi: 10.1007/s11227-020-03328-5 – volume: 4 start-page: 100 issue: 2 year: 1968 ident: 4072_CR46 publication-title: IEEE Trans Syst Sci Cybern doi: 10.1109/TSSC.1968.300136 – ident: 4072_CR22 doi: 10.1109/TSSA.2017.8272918 – volume: 975 start-page: 8887 year: 2018 ident: 4072_CR5 publication-title: Int J Comput Appl – volume: 33 start-page: 141 issue: 2 year: 2021 ident: 4072_CR8 publication-title: J King Saud Univ Comput Inf Sci – ident: 4072_CR37 doi: 10.1109/CEC.2015.7256934 – volume: 6 start-page: 1 issue: 70 year: 2001 ident: 4072_CR20 publication-title: META Group Res arch Note – ident: 4072_CR14 doi: 10.1109/AIKE48582.2020.00041 – ident: 4072_CR30 doi: 10.1088/1757-899X/1111/1/012033 – ident: 4072_CR40 doi: 10.1007/s11227-020-03505-6 – ident: 4072_CR27 doi: 10.1109/ICTAI.2015.125 – ident: 4072_CR50 doi: 10.1109/CSCS.2019.00129 – ident: 4072_CR6 doi: 10.14569/IJACSA.2017.081225 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 4072_CR24 publication-title: J Big Data doi: 10.1186/s40537-019-0240-1 – ident: 4072_CR4 – volume: 19 start-page: 171 issue: 2 year: 2014 ident: 4072_CR9 publication-title: Mobile Netw Appl doi: 10.1007/s11036-013-0489-0 – volume: 2 start-page: 251 issue: 4 year: 2012 ident: 4072_CR44 publication-title: World Appl Program – volume: 144 start-page: 14 year: 2020 ident: 4072_CR7 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2020.04.009 – volume: 2 start-page: 190 year: 1983 ident: 4072_CR15 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1983.6313112 – volume: 29 start-page: 181 year: 2019 ident: 4072_CR28 publication-title: Proc Int Conf Autom Plan Schedul – volume: 8 start-page: 15459 year: 2020 ident: 4072_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965579 – volume: 9 start-page: 28753 year: 2021 ident: 4072_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059221 – volume: 37 start-page: 4921 issue: 7 year: 2010 ident: 4072_CR36 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2009.12.023 – ident: 4072_CR47 – volume: 47 start-page: 262 year: 2015 ident: 4072_CR17 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.03.206 – volume: 131 start-page: 63 issue: 1 year: 1996 ident: 4072_CR3 publication-title: Inf Comput doi: 10.1006/inco.1996.0092 – ident: 4072_CR43 doi: 10.1007/11941439_114 – ident: 4072_CR10 doi: 10.1007/978-981-15-9927-9_33 – ident: 4072_CR29 – ident: 4072_CR48 doi: 10.1109/DATABIA50434.2020.9190342 – volume: 179 start-page: 507 year: 2021 ident: 4072_CR13 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2021.01.034 – volume: 21 start-page: 2460 issue: 7 year: 2021 ident: 4072_CR11 publication-title: Sensors doi: 10.3390/s21072460 – ident: 4072_CR19 – volume: 23 start-page: 1345 issue: 2 year: 2020 ident: 4072_CR21 publication-title: Cluster Comput doi: 10.1007/s10586-019-02998-y – volume: 79 start-page: 237 issue: 2 year: 2015 ident: 4072_CR34 publication-title: J Intell Robot Syst doi: 10.1007/s10846-014-0124-8 |
| SSID | ssj0004373 |
| Score | 2.3509507 |
| Snippet | Pathfinding problem has several applications in our life and widely used in virtual environments. It has different goals such as shortest path, secure path, or... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5075 |
| SubjectTerms | Algorithms Compilers Computer Science Datasets Interpreters Mountain environments Processor Architectures Programming Languages Shortest-path problems Virtual environments |
| Title | Best path in mountain environment based on parallel A algorithm and Apache Spark |
| URI | https://link.springer.com/article/10.1007/s11227-021-04072-0 https://www.proquest.com/docview/2639577695 |
| Volume | 78 |
| WOSCitedRecordID | wos000696141200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQ4cCFsopCQT5wA0vZvORYEBWnqqKAeoscL1CRplUb-H7GaUIAARLconiJNbbzxhq_eQid-Q71FKPEgjdPIhtJEgMKEMOoVVJZExlVik3wwUCMx_GwIoUt69vudUiy_FM3ZDc_CDhxVwo8l9WLwEF9HeBOOMGG29FDw4YMV3HlGA5GgkZBRZX5vo_PcNT4mF_CoiXa9Nv_G-c22qq8S9xbLYcdtGbyXdSulRtwtZH30PASPo-dGjGe5Hjq9CIkPHxgvWEHbxrPcuySg2eZgV6xzB5ni0nxNMUy17g3d8mg8QgqPO-j-_713dUNqbQViAoFLYhIJZhOG-HZkKbgFRnLmY0pALz24YWxnjEUSi3nzJcwkTy1ntCpDmjKmQoPUCuf5eYQYamlF0oTa8fqTUNfMsojCi1SJSLBog7yaxMnqko87vQvsqRJmexMloDJktJkiddB5-9t5qu0G7_W7tYzl1RbcJkEzIUgOYtpB13UM9UU_9zb0d-qH6PNwFEiyntpXdQqFi_mBG2o12KyXJyWS_MNjiPbJQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBX1xXnE6NQ--aaCX3Po4xTFRx3BT9lbSNNFh142t-vtNutaqqKBvpbk0nCT9Tjj5vgPAiWtRT1KCtPHmEdZYoMCgAFKUaCmkVljJPNkE63b5cBj0ClLYvLztXoYk8z91RXZzPY8he6XAsapeyBzUl7FBLKuYf9d_qNiQ_iKuHJiDESfYK6gy3_fxGY4qH_NLWDRHm3b9f-PcAOuFdwlbi-WwCZZUugXqZeYGWGzkbdA7N5-HNhsxHKVwbPNFCPPwgfUGLbzFcJJCKw6eJMr0CkXyOJmNsqcxFGkMW1MrBg37psLzDrhvXw4uOqjIrYCkz0mGeCScgMeKO9onkfGKlGZUB8QAfOyaF0o7ShFTqhmjrjATySLt8DiKPRIxKv1dUEsnqdoDUMTC8YUKYsvqjXxXUMIwMS0iyTGnuAHc0sShLITHbf6LJKwkk63JQmOyMDdZ6DTA6Xub6UJ249fazXLmwmILzkOP2hAkowFpgLNypqrin3vb_1v1Y7DaGdzehDdX3esDsOZZekR-R60JatnsRR2CFfmajeazo3yZvgHc0N4J |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd1XHnusj6IopVCV3pZsHlrcbku7-vtNtrtuFRXE27JJhjBJmBlmvm8AOHGt1RMEI228eRTogKPQWAGkCNaCC60CJfJmE7TbZYNB2FtA8efV7mVKco5psCxNadaaSN2qgG-u51Fkywscy_CFTNC-HNhCehuv9x8rZKQ_zzGHJkhiOPAK2Mz3Mj6bpsrf_JIizS1Pp_7_PW-A9cLrhO35NdkESyrdAvWyowMsHvg26J2brUDbpRgOUziyfSS4-VhAw0Fr9iQcp9CShieJMlIhT57G02H2PII8lbA9sSTRsG8mvOyAh87V_cU1KnouIOEznCEWcydkUjFH-zg23pLSlOgQG8MvXfNDaUcpbEY1pcTl5oBprB0mY-nhmBLh74JaOk7VHoBccsfnKpQW7Rv7LieYBtisiAULGAkawC3VHYmCkNz2xUiiikrZqiwyKotylUVOA5x-rJnM6Th-nd0sTzEqnuYs8ohNTVIS4gY4K0-tGv5Z2v7fph-D1d5lJ7q76d4egDXPoiby0rUmqGXTV3UIVsRbNpxNj_Ib-w5OP-bt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+path+in+mountain+environment+based+on+parallel+A+algorithm+and+Apache+Spark&rft.jtitle=The+Journal+of+supercomputing&rft.au=Alazzam+Hadeel&rft.au=AbuAlghanam+Orieb&rft.au=Sharieh+Ahmad&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=4&rft.spage=5075&rft.epage=5094&rft_id=info:doi/10.1007%2Fs11227-021-04072-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |