Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems

The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheu...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 3; pp. 1531 - 1551
Main Authors: Hashim, Fatma A., Hussain, Kashif, Houssein, Essam H., Mabrouk, Mai S., Al-Atabany, Walid
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2021
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization (PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
AbstractList The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization (PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization (PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
Author Mabrouk, Mai S.
Hashim, Fatma A.
Hussain, Kashif
Houssein, Essam H.
Al-Atabany, Walid
Author_xml – sequence: 1
  givenname: Fatma A.
  surname: Hashim
  fullname: Hashim, Fatma A.
  organization: Faculty of Engineering, Helwan University
– sequence: 2
  givenname: Kashif
  surname: Hussain
  fullname: Hussain, Kashif
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University
– sequence: 4
  givenname: Mai S.
  surname: Mabrouk
  fullname: Mabrouk, Mai S.
  organization: Faculty of Engineering, Misr University for Science and Technology
– sequence: 5
  givenname: Walid
  surname: Al-Atabany
  fullname: Al-Atabany, Walid
  organization: Faculty of Engineering, Helwan University
BookMark eNp9kM9LwzAcxYNMcJv-A54KnqvfNG2TeBvDXzDwouAtJGm6ZbTNTDLF_fXWVRh62Ol7-L7Pe483QaPOdQahSwzXGIDeBAw54ylkkAJmnKS7EzTGBSUpzTkdoTHwLE_Lkr-doUkIawAgBPAYqZnXK9uayoTEbaJt7U5G67pENkvnbVy1t4lMOvOZtCbKldl6G6LVh3dSO58E13zYbvnXYeOdakwbztFpLZtgLn7vFL3e373MH9PF88PTfLZINWFFTBnDWV6VlGdaGUlAa6OgyKRUlBVMQWWI4jWUOZVVgTmrGKU11DVlSnPGSzJFV4NvH_y-NSGKtdv6ro8UWc5oSYBg3qvYoNLeheBNLbSN-8LRS9sIDOJnUTEsKvpFxX5RsevR7B-68baV_us4RAYo9OJuafyh1RHqG2hnjmo
CitedBy_id crossref_primary_10_1016_j_ast_2023_108541
crossref_primary_10_1016_j_knosys_2022_108457
crossref_primary_10_32604_cmc_2024_053189
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1007_s10586_024_04620_2
crossref_primary_10_32604_cmc_2023_034025
crossref_primary_10_3390_pr11051502
crossref_primary_10_1016_j_nexus_2025_100500
crossref_primary_10_1016_j_matcom_2025_04_003
crossref_primary_10_1016_j_dajour_2023_100361
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1016_j_enconman_2023_116907
crossref_primary_10_3390_pr12020406
crossref_primary_10_1016_j_asoc_2025_113943
crossref_primary_10_1016_j_cma_2022_115676
crossref_primary_10_1007_s10586_024_04654_6
crossref_primary_10_1002_dac_5604
crossref_primary_10_3390_info16030207
crossref_primary_10_1002_int_23091
crossref_primary_10_1088_1402_4896_adbfd6
crossref_primary_10_1016_j_bspc_2023_105870
crossref_primary_10_1016_j_matcom_2022_06_027
crossref_primary_10_1016_j_jclepro_2022_132709
crossref_primary_10_1002_dac_70216
crossref_primary_10_1016_j_eswa_2023_122937
crossref_primary_10_1371_journal_pone_0280006
crossref_primary_10_1016_j_compeleceng_2022_108014
crossref_primary_10_1016_j_advengsoft_2023_103517
crossref_primary_10_1016_j_epsr_2023_109970
crossref_primary_10_3390_buildings14113695
crossref_primary_10_1016_j_enbuild_2024_114690
crossref_primary_10_33889_IJMEMS_2025_10_4_051
crossref_primary_10_1016_j_egyr_2021_10_117
crossref_primary_10_1016_j_asoc_2022_108538
crossref_primary_10_1109_ACCESS_2025_3562367
crossref_primary_10_1177_18758967251360039
crossref_primary_10_1007_s00521_023_08492_2
crossref_primary_10_1016_j_est_2022_104591
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1007_s00521_023_08769_6
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_1007_s40996_024_01710_4
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1007_s11053_025_10546_2
crossref_primary_10_1016_j_chaos_2024_115696
crossref_primary_10_1016_j_eswa_2023_120602
crossref_primary_10_1016_j_knosys_2021_108071
crossref_primary_10_1080_15567036_2023_2186539
crossref_primary_10_1016_j_chaos_2024_115578
crossref_primary_10_52254_1857_0070_2024_1_61_01
crossref_primary_10_1007_s41939_023_00318_x
crossref_primary_10_1109_ACCESS_2024_3470845
crossref_primary_10_1016_j_jobe_2023_106922
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1007_s10586_024_04447_x
crossref_primary_10_1016_j_ins_2022_06_008
crossref_primary_10_1007_s11227_024_05905_4
crossref_primary_10_1186_s42490_025_00098_0
crossref_primary_10_1016_j_future_2022_12_040
crossref_primary_10_1007_s00521_023_08649_z
crossref_primary_10_3390_electronics12041058
crossref_primary_10_1016_j_engappai_2021_104417
crossref_primary_10_1007_s10489_023_04962_1
crossref_primary_10_1007_s11042_023_17327_0
crossref_primary_10_1007_s11277_024_11287_w
crossref_primary_10_1016_j_measurement_2022_110798
crossref_primary_10_1016_j_asoc_2024_111581
crossref_primary_10_1007_s12530_022_09443_3
crossref_primary_10_1007_s40313_023_01033_1
crossref_primary_10_3390_e24081018
crossref_primary_10_52254_1857_0070_2023_4_60_02
crossref_primary_10_1016_j_aeue_2025_155986
crossref_primary_10_1016_j_ijleo_2022_169692
crossref_primary_10_1016_j_knosys_2025_113548
crossref_primary_10_1016_j_compgeo_2024_106618
crossref_primary_10_3390_jcs8060205
crossref_primary_10_1007_s42235_024_00505_7
crossref_primary_10_1007_s10489_022_03586_1
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1007_s40998_023_00675_w
crossref_primary_10_3390_pr10020366
crossref_primary_10_17482_uumfd_1090766
crossref_primary_10_1016_j_compeleceng_2025_110270
crossref_primary_10_1007_s11770_023_1010_6
crossref_primary_10_3390_biomimetics10090628
crossref_primary_10_1007_s40313_022_00909_y
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_13005_bpj_3052
crossref_primary_10_3390_en17225552
crossref_primary_10_1109_ACCESS_2023_3283422
crossref_primary_10_1007_s11831_023_09990_1
crossref_primary_10_1007_s00521_022_07530_9
crossref_primary_10_1016_j_compbiomed_2024_108353
crossref_primary_10_12677_mos_2025_141003
crossref_primary_10_1016_j_knosys_2023_110722
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_3390_a15090317
crossref_primary_10_3390_app14114878
crossref_primary_10_1038_s41598_023_31876_2
crossref_primary_10_36548_jaicn_2025_2_001
crossref_primary_10_3390_biomimetics10090638
crossref_primary_10_1016_j_knosys_2022_108124
crossref_primary_10_1038_s41598_023_48479_6
crossref_primary_10_1038_s41598_025_12581_8
crossref_primary_10_3390_en16052409
crossref_primary_10_1002_er_8114
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_1038_s41598_025_90178_x
crossref_primary_10_1007_s11831_023_09902_3
crossref_primary_10_1016_j_ijhydene_2024_12_381
crossref_primary_10_3390_biomimetics8060470
crossref_primary_10_1016_j_jfranklin_2024_107398
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_1016_j_energy_2022_123447
crossref_primary_10_1177_09544062241240395
crossref_primary_10_1155_2021_9931677
crossref_primary_10_3390_biomimetics8010121
crossref_primary_10_3390_su14010310
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1007_s10098_022_02334_w
crossref_primary_10_3390_math10142396
crossref_primary_10_3389_fmech_2022_1126450
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_1177_18724981251322925
crossref_primary_10_1016_j_jocs_2024_102323
crossref_primary_10_1016_j_matpr_2022_03_253
crossref_primary_10_3390_su142114287
crossref_primary_10_1007_s00371_021_02285_1
crossref_primary_10_1007_s00521_023_09064_0
crossref_primary_10_1016_j_bspc_2023_105419
crossref_primary_10_1017_S0263574725000049
crossref_primary_10_1016_j_eswa_2023_122705
crossref_primary_10_1016_j_asoc_2021_108387
crossref_primary_10_1049_cth2_12277
crossref_primary_10_1016_j_istruc_2023_04_102
crossref_primary_10_3390_biomimetics8020162
crossref_primary_10_1007_s10489_024_05804_4
crossref_primary_10_1007_s11063_023_11230_3
crossref_primary_10_1109_ACCESS_2024_3455550
crossref_primary_10_3233_JIFS_221036
crossref_primary_10_3233_JIFS_221039
crossref_primary_10_1016_j_knosys_2023_110940
crossref_primary_10_1016_j_jhydrol_2022_129044
crossref_primary_10_1007_s00521_022_08103_6
crossref_primary_10_3390_en17184742
crossref_primary_10_32604_cmes_2023_025908
crossref_primary_10_1007_s00521_024_09497_1
crossref_primary_10_1007_s12065_025_01069_z
crossref_primary_10_1016_j_ijepes_2025_110676
crossref_primary_10_1016_j_knosys_2025_113589
crossref_primary_10_1016_j_eswa_2023_121744
crossref_primary_10_1515_mt_2024_0151
crossref_primary_10_1007_s12530_024_09645_x
crossref_primary_10_1016_j_eswa_2023_122830
crossref_primary_10_1007_s00521_024_10577_5
crossref_primary_10_1007_s10878_025_01304_4
crossref_primary_10_1016_j_jestch_2025_101982
crossref_primary_10_1038_s41598_024_70497_1
crossref_primary_10_1155_2022_1924906
crossref_primary_10_1016_j_dajour_2025_100608
crossref_primary_10_1016_j_knosys_2025_114430
crossref_primary_10_32604_cmes_2023_026231
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_1093_ijlct_ctae113
crossref_primary_10_3390_app12178749
crossref_primary_10_1007_s41870_022_01031_7
crossref_primary_10_3390_biomimetics8020149
crossref_primary_10_1007_s00202_024_02779_w
crossref_primary_10_1007_s00500_023_08513_1
crossref_primary_10_1109_ACCESS_2022_3185737
crossref_primary_10_1155_2022_3082933
crossref_primary_10_1016_j_bspc_2022_104434
crossref_primary_10_1016_j_bspc_2023_104951
crossref_primary_10_1002_cpe_8393
crossref_primary_10_1007_s00521_022_07080_0
crossref_primary_10_3390_en15238884
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_1007_s11837_025_07625_3
crossref_primary_10_3390_modelling5030065
crossref_primary_10_1016_j_asoc_2023_110953
crossref_primary_10_1093_jcde_qwac113
crossref_primary_10_1002_int_22703
crossref_primary_10_1016_j_jestch_2023_101612
crossref_primary_10_1007_s10836_025_06157_7
crossref_primary_10_1016_j_bspc_2024_107395
crossref_primary_10_1016_j_est_2021_103035
crossref_primary_10_1155_jece_6682046
crossref_primary_10_1080_02286203_2025_2523064
crossref_primary_10_1109_JSEN_2022_3186063
crossref_primary_10_1007_s11227_022_04644_8
crossref_primary_10_1016_j_eswa_2021_115538
crossref_primary_10_1002_oca_3284
crossref_primary_10_1111_jph_13426
crossref_primary_10_1038_s41598_024_69010_5
crossref_primary_10_1007_s11227_025_07460_y
crossref_primary_10_52254_1857_0070_2024_3_63_01
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1109_ACCESS_2024_3376605
crossref_primary_10_1109_ACCESS_2024_3446239
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_3390_fractalfract5040190
crossref_primary_10_1016_j_eswa_2023_120478
crossref_primary_10_7717_peerj_cs_1785
crossref_primary_10_1016_j_phycom_2025_102749
crossref_primary_10_1049_cth2_12441
crossref_primary_10_1109_ACCESS_2024_3495518
crossref_primary_10_1007_s10462_023_10516_1
crossref_primary_10_1016_j_knosys_2023_110774
crossref_primary_10_1016_j_eswa_2023_120594
crossref_primary_10_1007_s00034_025_03080_2
crossref_primary_10_1016_j_bspc_2025_107563
crossref_primary_10_3390_math13091432
crossref_primary_10_1080_15567036_2025_2488466
crossref_primary_10_1016_j_cie_2023_109502
crossref_primary_10_32604_cmes_2023_029404
crossref_primary_10_1016_j_egyr_2021_10_073
crossref_primary_10_1016_j_jappgeo_2025_105929
crossref_primary_10_1109_ACCESS_2023_3279416
crossref_primary_10_1002_ett_70057
crossref_primary_10_3390_s21134529
crossref_primary_10_3390_biomimetics8050383
crossref_primary_10_3390_biomimetics8020242
crossref_primary_10_3390_s23052764
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1038_s41598_022_27344_y
crossref_primary_10_1016_j_eswa_2023_121898
crossref_primary_10_1007_s11227_023_05790_3
crossref_primary_10_32604_cmc_2022_025202
crossref_primary_10_3390_biomimetics8040332
crossref_primary_10_1016_j_matcom_2022_01_018
crossref_primary_10_1007_s00521_025_11421_0
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1007_s00366_021_01470_z
crossref_primary_10_1007_s10462_021_10100_5
crossref_primary_10_3390_math12162437
crossref_primary_10_1016_j_ecolind_2021_108285
crossref_primary_10_1016_j_engappai_2021_104372
crossref_primary_10_3390_s21155214
crossref_primary_10_1108_K_08_2023_1580
crossref_primary_10_1007_s11042_023_15129_y
crossref_primary_10_1016_j_apenergy_2023_122054
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1007_s11277_023_10197_7
crossref_primary_10_1080_01430750_2023_2267569
crossref_primary_10_3390_math10152675
crossref_primary_10_1007_s00500_022_07668_7
crossref_primary_10_1016_j_measurement_2024_115373
crossref_primary_10_1007_s00500_022_07410_3
crossref_primary_10_1007_s13042_024_02488_7
crossref_primary_10_1016_j_jfranklin_2025_107910
crossref_primary_10_1007_s00500_024_10322_z
crossref_primary_10_1007_s10489_022_03715_w
crossref_primary_10_3390_biomimetics9030137
crossref_primary_10_1177_01423312211037967
crossref_primary_10_1007_s12145_024_01394_4
crossref_primary_10_1016_j_bspc_2024_106093
crossref_primary_10_1007_s12008_025_02311_9
crossref_primary_10_1038_s41598_025_01835_0
crossref_primary_10_1371_journal_pone_0291872
crossref_primary_10_1016_j_jer_2024_05_008
crossref_primary_10_1007_s44444_025_00008_8
crossref_primary_10_1038_s41598_024_59034_2
crossref_primary_10_3390_rs15215231
crossref_primary_10_1016_j_compbiomed_2022_105349
crossref_primary_10_1007_s10489_023_04732_z
crossref_primary_10_1016_j_matcom_2022_02_030
crossref_primary_10_3233_JIFS_232114
crossref_primary_10_15407_techned2025_01_003
crossref_primary_10_1007_s42108_025_00344_0
crossref_primary_10_1038_s41598_025_98400_6
crossref_primary_10_1007_s11227_023_05486_8
crossref_primary_10_1155_2022_4639208
crossref_primary_10_1007_s13369_023_08217_6
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1016_j_bspc_2025_108422
crossref_primary_10_1007_s13042_022_01617_4
crossref_primary_10_1038_s41598_024_61434_3
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1007_s13369_024_09702_2
crossref_primary_10_1007_s40435_025_01814_3
crossref_primary_10_1016_j_advengsoft_2024_103694
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1080_15567036_2022_2086324
crossref_primary_10_1111_exsy_13224
crossref_primary_10_1007_s11227_022_04755_2
crossref_primary_10_3390_math11122728
crossref_primary_10_1007_s10462_023_10416_4
crossref_primary_10_1007_s10489_021_03037_3
crossref_primary_10_3390_act12100396
crossref_primary_10_1016_j_asoc_2023_110881
crossref_primary_10_1016_j_egyr_2022_05_231
crossref_primary_10_1108_K_07_2023_1210
crossref_primary_10_3390_en16155800
crossref_primary_10_1007_s13198_024_02609_z
crossref_primary_10_1016_j_heliyon_2023_e16827
crossref_primary_10_3390_electronics13214215
crossref_primary_10_1093_ce_zkac010
crossref_primary_10_1016_j_eswa_2024_126197
crossref_primary_10_1016_j_jestch_2023_101408
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1016_j_knosys_2024_111960
crossref_primary_10_3390_s22030855
crossref_primary_10_1007_s00521_023_08230_8
crossref_primary_10_3233_JIFS_222413
crossref_primary_10_1016_j_heliyon_2024_e40068
crossref_primary_10_1007_s40815_022_01397_7
crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1515_mt_2022_0013
crossref_primary_10_1515_mt_2022_0012
crossref_primary_10_1515_mt_2022_0259
crossref_primary_10_1016_j_est_2025_116342
crossref_primary_10_1016_j_energy_2023_127069
crossref_primary_10_1080_10255842_2025_2501636
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1016_j_optcom_2025_131577
crossref_primary_10_1007_s11227_023_05331_y
crossref_primary_10_1016_j_energy_2024_131963
crossref_primary_10_3390_polym15010233
crossref_primary_10_1109_ACCESS_2021_3066329
crossref_primary_10_1007_s41870_024_01861_7
crossref_primary_10_1016_j_jksuci_2023_02_015
crossref_primary_10_1007_s10586_024_04293_x
crossref_primary_10_1016_j_asoc_2022_109394
crossref_primary_10_1061_JCEMD4_COENG_16487
crossref_primary_10_1016_j_matcom_2023_04_020
crossref_primary_10_1007_s10706_025_03275_z
crossref_primary_10_3390_biomimetics8040377
crossref_primary_10_1016_j_isatra_2025_07_023
crossref_primary_10_3390_app11178231
crossref_primary_10_1016_j_tafmec_2022_103627
crossref_primary_10_1080_10589759_2023_2274015
crossref_primary_10_1016_j_compeleceng_2025_110533
crossref_primary_10_1016_j_swevo_2023_101457
crossref_primary_10_1016_j_eswa_2023_120482
crossref_primary_10_3390_app11125620
crossref_primary_10_1016_j_engappai_2022_105202
crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_1007_s10115_022_01746_w
crossref_primary_10_3390_su14169882
crossref_primary_10_1007_s11063_023_11321_1
crossref_primary_10_52254_1857_0070_2025_2_66_05
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_physleta_2025_130430
crossref_primary_10_1007_s11227_022_04769_w
crossref_primary_10_1016_j_bspc_2023_105806
crossref_primary_10_1007_s11831_024_10217_0
crossref_primary_10_1016_j_knosys_2022_110011
crossref_primary_10_1016_j_knosys_2025_114273
crossref_primary_10_1007_s13369_023_07803_y
crossref_primary_10_1007_s10462_023_10537_w
crossref_primary_10_1016_j_ifacsc_2025_100304
crossref_primary_10_3390_biomimetics8040381
crossref_primary_10_1016_j_jobe_2023_106274
crossref_primary_10_1007_s12530_024_09585_6
crossref_primary_10_1016_j_istruc_2022_08_064
crossref_primary_10_1016_j_energy_2024_131024
crossref_primary_10_3390_pr12071321
crossref_primary_10_1371_journal_pone_0275346
crossref_primary_10_1007_s11227_025_07452_y
crossref_primary_10_3390_math10224197
crossref_primary_10_1007_s12652_025_05000_3
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1016_j_eswa_2021_116001
crossref_primary_10_3390_biomimetics8080619
crossref_primary_10_1007_s10586_025_05280_6
crossref_primary_10_1155_2022_2721490
crossref_primary_10_1016_j_eswa_2025_127375
crossref_primary_10_1007_s12083_024_01786_9
crossref_primary_10_3390_app12105080
crossref_primary_10_3390_app14083289
crossref_primary_10_1007_s10489_021_03080_0
crossref_primary_10_1515_mt_2022_0119
crossref_primary_10_1109_ACCESS_2024_3392482
crossref_primary_10_1016_j_jer_2023_11_024
crossref_primary_10_3389_fenvs_2022_1055807
crossref_primary_10_1007_s11042_024_19211_x
crossref_primary_10_3390_sym13122388
crossref_primary_10_1093_ijlct_ctae064
crossref_primary_10_1016_j_cose_2024_103751
crossref_primary_10_1016_j_eswa_2021_115131
crossref_primary_10_3390_su142214766
crossref_primary_10_7717_peerj_cs_910
crossref_primary_10_1016_j_heliyon_2024_e32712
crossref_primary_10_1007_s13042_022_01642_3
crossref_primary_10_1038_s41598_024_70731_w
crossref_primary_10_32604_cmc_2022_025939
crossref_primary_10_1038_s41598_024_54991_0
crossref_primary_10_1007_s11771_023_5514_2
crossref_primary_10_1016_j_egyr_2021_08_198
crossref_primary_10_1016_j_heliyon_2024_e31629
crossref_primary_10_14201_adcaij_29969
crossref_primary_10_3390_s22051894
crossref_primary_10_3390_math10193466
crossref_primary_10_3390_math11040979
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_1016_j_ijepes_2021_107528
crossref_primary_10_3390_math11040851
crossref_primary_10_1016_j_asoc_2023_110573
crossref_primary_10_1002_dac_6052
crossref_primary_10_1038_s41598_024_78761_0
crossref_primary_10_3389_fenrg_2023_1326313
crossref_primary_10_1007_s11771_024_5680_x
crossref_primary_10_1109_JIOT_2024_3398418
crossref_primary_10_3390_math11132953
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1007_s13369_021_06307_x
crossref_primary_10_1109_ACCESS_2022_3227510
crossref_primary_10_3103_S1060992X24700024
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_1007_s10462_023_10398_3
crossref_primary_10_1007_s11831_023_10034_x
crossref_primary_10_1007_s41939_023_00333_y
crossref_primary_10_1063_5_0108340
crossref_primary_10_1038_s41598_025_88745_3
crossref_primary_10_1109_ACCESS_2025_3566163
crossref_primary_10_1007_s42452_024_06044_4
crossref_primary_10_3390_math10010102
crossref_primary_10_1093_jcde_qwac040
crossref_primary_10_1002_oca_3100
crossref_primary_10_1371_journal_pone_0267633
crossref_primary_10_1007_s10586_024_04593_2
crossref_primary_10_1007_s11042_023_16651_9
crossref_primary_10_1016_j_matcom_2021_08_013
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1007_s42488_025_00153_4
crossref_primary_10_3390_math11030707
crossref_primary_10_1007_s12046_022_01937_9
crossref_primary_10_1155_2022_7026728
crossref_primary_10_1038_s41598_023_32465_z
crossref_primary_10_1002_ett_70226
crossref_primary_10_32604_cmes_2024_056693
crossref_primary_10_1007_s10586_024_04702_1
crossref_primary_10_3390_math9121316
crossref_primary_10_1016_j_compeleceng_2022_107862
crossref_primary_10_1016_j_heliyon_2024_e30757
crossref_primary_10_1016_j_egyr_2021_08_177
crossref_primary_10_1093_jcde_qwad017
crossref_primary_10_3390_biomimetics9010021
crossref_primary_10_1007_s10489_022_03397_4
crossref_primary_10_3389_fbioe_2022_1018895
crossref_primary_10_3390_diagnostics13050834
crossref_primary_10_1007_s13369_022_07408_x
crossref_primary_10_1016_j_asoc_2021_107866
crossref_primary_10_1007_s43926_024_00070_9
crossref_primary_10_1007_s11356_023_29498_2
crossref_primary_10_1109_ACCESS_2025_3567556
crossref_primary_10_1007_s00500_025_10611_1
crossref_primary_10_1016_j_bspc_2024_107348
crossref_primary_10_1080_0305215X_2024_2386102
crossref_primary_10_1007_s42979_025_03873_x
crossref_primary_10_1016_j_egyr_2024_12_020
crossref_primary_10_1007_s11831_022_09759_y
crossref_primary_10_52254_1857_0070_2024_2_62_02
crossref_primary_10_1007_s00202_024_02530_5
crossref_primary_10_1016_j_asoc_2023_110597
crossref_primary_10_1016_j_apenergy_2024_123437
crossref_primary_10_1007_s00432_023_04699_x
crossref_primary_10_1016_j_matcom_2021_10_032
crossref_primary_10_1007_s10489_021_02982_3
crossref_primary_10_1016_j_energy_2021_121532
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_1155_2022_6627409
crossref_primary_10_61882_jsdp_22_2_43
crossref_primary_10_1016_j_jenvman_2023_119807
crossref_primary_10_3390_biomimetics9010008
crossref_primary_10_1007_s11276_024_03782_6
crossref_primary_10_3390_en16135144
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_1016_j_bspc_2025_107737
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1109_TGRS_2024_3462752
crossref_primary_10_1016_j_asoc_2023_110252
crossref_primary_10_1371_journal_pone_0290719
crossref_primary_10_1038_s41598_025_91911_2
crossref_primary_10_1109_ACCESS_2021_3108533
crossref_primary_10_1016_j_cie_2023_109080
crossref_primary_10_1016_j_matcom_2022_04_031
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1007_s42835_023_01739_x
crossref_primary_10_3390_biomimetics9010001
crossref_primary_10_3390_healthcare11040590
crossref_primary_10_1007_s12065_023_00892_6
crossref_primary_10_1080_10255842_2024_2431886
crossref_primary_10_3390_biomimetics10060411
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_1002_dac_6100
crossref_primary_10_1016_j_jobe_2024_109748
crossref_primary_10_3390_en16052086
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_3390_biomimetics7040204
crossref_primary_10_2478_jaiscr_2025_0009
crossref_primary_10_3390_electronics12091961
crossref_primary_10_3390_biomimetics9030186
crossref_primary_10_1109_ACCESS_2021_3117567
crossref_primary_10_1016_j_matcom_2022_11_020
crossref_primary_10_3390_su142214928
crossref_primary_10_1016_j_eswa_2024_124529
crossref_primary_10_3390_computation11110230
crossref_primary_10_1007_s00521_021_06807_9
crossref_primary_10_1007_s10489_022_03428_0
crossref_primary_10_1007_s42044_025_00252_w
crossref_primary_10_1007_s11227_023_05773_4
crossref_primary_10_32604_cmes_2024_055171
crossref_primary_10_52254_1857_0070_2023_3_59_01
crossref_primary_10_1038_s41598_022_24343_x
crossref_primary_10_1007_s10489_022_03977_4
crossref_primary_10_1007_s10489_021_03133_4
crossref_primary_10_3390_math13172799
crossref_primary_10_1016_j_chaos_2024_114723
crossref_primary_10_1016_j_compbiomed_2023_106691
crossref_primary_10_1016_j_knosys_2023_111257
crossref_primary_10_1155_2021_7788491
crossref_primary_10_1016_j_conengprac_2024_106061
crossref_primary_10_1109_TCBB_2023_3305429
crossref_primary_10_1007_s11071_024_09829_9
crossref_primary_10_1007_s10462_023_10581_6
crossref_primary_10_1016_j_jece_2024_114043
crossref_primary_10_3390_app12189170
crossref_primary_10_1007_s10586_024_05055_5
crossref_primary_10_1016_j_cie_2022_107974
crossref_primary_10_1080_1448837X_2024_2355004
crossref_primary_10_1002_ett_70026
crossref_primary_10_1080_0952813X_2024_2338495
crossref_primary_10_1109_TMECH_2022_3206435
crossref_primary_10_1016_j_jmapro_2024_10_001
crossref_primary_10_3390_rs13040755
crossref_primary_10_1186_s40537_024_00917_6
crossref_primary_10_1007_s11042_023_18085_9
crossref_primary_10_1038_s41598_021_01018_7
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_3390_axioms12100907
crossref_primary_10_1038_s41598_023_36066_8
crossref_primary_10_1016_j_chaos_2023_114028
crossref_primary_10_1007_s00366_021_01487_4
crossref_primary_10_3390_eng6080174
crossref_primary_10_1016_j_bspc_2024_106732
crossref_primary_10_1080_0954898X_2025_2503791
crossref_primary_10_1155_2022_3343505
crossref_primary_10_1109_ACCESS_2022_3216321
crossref_primary_10_1080_1448837X_2025_2529098
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_1016_j_aei_2024_102354
crossref_primary_10_1016_j_energy_2023_127557
crossref_primary_10_1016_j_est_2021_103848
crossref_primary_10_1007_s10489_022_03438_y
crossref_primary_10_1109_JIOT_2024_3448256
crossref_primary_10_1007_s10489_021_02849_7
crossref_primary_10_1016_j_advengsoft_2022_103404
crossref_primary_10_1016_j_compbiomed_2022_106075
crossref_primary_10_1002_ett_4733
crossref_primary_10_1109_ACCESS_2021_3096726
crossref_primary_10_1007_s12597_025_00973_3
crossref_primary_10_1016_j_ijhydene_2023_02_071
crossref_primary_10_3233_JIFS_221098
crossref_primary_10_1080_13813455_2025_2524182
crossref_primary_10_3390_a17110478
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_32604_cmc_2024_050863
crossref_primary_10_1016_j_bspc_2024_106987
crossref_primary_10_1007_s00500_022_07033_8
crossref_primary_10_1007_s12065_024_00995_8
crossref_primary_10_1038_s41598_024_53602_2
crossref_primary_10_1080_0954898X_2024_2373127
crossref_primary_10_1080_0305215X_2025_2501647
crossref_primary_10_32604_cmc_2025_058894
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1007_s10489_022_03962_x
crossref_primary_10_1016_j_rsase_2024_101424
crossref_primary_10_3390_math13172888
crossref_primary_10_1093_jcde_qwae089
crossref_primary_10_32604_cmes_2024_053236
crossref_primary_10_3390_en15228499
crossref_primary_10_1007_s00521_023_08657_z
crossref_primary_10_3390_math12071059
crossref_primary_10_1371_journal_pone_0285211
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_3390_biomimetics8060507
crossref_primary_10_26599_Jic_2025_9180087
crossref_primary_10_1016_j_engappai_2022_104722
crossref_primary_10_1007_s10064_025_04338_4
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1109_ACCESS_2022_3177218
crossref_primary_10_1007_s13042_025_02620_1
crossref_primary_10_1016_j_cma_2023_116307
crossref_primary_10_1007_s10489_021_03155_y
crossref_primary_10_1016_j_tust_2023_105508
crossref_primary_10_1007_s00521_025_11637_0
crossref_primary_10_3390_biomimetics10080517
crossref_primary_10_1007_s11356_022_19426_1
crossref_primary_10_1016_j_cma_2023_116200
crossref_primary_10_1007_s00521_022_07574_x
crossref_primary_10_1007_s44196_025_00823_6
crossref_primary_10_1016_j_energy_2025_136944
crossref_primary_10_1007_s10586_025_05201_7
crossref_primary_10_1016_j_cma_2023_116446
crossref_primary_10_1007_s12008_024_02136_y
crossref_primary_10_1109_ACCESS_2021_3061529
crossref_primary_10_1007_s10489_022_03994_3
crossref_primary_10_1109_ACCESS_2022_3153493
crossref_primary_10_1007_s00500_022_06886_3
crossref_primary_10_1080_15567036_2024_2387239
crossref_primary_10_1109_ACCESS_2023_3272356
crossref_primary_10_1007_s10462_024_10857_5
crossref_primary_10_1016_j_cmpb_2021_106244
crossref_primary_10_1007_s12145_023_00963_3
crossref_primary_10_3390_s23218783
crossref_primary_10_1007_s00521_022_07925_8
crossref_primary_10_1007_s12652_022_04347_1
crossref_primary_10_1016_j_compbiomed_2023_107237
crossref_primary_10_3390_electronics10172057
crossref_primary_10_1016_j_neucom_2025_129687
crossref_primary_10_1016_j_renene_2025_122866
crossref_primary_10_1016_j_soildyn_2025_109530
crossref_primary_10_1109_ACCESS_2024_3359587
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_1016_j_euromechflu_2025_204305
crossref_primary_10_1007_s10462_022_10234_0
crossref_primary_10_1016_j_aej_2025_02_037
crossref_primary_10_1142_S0218126625502469
crossref_primary_10_1016_j_rineng_2025_105130
crossref_primary_10_1177_18724981241292884
crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_1016_j_cviu_2024_103933
crossref_primary_10_1016_j_neucom_2023_03_065
crossref_primary_10_1109_JSEN_2023_3256009
crossref_primary_10_1016_j_eswa_2025_129195
crossref_primary_10_3390_biomimetics10010031
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1016_j_ijhydene_2022_09_129
crossref_primary_10_1016_j_applthermaleng_2024_125005
crossref_primary_10_1002_cpe_7705
crossref_primary_10_1007_s11235_022_00883_5
crossref_primary_10_3390_pr10112254
crossref_primary_10_3390_biomimetics10080537
crossref_primary_10_1016_j_cie_2023_109237
crossref_primary_10_3390_math12030435
crossref_primary_10_1016_j_aej_2025_02_061
crossref_primary_10_1155_er_3457520
crossref_primary_10_1016_j_knosys_2022_109615
crossref_primary_10_1016_j_chemolab_2025_105478
crossref_primary_10_1007_s40747_023_01082_8
crossref_primary_10_1155_2023_9709608
crossref_primary_10_1007_s11227_024_06616_6
crossref_primary_10_1016_j_jpdc_2024_104850
crossref_primary_10_1109_ACCESS_2023_3287859
crossref_primary_10_1016_j_eswa_2022_117127
crossref_primary_10_1007_s12145_022_00825_4
crossref_primary_10_3390_biomimetics9070419
crossref_primary_10_3390_computers11120170
crossref_primary_10_1093_jcde_qwaf014
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1109_ACCESS_2022_3229964
crossref_primary_10_1007_s42835_021_00862_x
crossref_primary_10_1093_jcde_qwac094
crossref_primary_10_1002_jnm_70030
crossref_primary_10_1016_j_heliyon_2024_e38783
crossref_primary_10_1002_cpe_6991
crossref_primary_10_1080_02286203_2023_2298174
crossref_primary_10_3390_s22124492
crossref_primary_10_1007_s42044_023_00160_x
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_3390_math10162960
crossref_primary_10_1007_s00521_024_10009_4
crossref_primary_10_1007_s12530_023_09485_1
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1007_s11227_023_05513_8
crossref_primary_10_1007_s11042_023_15693_3
crossref_primary_10_1016_j_engappai_2022_104920
crossref_primary_10_1007_s11042_023_17148_1
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1615_TelecomRadEng_2025053207
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1007_s00500_023_09023_w
crossref_primary_10_1007_s10489_022_04059_1
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1038_s41598_023_49754_2
crossref_primary_10_1155_2022_6227794
crossref_primary_10_1016_j_knosys_2024_112347
crossref_primary_10_1007_s11042_023_15781_4
crossref_primary_10_1007_s00477_022_02178_2
crossref_primary_10_1038_s41598_022_18001_5
crossref_primary_10_1016_j_infrared_2025_105788
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_1007_s11554_024_01584_9
crossref_primary_10_3390_axioms11030095
crossref_primary_10_1007_s11831_025_10363_z
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_1016_j_autcon_2024_105653
crossref_primary_10_1016_j_matcom_2022_06_007
crossref_primary_10_3390_en15041587
crossref_primary_10_1007_s00521_021_06634_y
crossref_primary_10_1007_s10973_024_13628_0
crossref_primary_10_1080_01431161_2024_2326041
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_1002_nbm_70036
crossref_primary_10_1007_s11630_025_2125_2
crossref_primary_10_1007_s13349_022_00638_5
crossref_primary_10_1007_s00500_023_08468_3
Cites_doi 10.1007/11579427_66
10.1109/CEC.1999.782657
10.1115/1.2919393
10.1016/j.eswa.2020.113364
10.1016/j.engappai.2020.103731
10.1016/j.asoc.2013.05.010
10.1038/scientificamerican0792-66
10.1016/j.knosys.2015.07.006
10.1016/j.compstruc.2012.09.003
10.1016/j.advengsoft.2017.03.014
10.1007/s00521-018-3592-0
10.1007/s10462-017-9605-z
10.1007/BF02986750
10.1016/j.eswa.2016.04.018
10.1016/S0166-3615(99)00046-9
10.1007/s00521-019-04611-0
10.1016/j.ins.2015.09.051
10.1016/j.knosys.2015.12.022
10.1016/j.ins.2009.03.004
10.1109/4235.585893
10.1016/j.advengsoft.2013.12.007
10.1007/s10462-012-9328-0
10.1016/j.compchemeng.2019.106656
10.1016/j.ins.2015.10.001
10.1109/ICENCO.2017.8289778
10.1016/j.advengsoft.2017.07.002
10.1016/j.compstruc.2012.07.010
10.1007/s40747-018-0071-2
10.1007/s00707-012-0745-6
10.1145/2480741.2480752
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2015.07.028
10.1016/j.swevo.2016.12.005
10.1016/j.knosys.2018.08.030
10.1515/jaiscr-2015-0001
10.1504/IJICA.2011.037947
10.1126/science.220.4598.671
10.1016/j.future.2019.07.015
10.1016/j.knosys.2014.07.025
10.1016/j.knosys.2019.105190
10.1016/j.asoc.2012.11.026
10.1007/s00707-009-0270-4
10.1109/TEVC.2009.2033580
10.1016/j.asoc.2020.106347
10.1016/j.future.2019.02.028
10.1016/j.swevo.2015.07.002
10.1016/j.asoc.2015.03.035
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-01893-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 1551
ExternalDocumentID 10_1007_s10489_020_01893_z
GrantInformation_xml – fundername: University of Electronic Science and Technology of China (UESTC) and National Natural Science Foundation of China (NSFC)
  grantid: Grant No. 61772120.
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-88124d6792cbea30cceb052aab7858b0de3b9f0647ad5198d877f0ff78bc98963
IEDL.DBID K7-
ISICitedReferencesCount 823
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573749800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:47:06 EST 2025
Tue Nov 18 22:37:03 EST 2025
Sat Nov 29 05:33:21 EST 2025
Fri Feb 21 02:48:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Exploration and exploitation
Buoyant force
Metaheuristic
Archimedes’ principle
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-88124d6792cbea30cceb052aab7858b0de3b9f0647ad5198d877f0ff78bc98963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8127-7233
PQID 2487630319
PQPubID 326365
PageCount 21
ParticipantIDs proquest_journals_2487630319
crossref_citationtrail_10_1007_s10489_020_01893_z
crossref_primary_10_1007_s10489_020_01893_z
springer_journals_10_1007_s10489_020_01893_z
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HussainKSallehMNMChengSShiYMetaheuristic research: a comprehensive surveyArtif Intell Rev201952421912233
AbedinpourshotorbanHShamsuddinSMBeheshtiZJawawiDNAElectromagnetic field optimization: a physics-inspired metaheuristic optimization algorithmSwarm Evol Comput201626822
RorresCAcross neighborhood search for numerical optimizationInf Sci2016329597618
HousseinEHHosneyMEOlivaDMohamedWMHassaballahMA novel hybrid Harris hawks optimization and support vector machines for drug design and discoveryComput Chem Eng2020133106656
RashediENezamabadi-pourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.90378
Neggaz N, Houssein EH, Hussain K (2020) An efficient henry gas solubility optimization for feature selection. Exp Syst Appl 113364
Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science, pp 39–43
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
MavrovouniotisMLiCYangSA survey of swarm intelligence for dynamic optimization: algorithms and applicationsSwarm Evol Comput201733117
ChengSShiYQinQZhangQBaiRPopulation diversity maintenance in brain storm optimization algorithmJ Artif Intell Soft Comput Res2014428397
LamAYSLiVOKChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput2010143381399
Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican international conference on artificial intelligence, pp 652–662
KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102132672891397.65094
ČrepinšekMLiuS-HMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv20134531351293.68251
ZhaoWWangLAn effective bacterial foraging optimizer for global optimizationInf Sci2016329719735
HollandJHGenetic algorithmsSci Am199226716672
JavidyBHatamlouAMirjaliliSIons motion algorithm for solving optimization problemsAppl Soft Comput2015327279
HussainKSallehMNMChengSShiYOn the exploration and exploitation in popular swarm-based metaheuristic algorithmsNeural Comput Appl2018311176657683
EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct20121101151166
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162
HussainSAhmadAIMutlagAHLightning search algorithmAppl Soft Comput201536315333
TaradehMMafarjaMHeidariAAFarisHAljarahIMirjaliliSFujitaHAn evolutionary gravitational search-based feature selectionAppl Soft Comput2019497219239
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
KarAKBio inspired computing—a review of algorithms and scope of applicationsExp Syst Appl2016592032
KavehADadrasAA novel meta-heuristic optimization algorithm: thermal exchange optimizationAdv Eng Softw20171106984
KarabogaDGorkemliBOzturkCKarabogaNA comprehensive survey: artificial bee colony (abc) algorithm and applicationsArtif Intell Rev20144212157
HashimFAHousseinEHHussainKMabroukMSAl-AtabanyWA modified Henry gas solubility optimization for solving motif discovery problemNeural Comput Appl202032141075910771
SalimiHStochastic fractal searchKnowl-Based Syst201575118
FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst2020191105190
KavehAKhayatazadMA new meta-heuristic method: ray optimizationComput Struct2012112283294
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithmAdv Eng Softw2017114163191
ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl-Based Syst201989283304
HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell202094103731
ChengSLuHLeiXShiYA quarter century of particle swarm optimizationComplex Intell Syst201843227239
CoelloCACUse of a self-adaptive penalty approach for engineering optimization problemsComput Ind2000412113127
RorresCCompleting book ii of archimedes’s on floating bodiesMath Intell2004263324220880131069.01004
LiuS-HMernikMHrnčičDČrepinšekMA parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer modelAppl Soft Comput201313937923805
MirjaliliSMLewisAThe whale optimization algorithmAdv Eng Softw2016955167
KavehAShareMAMMoslehiMMagnetic charged system search: a new meta-heuristic algorithm for optimizationActa Mech20132241851071318.78011
SadollahABahreininejadAEskandarHHamdiMMine blast algorithm: a new population based algorithm for solving constrained engineering optimization problemsAppl Soft Comput201313525922612
KannanBKramerSNAn augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ Mech Des19941162405411
ČrepinšekMMernikMLiuS-HAnalysis of exploration and exploitation in evolutionary algorithms by ancestry treesInt J Innov Comput Appl20113111191293.68251
Wu G, Mallipeddi R, Suganthan P (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization, National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017
HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667
MirjaliliSMoth-flame optimization algorithmKnowl-Based Syst201589228249
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782
MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169696120133
Hashim F, Mabrouk MS, Al-Atabany W (2017) GWOMF: Grey Wolf Optimization for motif finding. In: 2017 13th international computer engineering conference (ICENCO), pp 141–146
Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, 1999 CEC 99, pp 1470–1477
Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 106347, in press
M Taradeh (1893_CR2) 2019; 497
H Salimi (1893_CR28) 2015; 75
A Kaveh (1893_CR33) 2013; 224
A Faramarzi (1893_CR32) 2020; 191
B Kannan (1893_CR50) 1994; 116
W Zhao (1893_CR31) 2019; 89
AA Heidari (1893_CR4) 2019; 97
EH Houssein (1893_CR5) 2020; 133
S Cheng (1893_CR40) 2014; 4
S Cheng (1893_CR44) 2018; 4
C Rorres (1893_CR39) 2016; 329
DH Wolpert (1893_CR37) 1997; 1
1893_CR14
1893_CR12
EH Houssein (1893_CR3) 2020; 94
S Kirkpatrick (1893_CR11) 1983; 220
JH Holland (1893_CR13) 1992; 267
CAC Coello (1893_CR47) 2000; 41
H Abedinpourshotorban (1893_CR34) 2016; 26
M Črepinšek (1893_CR43) 2011; 3
M Črepinšek (1893_CR42) 2013; 45
AYS Lam (1893_CR26) 2010; 14
K Hussain (1893_CR10) 2019; 52
1893_CR49
S-H Liu (1893_CR21) 2013; 13
1893_CR46
1893_CR1
B Javidy (1893_CR35) 2015; 32
S Mirjalili (1893_CR27) 2016; 96
FA Hashim (1893_CR7) 2020; 32
AK Kar (1893_CR9) 2016; 59
1893_CR6
1893_CR8
A Kaveh (1893_CR24) 2012; 112
W Zhao (1893_CR17) 2016; 329
S Mirjalili (1893_CR18) 2015; 89
H Eskandar (1893_CR45) 2012; 110
E Rashedi (1893_CR23) 2009; 179
S Mirjalili (1893_CR19) 2017; 114
S Hussain (1893_CR30) 2015; 36
A Kaveh (1893_CR22) 2010; 213
FA Hashim (1893_CR25) 2019; 101
M Mavrovouniotis (1893_CR36) 2017; 33
C Rorres (1893_CR38) 2004; 26
D Karaboga (1893_CR15) 2014; 42
SM Mirjalili (1893_CR20) 2016; 95
S Mirjalili (1893_CR16) 2014; 69
A Sadollah (1893_CR48) 2013; 13
A Kaveh (1893_CR29) 2017; 110
K Hussain (1893_CR41) 2018; 31
References_xml – reference: HussainSAhmadAIMutlagAHLightning search algorithmAppl Soft Comput201536315333
– reference: SadollahABahreininejadAEskandarHHamdiMMine blast algorithm: a new population based algorithm for solving constrained engineering optimization problemsAppl Soft Comput201313525922612
– reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl-Based Syst201989283304
– reference: Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science, pp 39–43
– reference: KarabogaDGorkemliBOzturkCKarabogaNA comprehensive survey: artificial bee colony (abc) algorithm and applicationsArtif Intell Rev20144212157
– reference: TaradehMMafarjaMHeidariAAFarisHAljarahIMirjaliliSFujitaHAn evolutionary gravitational search-based feature selectionAppl Soft Comput2019497219239
– reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667
– reference: KavehADadrasAA novel meta-heuristic optimization algorithm: thermal exchange optimizationAdv Eng Softw20171106984
– reference: LamAYSLiVOKChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput2010143381399
– reference: MavrovouniotisMLiCYangSA survey of swarm intelligence for dynamic optimization: algorithms and applicationsSwarm Evol Comput201733117
– reference: KarAKBio inspired computing—a review of algorithms and scope of applicationsExp Syst Appl2016592032
– reference: AbedinpourshotorbanHShamsuddinSMBeheshtiZJawawiDNAElectromagnetic field optimization: a physics-inspired metaheuristic optimization algorithmSwarm Evol Comput201626822
– reference: ČrepinšekMMernikMLiuS-HAnalysis of exploration and exploitation in evolutionary algorithms by ancestry treesInt J Innov Comput Appl20113111191293.68251
– reference: MirjaliliSMoth-flame optimization algorithmKnowl-Based Syst201589228249
– reference: SalimiHStochastic fractal searchKnowl-Based Syst201575118
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162
– reference: HussainKSallehMNMChengSShiYMetaheuristic research: a comprehensive surveyArtif Intell Rev201952421912233
– reference: HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell202094103731
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782
– reference: KavehAKhayatazadMA new meta-heuristic method: ray optimizationComput Struct2012112283294
– reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169696120133
– reference: ChengSLuHLeiXShiYA quarter century of particle swarm optimizationComplex Intell Syst201843227239
– reference: HashimFAHousseinEHHussainKMabroukMSAl-AtabanyWA modified Henry gas solubility optimization for solving motif discovery problemNeural Comput Appl202032141075910771
– reference: Hashim F, Mabrouk MS, Al-Atabany W (2017) GWOMF: Grey Wolf Optimization for motif finding. In: 2017 13th international computer engineering conference (ICENCO), pp 141–146
– reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct20121101151166
– reference: KannanBKramerSNAn augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ Mech Des19941162405411
– reference: RashediENezamabadi-pourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.90378
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithmAdv Eng Softw2017114163191
– reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst2020191105190
– reference: CoelloCACUse of a self-adaptive penalty approach for engineering optimization problemsComput Ind2000412113127
– reference: Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 106347, in press
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
– reference: Wu G, Mallipeddi R, Suganthan P (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization, National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017
– reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102132672891397.65094
– reference: Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican international conference on artificial intelligence, pp 652–662
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
– reference: HollandJHGenetic algorithmsSci Am199226716672
– reference: MirjaliliSMLewisAThe whale optimization algorithmAdv Eng Softw2016955167
– reference: ČrepinšekMLiuS-HMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv20134531351293.68251
– reference: Neggaz N, Houssein EH, Hussain K (2020) An efficient henry gas solubility optimization for feature selection. Exp Syst Appl 113364
– reference: HousseinEHHosneyMEOlivaDMohamedWMHassaballahMA novel hybrid Harris hawks optimization and support vector machines for drug design and discoveryComput Chem Eng2020133106656
– reference: LiuS-HMernikMHrnčičDČrepinšekMA parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer modelAppl Soft Comput201313937923805
– reference: RorresCCompleting book ii of archimedes’s on floating bodiesMath Intell2004263324220880131069.01004
– reference: ChengSShiYQinQZhangQBaiRPopulation diversity maintenance in brain storm optimization algorithmJ Artif Intell Soft Comput Res2014428397
– reference: Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, 1999 CEC 99, pp 1470–1477
– reference: JavidyBHatamlouAMirjaliliSIons motion algorithm for solving optimization problemsAppl Soft Comput2015327279
– reference: ZhaoWWangLAn effective bacterial foraging optimizer for global optimizationInf Sci2016329719735
– reference: HussainKSallehMNMChengSShiYOn the exploration and exploitation in popular swarm-based metaheuristic algorithmsNeural Comput Appl2018311176657683
– reference: KavehAShareMAMMoslehiMMagnetic charged system search: a new meta-heuristic algorithm for optimizationActa Mech20132241851071318.78011
– reference: RorresCAcross neighborhood search for numerical optimizationInf Sci2016329597618
– ident: 1893_CR49
  doi: 10.1007/11579427_66
– ident: 1893_CR14
  doi: 10.1109/CEC.1999.782657
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 1893_CR50
  publication-title: J Mech Des
  doi: 10.1115/1.2919393
– ident: 1893_CR6
  doi: 10.1016/j.eswa.2020.113364
– volume: 94
  start-page: 103731
  year: 2020
  ident: 1893_CR3
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103731
– volume: 13
  start-page: 3792
  issue: 9
  year: 2013
  ident: 1893_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.05.010
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 1893_CR13
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 89
  start-page: 228
  year: 2015
  ident: 1893_CR18
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 112
  start-page: 283
  year: 2012
  ident: 1893_CR24
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 110
  start-page: 69
  year: 2017
  ident: 1893_CR29
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 31
  start-page: 7665
  issue: 11
  year: 2018
  ident: 1893_CR41
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3592-0
– volume: 52
  start-page: 2191
  issue: 4
  year: 2019
  ident: 1893_CR10
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9605-z
– volume: 26
  start-page: 32
  issue: 3
  year: 2004
  ident: 1893_CR38
  publication-title: Math Intell
  doi: 10.1007/BF02986750
– volume: 59
  start-page: 20
  year: 2016
  ident: 1893_CR9
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2016.04.018
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 1893_CR47
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 32
  start-page: 10759
  issue: 14
  year: 2020
  ident: 1893_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04611-0
– volume: 329
  start-page: 597
  year: 2016
  ident: 1893_CR39
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.09.051
– volume: 96
  start-page: 120
  issue: 96
  year: 2016
  ident: 1893_CR27
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 1893_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 497
  start-page: 219
  year: 2019
  ident: 1893_CR2
  publication-title: Appl Soft Comput
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 1893_CR37
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 69
  start-page: 46
  year: 2014
  ident: 1893_CR16
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 1893_CR15
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-012-9328-0
– volume: 133
  start-page: 106656
  year: 2020
  ident: 1893_CR5
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 329
  start-page: 719
  year: 2016
  ident: 1893_CR17
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.10.001
– ident: 1893_CR8
  doi: 10.1109/ICENCO.2017.8289778
– volume: 114
  start-page: 163
  year: 2017
  ident: 1893_CR19
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 110
  start-page: 151
  issue: 1
  year: 2012
  ident: 1893_CR45
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 4
  start-page: 227
  issue: 3
  year: 2018
  ident: 1893_CR44
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-018-0071-2
– volume: 224
  start-page: 85
  issue: 1
  year: 2013
  ident: 1893_CR33
  publication-title: Acta Mech
  doi: 10.1007/s00707-012-0745-6
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 1893_CR42
  publication-title: ACM Comput Surv
  doi: 10.1145/2480741.2480752
– volume: 95
  start-page: 51
  year: 2016
  ident: 1893_CR20
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 36
  start-page: 315
  year: 2015
  ident: 1893_CR30
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.028
– volume: 33
  start-page: 1
  year: 2017
  ident: 1893_CR36
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2016.12.005
– volume: 89
  start-page: 283
  year: 2019
  ident: 1893_CR31
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.030
– ident: 1893_CR46
– volume: 4
  start-page: 83
  issue: 2
  year: 2014
  ident: 1893_CR40
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.1515/jaiscr-2015-0001
– volume: 3
  start-page: 11
  issue: 1
  year: 2011
  ident: 1893_CR43
  publication-title: Int J Innov Comput Appl
  doi: 10.1504/IJICA.2011.037947
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 1893_CR11
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 101
  start-page: 646
  year: 2019
  ident: 1893_CR25
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.07.015
– volume: 75
  start-page: 1
  year: 2015
  ident: 1893_CR28
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.07.025
– volume: 191
  start-page: 105190
  year: 2020
  ident: 1893_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 1893_CR48
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.026
– ident: 1893_CR12
– volume: 213
  start-page: 267
  year: 2010
  ident: 1893_CR22
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 14
  start-page: 381
  issue: 3
  year: 2010
  ident: 1893_CR26
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2033580
– ident: 1893_CR1
  doi: 10.1016/j.asoc.2020.106347
– volume: 97
  start-page: 849
  year: 2019
  ident: 1893_CR4
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 26
  start-page: 8
  year: 2016
  ident: 1893_CR34
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2015.07.002
– volume: 32
  start-page: 72
  year: 2015
  ident: 1893_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.035
SSID ssj0003301
Score 2.702116
Snippet The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1531
SubjectTerms Artificial Intelligence
Complexity
Computer Science
Design engineering
Evolutionary computation
Genetic algorithms
Heuristic methods
Machines
Manufacturing
Mechanical Engineering
Optimization algorithms
Particle swarm optimization
Performance evaluation
Processes
Software testing
Source code
Trigonometric functions
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg7eNLDvZL2JWDyIiC96W_JaW-hDulsP_fUmabZrRQU9JxvCZCbfzGbmG4DT2KdKkpBjqX1VHHHpYSZMsMI95SsW-rmwXUtuyd0d7XbTe1cUVlTZ7tWTpL2pPxW7RSa9JzCJVBpl8WwV1jTcUWOOD48vi_tXR-i2T56OLHCSpF1XKvP9GstwVPuYX55FLdp0mv_b5xZsOu8SXc7VYRtW1GgHmlXnBuQMeRe4JZzVQKgKNNaXxtBVYyI2eB1P-mVveIEY0h43GqqS9dR0zudcDyPt6yKttuZ3xPIKrkNNsQfPneunqxvsui1gEdK4xNRAvUxIGgiuD8kTQnEvDhjjhMaUe1KFPM1NbSqT2u2jkhKSe3lOKBcp1Xa8D43ReKQOAOWRxzQ2MkMkFJGIsTxNdLSqfE9FiUxpC_xK6JlwVOSmI8Ygq0mUjRAzLcTMCjGbteBs8c3bnIjj19nt6iwzZ5RFFkSGfs-UbbXgvDq7evjn1Q7_Nv0INgKT-WIz1drQKCdTdQzr4r3sF5MTq6wf07Hmaw
  priority: 102
  providerName: Springer Nature
Title Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
URI https://link.springer.com/article/10.1007/s10489-020-01893-z
https://www.proquest.com/docview/2487630319
Volume 51
WOSCitedRecordID wos000573749800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx4FLaaFVl9KVD9zAwskmsdNLRRGoUmG1gha2vUR-pVRid4GEHvj1zGQdIpDKhctcnIyizHge9sx8AFtppLyTA8Mdxqo8MU5wbSlZMcJHXg-i0jaoJUdyOFTjcT4KB25VKKtsbWJjqN3M0hn5bpzQ7DTquflydc0JNYpuVwOExgIsRXEckZ5_l_zBEmOu3iDmYY7Bsywfh6aZ0DqXULFQTGVZ6LP53WPH1EWbTy5IG79zuPrSL34Dr0PEyfbmKvIWXvnpGqy2aA4sbO51MM0QWnSOvmIzNCST0KHJ9OUfZFtfTD4zzTAKZxNf6wt_O5_x3C0zjH8ZqjIdUTzmEFBrqnfw8_Dgx_43HhAYuB2otOaK3L_LZB5bg4IT1noj0lhrI1WqjHB-YPKS-lW1w1BQOSVlKcpSKmNzhXv7PSxOZ1P_AViZCI3-UtNwoUQmWpd5hhmsj4RPMperHkTt7y9sGE9OKBmXRTdYmURWoMiKRmTFXQ-2H965mg_nePbpzVZORdioVdEJqQc7raS75f9z23ie20dYian6palW24TF-ubWf4Jl-6_-W930YUGe_-rD0teD4eik3ygt0mOxT1SeIh2lv5GenJ7dAwC89dw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH-B1QQvIiJxFWUOeMKJ03a2nZoYY1ACYd1wwGRvZb4KJuwu0q5G_ij_Rt_rTmkwkRsHzm1fZjq_eR8z770fwPYgUt5lieEOfVUujRNcWwpWjPCR10lU2oa1ZJiNRmo8zo-W4E9bC0Npla1ObBS1m1k6I38XS-qdRjU3Hy9-cGKNotvVlkJjAYtD__sXhmzVh4PPuL5v4njvy_HuPg-sAtwmalBzRSbNpVkeW4ODEdZ6Iwax1iZTA2WE84nJS6rB1A7dG-VUlpWiLDNlbK4Qryh3GR5IiWOhVEGxe635k6ShWxYY0_A0zcehSCeU6klKToopDQx9BH510xB23u0_F7KNndtbvW9_6Ak8Dh41-7TYAmuw5KdPYbVlq2BBea2DaZrsovH3FZuhopyEClSmz09xGvXZ5D3TDKMMNvG1PvPzRQ_r7jFD_57hVqUjmJsSAitP9Qy-3clMN6A3nU39c2ClFBr9AU3Nk2QmtS7zFCN0HwkvU5erPkTtchc2tF8nFpDzomscTRApECJFA5Hiqg87199cLJqP3Pr2ZouLIiiiquhA0Ye3LbK6x_-X9uJ2aVuwsn_8dVgMD0aHL-FRTJk-TWbeJvTqy7l_BQ_tz_p7dfm62SIMTu4acX8B8-xNAg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gGuNFfBEXUPsAJ-3Q8-weE2MMuJEs2XDQZG9jvwZI2F1gBo38NH6dVbM9TCCRGwfPPVOZnv66Ht1V9QFsZpHyTiaGO_RVeWqc4NpSsGKEj7xOosq2rCX7cjxWk0lxsARXXS0MpVV2OrFV1G5u6Yx8O06pdxrV3GxXIS3iYHf4-fSME4MU3bR2dBoLiIz8n98YvtWf9nZxrbfiePj1-843HhgGuE1U1nBF5s3lsoitwQ8T1nojslhrI1WmjHA-MUVF9ZjaoaujnJKyElUllbGFQuyi3AfwEK1wRntsJPm1FUiSlnpZYHzD87yYhIKdULaXUqJSTClh6C_wy5tGsfd0b13OtjZvuPI__61n8DR42uzLYms8hyU_ewErHYsFC0rtJZi2-S46Bb5mc1Sg01CZyvTJIU6jOZp-ZJph9MGmvtFH_mLR27ofZuj3M9zCdDRzU0Jg66lfwY97mekqLM_mM_8aWJUKjX6CpqZKqUy1roocI3cfCZ_mrlADiLqlL21oy07sICdl31Ca4FIiXMoWLuXlAN5fv3O6aEpy59MbHUbKoKDqsgfIAD50KOuH_y1t7W5p7-AxAq3c3xuP1uFJTAlAbcLeBiw35xf-DTyyv5rj-vxtu1sY_LxvwP0FTSVVqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archimedes+optimization+algorithm%3A+a+new+metaheuristic+algorithm+for+solving+optimization+problems&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Hashim%2C+Fatma+A&rft.au=Hussain+Kashif&rft.au=Houssein%2C+Essam+H&rft.au=Mabrouk%2C+Mai+S&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=3&rft.spage=1531&rft.epage=1551&rft_id=info:doi/10.1007%2Fs10489-020-01893-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon