Statistical robustness in utility preference robust optimization models

Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 190; číslo 1-2; s. 679 - 720
Hlavní autoři: Guo, Shaoyan, Xu, Huifu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in the PRO models is that the true probability distribution is either known or can be recovered by real data generated by the true distribution. In data-driven optimization, this assumption may not be satisfied when perceived data differ from real data and consequently it raises a question as to whether statistical estimators of the PRO models based on perceived data are reliable. In this paper, we investigate the issue which is also known as qualitative robustness in the literature of statistics (Huber in Robust statistics, 3rd edn, Wiley, New York, 1981) and risk management (Krätschmer et al. in Finance Stoch 18:271–295, 2014). By utilizing the framework proposed by Krätschmer et al. (2014), we derive moderate sufficient conditions under which the optimal value and optimal solution of the PRO models are robust against perturbation of the exogenous uncertainty data, and examine how the tail behaviour of utility functions affects the robustness. Moreover, under some additional conditions on the Lipschitz continuity of the underlying functions with respect to random data, we establish quantitative robustness of the statistical estimators under the Kantorovich metric. Finally, we investigate uniform consistency of the optimal value and optimal solution of the PRO models. The results cover utility selection problems and stochastic optimization problems as special cases.
AbstractList Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in the PRO models is that the true probability distribution is either known or can be recovered by real data generated by the true distribution. In data-driven optimization, this assumption may not be satisfied when perceived data differ from real data and consequently it raises a question as to whether statistical estimators of the PRO models based on perceived data are reliable. In this paper, we investigate the issue which is also known as qualitative robustness in the literature of statistics (Huber in Robust statistics, 3rd edn, Wiley, New York, 1981) and risk management (Krätschmer et al. in Finance Stoch 18:271–295, 2014). By utilizing the framework proposed by Krätschmer et al. (2014), we derive moderate sufficient conditions under which the optimal value and optimal solution of the PRO models are robust against perturbation of the exogenous uncertainty data, and examine how the tail behaviour of utility functions affects the robustness. Moreover, under some additional conditions on the Lipschitz continuity of the underlying functions with respect to random data, we establish quantitative robustness of the statistical estimators under the Kantorovich metric. Finally, we investigate uniform consistency of the optimal value and optimal solution of the PRO models. The results cover utility selection problems and stochastic optimization problems as special cases.
Author Xu, Huifu
Guo, Shaoyan
Author_xml – sequence: 1
  givenname: Shaoyan
  surname: Guo
  fullname: Guo, Shaoyan
  organization: School of Mathematical Sciences, Dalian University of Technology
– sequence: 2
  givenname: Huifu
  orcidid: 0000-0001-8307-2920
  surname: Xu
  fullname: Xu, Huifu
  email: hfxu@se.cuhk.edu.hk
  organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnlcnyeZPj1K0FQoe1HPI7qaSsk3WJHuon97YLQgeehoY3u-9mTdDE-edQegWwz0GEA8RAwZRAoESMGOsZBdoiivKy4pXfIKmACQvOYYrNItxBwCYSjlFq7ekk43JNrorgq-HmJyJsbCuGJLtbDoUfTBbE4xrzElQ-D7Zvf3OoHfF3remi9focqu7aG5Oc44-np_el-ty87p6WT5uyoZKlkqJhSZgWkOh5lzgmmghW8yEEBVtJakwXxgpZV0TEK2EhWFYL0hmKmBbjukc3Y2-ffBfg4lJ7fwQXI5UhEmg2YDzrCKjqgk-xny_6oPd63BQGNRvYWosTOXC1LEwxTIk_0GNTccfU9C2O4_SEY05x32a8HfVGeoHi1mBFw
CitedBy_id crossref_primary_10_1007_s10287_022_00432_0
crossref_primary_10_1137_23M1585131
crossref_primary_10_1016_j_ejor_2023_10_020
crossref_primary_10_1137_19M1298032
crossref_primary_10_1080_14697688_2021_1892171
crossref_primary_10_1137_20M1316524
crossref_primary_10_1016_j_ejor_2022_08_004
crossref_primary_10_1137_21M1448069
crossref_primary_10_1007_s11590_021_01838_6
crossref_primary_10_1007_s10107_023_01925_9
crossref_primary_10_1007_s10107_024_02128_6
crossref_primary_10_1016_j_trb_2025_103251
crossref_primary_10_1080_10556788_2023_2167995
Cites_doi 10.1287/mnsc.2014.2059
10.2139/ssrn.3254587
10.1214/aoms/1177693054
10.1287/mnsc.30.11.1283
10.1016/0030-5073(78)90039-9
10.1016/0377-2217(87)90168-8
10.1111/jeea.12164
10.1016/j.ejor.2007.08.013
10.1002/9780470316962
10.1111/j.1540-5915.1979.tb00043.x
10.1016/j.jmva.2011.06.005
10.1007/s00780-013-0225-4
10.1002/9780470434697
10.1137/16M1105050
10.1016/j.jmva.2017.02.005
10.1287/mnsc.2016.2593
10.1515/9783110218053
10.2307/1914185
10.1007/978-3-319-20451-2_21
10.1287/mnsc.2018.3108
10.1080/0740817X.2014.919045
10.1007/978-3-642-02431-3
10.1111/j.1468-0262.2006.00716.x
10.1080/14697681003685597
10.1016/j.jmva.2015.08.004
10.1137/1.9781611973433
10.1016/j.ejor.2016.03.016
10.1016/0304-4068(89)90018-9
10.1016/j.ejor.2018.02.018
10.1515/9780691213255-010
10.1137/1101016
10.1002/0471725250
10.1016/S0927-0507(03)10008-4
10.1137/15M1048689
10.1214/aoms/1177704588
10.1007/s10107-012-0585-0
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-020-01555-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 720
ExternalDocumentID 10_1007_s10107_020_01555_5
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-817a20ede30b6671b2a78d1577743d824169e888bb207d809e51a92a20405f613
IEDL.DBID RSV
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564522500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:57:07 EDT 2025
Tue Nov 18 22:22:44 EST 2025
Sat Nov 29 03:34:02 EST 2025
Fri Feb 21 02:47:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C31
Qualitative statistical robustness
90C47
Quantitative statistical robustness
90C15
Uniform consistency
PRO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-817a20ede30b6671b2a78d1577743d824169e888bb207d809e51a92a20405f613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8307-2920
PQID 2580341666
PQPubID 25307
PageCount 42
ParticipantIDs proquest_journals_2580341666
crossref_primary_10_1007_s10107_020_01555_5
crossref_citationtrail_10_1007_s10107_020_01555_5
springer_journals_10_1007_s10107_020_01555_5
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References FishburnPKochenbergerGTwo-piece von Neumann-Morgenstern utility functionsDecis. Sci.19791050351810.1111/j.1540-5915.1979.tb00043.x
KrätschmerVSchiedAZähleHQualitative and infinitesimal robustness of tail-dependent statistical functionalsJ. Multivar. Anal.20121033547282370610.1016/j.jmva.2011.06.005
Römisch, W.: Stability of stochastic programming problems. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, chapter 8. Elsevier, Amsterdam (2003)
HuberPJRonchettiEMRobust Statistics20092HobokenWiley10.1002/9780470434697
TrainKDiscrete Choice Methods with Simulation2009New YorkCambridge University Press1269.62073
ClausMKrätschmerVSchultzRWeak continuity of risk functionals with applications to stochastic programmingSIAM J. Optim.20172791109359588310.1137/15M1048689
MarinacciMModel uncertaintyJ. Eur. Econ. Assoc.2015131022110010.1111/jeea.12164
GrecoSMousseauVSłowińskiROrdinal regression revisited: multiple criteria ranking using a set of additive vaulr functionsEur. J. Oper. Res.200819141543510.1016/j.ejor.2007.08.013
Von NeumannJMorgensternOTheory of Games and Economic Behavior1947PrincetonPrinceton University Press1241.91002
HampelFRA general statistical definition of robustnessAnn. Math. Stat.1971421887189610.1214/aoms/1177693054
ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming: Modeling and Theory20142PhiladelphiaSIAM10.1137/1.9781611973433
RabinMPsychology and economiesJ. Econ. Lit.1998361146
WeberMDecision making with incomplete informationEur. J. Oper. Res.198728445710.1016/0377-2217(87)90168-8
ZähleHA definition of statistical robustness for general point estimators, and examplesJ. Multivar. Anal.2016143123110.1016/j.jmva.2015.08.004
DelageEKuhnDWiesemannW“Dice”-sion making under uncertainty: when can a random decision reduce risk?Manag. Sci.2019653282330110.1287/mnsc.2018.3108
HaskellWFuLDessoukMAmbiguity in risk preferences in robust stochastic optimizationEur. J. Oper. Res.2016254214225349447010.1016/j.ejor.2016.03.016
Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm In: Arlo`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {\grave{o}}$$\end{document}-CCosta, H., Hendricks, V.F., & van Benthem, J. (eds.) Readings in Formal Epistemology. Springer, Berlin (2016)
BergeCTopological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity1997ChelmsfordCourier Corporation0114.38602
RockafellarRTWetsRJ-BVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-3
LiuYXuHStability analysis of stochastic programs with second order dominance constraintsMath. Program.2013142435460312708110.1007/s10107-012-0585-0
KarmarkarUSSubjectively weighted utility: a descriptive extension of the expected utility modelOrgan. Behav. Hum. Perform.197821617210.1016/0030-5073(78)90039-9
HuJStepanyanGOptimization with reference-based robust preference constraintsSIAM J. Optim.20172722302257371390810.1137/16M1105050
Delage, E., Guo, S., Xu, H.: Shortfall risk models when information of loss function is incomplete. Working paper (2017)
Guo, S., Xu, H.: Utility preference robust optimization: piecewise linear approximation, error bounds and stability. Manuscript (2018)
KrätschmerVSchiedAZähleHComparative and statistical robustness for law-invariant risk measuresFinance Stoch.201418271295317740710.1007/s00780-013-0225-4
BillingsleyPConvergence of Probability Measures19992New YorkWiley10.1002/9780470316962
FöllmerHSchiedAStochastic Finance: An Introduction in Discrete Time20113Berlinde Gruyter10.1515/9783110218053
AndersonEJBusiness Risk Management: Models and Analysis2014ChichesterWiley
Haskell, B., Huang, W., Xu, H.: Preference elicitation and robust optimization with quasi-concave choice functions in multi-attribute decision making (2018). arXiv:1805.06632
HuJBansalMMehrotraSRobust decision making using a general utility setEur. J. Oper. Res.2018269699714379004610.1016/j.ejor.2018.02.018
CamererCKagelJHRothAIndividual decision makingThe Handbook of Experimental Economics1995PrincetonPrinceton University Press587703
ArmbrusterBDelageEDecision making under uncertainty when preference information is incompleteManag. Sci.20156111112810.1287/mnsc.2014.2059
ThurstoneLLA law of comparative judgementPsychol. Rev.192734278286
DelageELiJYMinimizing risk exposure when the choice of a risk measure is ambiguousManag. Sci.20186432734410.1287/mnsc.2016.2593
GilboaISchmeidlerDMaxmin expected utility with non-unique priorJ. Math. Econ.19891814115310.1016/0304-4068(89)90018-9
Ranga RaoRRelations between weak and uniform convergence of measures with applicationsAnn. Math. Stat.19623365968013780910.1214/aoms/1177704588
Claus, M.: Advancing stability analysis of mean-risk stochastic programs: bilevel and two-stage models. Ph.D. Thesis, Universität Dusburg-Essen (2016)
FarquharPHUtility assessment methodsManag. Sci.1984301283130077474610.1287/mnsc.30.11.1283
ProkhorovYVConvergence of random processes and limit theorems in probability theoryTheory Probab. Appl.195611572148489610.1137/1101016
HuJMehrotraSRobust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimizationIIE Trans.20154735837210.1080/0740817X.2014.919045
KrätschmerVSchiedAZähleHDomains of weak continuity of statistical functionals with a view toward robust statisticsJ. Multivar. Anal.2017158119365136910.1016/j.jmva.2017.02.005
KahnemanDTverskyAProspect Theory: an analysis of decisions under riskEconometrica197947263291361858010.2307/1914185
Embrechts, P., Schied, A., Wang, R.: Robustness in the optimization of risk measures (2018). arXiv:1809.09268
ContRDeguestRScandoloGRobustness and sensitivity analysis of risk measurement proceduresQuant Finance201010593606267678610.1080/14697681003685597
MaccheroniFMarinacciMRustichiniAAmbiguity aversion, robustness, and the variational representation of preferencesEconometrica20067414471498226840710.1111/j.1468-0262.2006.00716.x
HuberPJRobust Statistics19813New YorkWiley10.1002/0471725250
B Armbruster (1555_CR2) 2015; 61
FR Hampel (1555_CR20) 1971; 42
W Haskell (1555_CR21) 2016; 254
1555_CR12
M Rabin (1555_CR37) 1998; 36
A Shapiro (1555_CR41) 2014
E Delage (1555_CR10) 2019; 65
V Krätschmer (1555_CR32) 2012; 103
M Weber (1555_CR45) 1987; 28
PJ Huber (1555_CR27) 2009
J Von Neumann (1555_CR44) 1947
EJ Anderson (1555_CR1) 2014
YV Prokhorov (1555_CR36) 1956; 1
LL Thurstone (1555_CR42) 1927; 34
F Maccheroni (1555_CR34) 2006; 74
H Zähle (1555_CR46) 2016; 143
Y Liu (1555_CR33) 2013; 142
I Gilboa (1555_CR16) 1989; 18
1555_CR17
V Krätschmer (1555_CR31) 2017; 158
M Claus (1555_CR7) 2017; 27
S Greco (1555_CR18) 2008; 191
1555_CR19
E Delage (1555_CR11) 2018; 64
J Hu (1555_CR24) 2015; 47
1555_CR9
J Hu (1555_CR25) 2017; 27
1555_CR6
1555_CR22
R Ranga Rao (1555_CR38) 1962; 33
1555_CR40
P Fishburn (1555_CR14) 1979; 10
V Krätschmer (1555_CR30) 2014; 18
P Billingsley (1555_CR4) 1999
R Cont (1555_CR8) 2010; 10
J Hu (1555_CR23) 2018; 269
H Föllmer (1555_CR15) 2011
D Kahneman (1555_CR28) 1979; 47
PH Farquhar (1555_CR13) 1984; 30
M Marinacci (1555_CR35) 2015; 13
C Berge (1555_CR3) 1997
K Train (1555_CR43) 2009
C Camerer (1555_CR5) 1995
US Karmarkar (1555_CR29) 1978; 21
RT Rockafellar (1555_CR39) 1998
PJ Huber (1555_CR26) 1981
References_xml – reference: KrätschmerVSchiedAZähleHComparative and statistical robustness for law-invariant risk measuresFinance Stoch.201418271295317740710.1007/s00780-013-0225-4
– reference: ZähleHA definition of statistical robustness for general point estimators, and examplesJ. Multivar. Anal.2016143123110.1016/j.jmva.2015.08.004
– reference: HuberPJRobust Statistics19813New YorkWiley10.1002/0471725250
– reference: KrätschmerVSchiedAZähleHQualitative and infinitesimal robustness of tail-dependent statistical functionalsJ. Multivar. Anal.20121033547282370610.1016/j.jmva.2011.06.005
– reference: FöllmerHSchiedAStochastic Finance: An Introduction in Discrete Time20113Berlinde Gruyter10.1515/9783110218053
– reference: HaskellWFuLDessoukMAmbiguity in risk preferences in robust stochastic optimizationEur. J. Oper. Res.2016254214225349447010.1016/j.ejor.2016.03.016
– reference: DelageEKuhnDWiesemannW“Dice”-sion making under uncertainty: when can a random decision reduce risk?Manag. Sci.2019653282330110.1287/mnsc.2018.3108
– reference: Embrechts, P., Schied, A., Wang, R.: Robustness in the optimization of risk measures (2018). arXiv:1809.09268
– reference: ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming: Modeling and Theory20142PhiladelphiaSIAM10.1137/1.9781611973433
– reference: Claus, M.: Advancing stability analysis of mean-risk stochastic programs: bilevel and two-stage models. Ph.D. Thesis, Universität Dusburg-Essen (2016)
– reference: MarinacciMModel uncertaintyJ. Eur. Econ. Assoc.2015131022110010.1111/jeea.12164
– reference: LiuYXuHStability analysis of stochastic programs with second order dominance constraintsMath. Program.2013142435460312708110.1007/s10107-012-0585-0
– reference: FarquharPHUtility assessment methodsManag. Sci.1984301283130077474610.1287/mnsc.30.11.1283
– reference: WeberMDecision making with incomplete informationEur. J. Oper. Res.198728445710.1016/0377-2217(87)90168-8
– reference: Delage, E., Guo, S., Xu, H.: Shortfall risk models when information of loss function is incomplete. Working paper (2017)
– reference: HuJMehrotraSRobust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimizationIIE Trans.20154735837210.1080/0740817X.2014.919045
– reference: RockafellarRTWetsRJ-BVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-3
– reference: GilboaISchmeidlerDMaxmin expected utility with non-unique priorJ. Math. Econ.19891814115310.1016/0304-4068(89)90018-9
– reference: KahnemanDTverskyAProspect Theory: an analysis of decisions under riskEconometrica197947263291361858010.2307/1914185
– reference: AndersonEJBusiness Risk Management: Models and Analysis2014ChichesterWiley
– reference: KarmarkarUSSubjectively weighted utility: a descriptive extension of the expected utility modelOrgan. Behav. Hum. Perform.197821617210.1016/0030-5073(78)90039-9
– reference: HampelFRA general statistical definition of robustnessAnn. Math. Stat.1971421887189610.1214/aoms/1177693054
– reference: Römisch, W.: Stability of stochastic programming problems. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, chapter 8. Elsevier, Amsterdam (2003)
– reference: Guo, S., Xu, H.: Utility preference robust optimization: piecewise linear approximation, error bounds and stability. Manuscript (2018)
– reference: ContRDeguestRScandoloGRobustness and sensitivity analysis of risk measurement proceduresQuant Finance201010593606267678610.1080/14697681003685597
– reference: Haskell, B., Huang, W., Xu, H.: Preference elicitation and robust optimization with quasi-concave choice functions in multi-attribute decision making (2018). arXiv:1805.06632
– reference: ThurstoneLLA law of comparative judgementPsychol. Rev.192734278286
– reference: TrainKDiscrete Choice Methods with Simulation2009New YorkCambridge University Press1269.62073
– reference: BillingsleyPConvergence of Probability Measures19992New YorkWiley10.1002/9780470316962
– reference: HuJStepanyanGOptimization with reference-based robust preference constraintsSIAM J. Optim.20172722302257371390810.1137/16M1105050
– reference: MaccheroniFMarinacciMRustichiniAAmbiguity aversion, robustness, and the variational representation of preferencesEconometrica20067414471498226840710.1111/j.1468-0262.2006.00716.x
– reference: BergeCTopological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity1997ChelmsfordCourier Corporation0114.38602
– reference: ClausMKrätschmerVSchultzRWeak continuity of risk functionals with applications to stochastic programmingSIAM J. Optim.20172791109359588310.1137/15M1048689
– reference: Ranga RaoRRelations between weak and uniform convergence of measures with applicationsAnn. Math. Stat.19623365968013780910.1214/aoms/1177704588
– reference: CamererCKagelJHRothAIndividual decision makingThe Handbook of Experimental Economics1995PrincetonPrinceton University Press587703
– reference: Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm In: Arlo`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {\grave{o}}$$\end{document}-CCosta, H., Hendricks, V.F., & van Benthem, J. (eds.) Readings in Formal Epistemology. Springer, Berlin (2016)
– reference: ProkhorovYVConvergence of random processes and limit theorems in probability theoryTheory Probab. Appl.195611572148489610.1137/1101016
– reference: FishburnPKochenbergerGTwo-piece von Neumann-Morgenstern utility functionsDecis. Sci.19791050351810.1111/j.1540-5915.1979.tb00043.x
– reference: KrätschmerVSchiedAZähleHDomains of weak continuity of statistical functionals with a view toward robust statisticsJ. Multivar. Anal.2017158119365136910.1016/j.jmva.2017.02.005
– reference: Von NeumannJMorgensternOTheory of Games and Economic Behavior1947PrincetonPrinceton University Press1241.91002
– reference: GrecoSMousseauVSłowińskiROrdinal regression revisited: multiple criteria ranking using a set of additive vaulr functionsEur. J. Oper. Res.200819141543510.1016/j.ejor.2007.08.013
– reference: ArmbrusterBDelageEDecision making under uncertainty when preference information is incompleteManag. Sci.20156111112810.1287/mnsc.2014.2059
– reference: RabinMPsychology and economiesJ. Econ. Lit.1998361146
– reference: HuberPJRonchettiEMRobust Statistics20092HobokenWiley10.1002/9780470434697
– reference: DelageELiJYMinimizing risk exposure when the choice of a risk measure is ambiguousManag. Sci.20186432734410.1287/mnsc.2016.2593
– reference: HuJBansalMMehrotraSRobust decision making using a general utility setEur. J. Oper. Res.2018269699714379004610.1016/j.ejor.2018.02.018
– volume: 61
  start-page: 111
  year: 2015
  ident: 1555_CR2
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2014.2059
– ident: 1555_CR12
  doi: 10.2139/ssrn.3254587
– volume: 42
  start-page: 1887
  year: 1971
  ident: 1555_CR20
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177693054
– volume: 30
  start-page: 1283
  year: 1984
  ident: 1555_CR13
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.30.11.1283
– volume: 21
  start-page: 61
  year: 1978
  ident: 1555_CR29
  publication-title: Organ. Behav. Hum. Perform.
  doi: 10.1016/0030-5073(78)90039-9
– volume: 28
  start-page: 44
  year: 1987
  ident: 1555_CR45
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(87)90168-8
– volume: 13
  start-page: 1022
  year: 2015
  ident: 1555_CR35
  publication-title: J. Eur. Econ. Assoc.
  doi: 10.1111/jeea.12164
– ident: 1555_CR19
– volume: 191
  start-page: 415
  year: 2008
  ident: 1555_CR18
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.08.013
– volume-title: Discrete Choice Methods with Simulation
  year: 2009
  ident: 1555_CR43
– volume-title: Convergence of Probability Measures
  year: 1999
  ident: 1555_CR4
  doi: 10.1002/9780470316962
– volume: 10
  start-page: 503
  year: 1979
  ident: 1555_CR14
  publication-title: Decis. Sci.
  doi: 10.1111/j.1540-5915.1979.tb00043.x
– volume: 103
  start-page: 35
  year: 2012
  ident: 1555_CR32
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2011.06.005
– volume: 18
  start-page: 271
  year: 2014
  ident: 1555_CR30
  publication-title: Finance Stoch.
  doi: 10.1007/s00780-013-0225-4
– volume-title: Robust Statistics
  year: 2009
  ident: 1555_CR27
  doi: 10.1002/9780470434697
– volume: 27
  start-page: 2230
  year: 2017
  ident: 1555_CR25
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1105050
– volume: 158
  start-page: 1
  year: 2017
  ident: 1555_CR31
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2017.02.005
– volume: 64
  start-page: 327
  year: 2018
  ident: 1555_CR11
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2016.2593
– volume-title: Stochastic Finance: An Introduction in Discrete Time
  year: 2011
  ident: 1555_CR15
  doi: 10.1515/9783110218053
– volume: 47
  start-page: 263
  year: 1979
  ident: 1555_CR28
  publication-title: Econometrica
  doi: 10.2307/1914185
– ident: 1555_CR17
  doi: 10.1007/978-3-319-20451-2_21
– volume: 34
  start-page: 278
  year: 1927
  ident: 1555_CR42
  publication-title: Psychol. Rev.
– volume: 65
  start-page: 3282
  year: 2019
  ident: 1555_CR10
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2018.3108
– volume: 47
  start-page: 358
  year: 2015
  ident: 1555_CR24
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2014.919045
– volume-title: Variational Analysis
  year: 1998
  ident: 1555_CR39
  doi: 10.1007/978-3-642-02431-3
– volume-title: Theory of Games and Economic Behavior
  year: 1947
  ident: 1555_CR44
– volume: 74
  start-page: 1447
  year: 2006
  ident: 1555_CR34
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00716.x
– volume: 10
  start-page: 593
  year: 2010
  ident: 1555_CR8
  publication-title: Quant Finance
  doi: 10.1080/14697681003685597
– volume: 143
  start-page: 12
  year: 2016
  ident: 1555_CR46
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2015.08.004
– volume-title: Lectures on Stochastic Programming: Modeling and Theory
  year: 2014
  ident: 1555_CR41
  doi: 10.1137/1.9781611973433
– volume: 254
  start-page: 214
  year: 2016
  ident: 1555_CR21
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.03.016
– volume-title: Business Risk Management: Models and Analysis
  year: 2014
  ident: 1555_CR1
– volume: 18
  start-page: 141
  year: 1989
  ident: 1555_CR16
  publication-title: J. Math. Econ.
  doi: 10.1016/0304-4068(89)90018-9
– ident: 1555_CR6
– ident: 1555_CR9
– volume-title: Topological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity
  year: 1997
  ident: 1555_CR3
– volume: 269
  start-page: 699
  year: 2018
  ident: 1555_CR23
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.02.018
– start-page: 587
  volume-title: The Handbook of Experimental Economics
  year: 1995
  ident: 1555_CR5
  doi: 10.1515/9780691213255-010
– volume: 1
  start-page: 157
  year: 1956
  ident: 1555_CR36
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1101016
– volume-title: Robust Statistics
  year: 1981
  ident: 1555_CR26
  doi: 10.1002/0471725250
– ident: 1555_CR40
  doi: 10.1016/S0927-0507(03)10008-4
– volume: 27
  start-page: 91
  year: 2017
  ident: 1555_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1048689
– volume: 33
  start-page: 659
  year: 1962
  ident: 1555_CR38
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704588
– volume: 142
  start-page: 435
  year: 2013
  ident: 1555_CR33
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0585-0
– ident: 1555_CR22
– volume: 36
  start-page: 11
  year: 1998
  ident: 1555_CR37
  publication-title: J. Econ. Lit.
SSID ssj0001388
Score 2.4281719
Snippet Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 679
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Continuity (mathematics)
Decision making
Estimators
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Optimization models
Perturbation
Risk management
Statistical analysis
Theoretical
Title Statistical robustness in utility preference robust optimization models
URI https://link.springer.com/article/10.1007/s10107-020-01555-5
https://www.proquest.com/docview/2580341666
Volume 190
WOSCitedRecordID wos000564522500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoB64QaQkXZr0iBCDCxPipd2qpA8JCbpp3fj9OFnaDQRIcKzqRJWd2J-b2B_AaZdJE3EjCTPMEIy3KdGZ0kRzQwvNMecwypFNyH5fDQbxnS8Kq-rb7vWRpPPUC8VuzP5W4_YilRCCiGVYwXCnLGHD_cNz439ZqFRN1GrRgS-V-X6Oz-FojjG_HIu6aNPb_N93bsGGR5fBxWw5bMNSXu7A-kLPQXy6bRq1VrtwbcGm69WMw8ZDM60m1vcFL2WAK9JC9GDUMJF4gWCIbubN128Gjkqn2oOn3tXj5Q3x3AokDZWYEMWk5jTP8pCaKJLMcC1VxoREOBhmCuN6FOeYHRvDqcwUjXPBdMxxDCK8AjHAPrTKYZkfQFAIExc64tKIuJuaLC5kmlOuqVCRZkXYBlarOEl943HLf_GazFsmW5UlqLLEqSwRbThrxoxmbTd-le7Ulkv8FqwSLhTFEI3pWRvOa0vNX_882-HfxI9gjdt7Lq4-sQOtyXiaH8Nq-o7WG5-4pfkBA1Hbjw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah9800KSLk36KOJU3IbolL2VpB8gaDfWzb_fS9Z2U1TQx9JLKHfJ3e-a3O8ATptUaJ9p4VJNtYvxNnJVLJWrmCapYphzaGmbTYhuV_b7wX1RFJaXt93LI0nrqeeK3aj5rcbMRSrOucsXYamJEcsw5j88Plf-l3pSlo1aDTooSmW-n-NzOJphzC_HojbatDb-952bsF6gS-diuhy2YCHJtmFtjnMQnzoVUWu-A9cGbFquZhw2GuhJPja-z3nJHFyRBqI7w6oTSSHgDNDNvBX1m45tpZPvwlPrqnd54xa9FdzIk3zsSioUI0mceET7vqCaKSFjygXCQS-WGNf9IMHsWGtGRCxJkHCqAoZjEOGliAH2oJYNsmQfnJTrIFU-E5oHzUjHQSqihDBFuPQVTb060FLFYVQQj5v-F6_hjDLZqCxElYVWZSGvw1k1Zjil3fhVulFaLiy2YB4yLgmGaEzP6nBeWmr2-ufZDv4mfgIrN71OO2zfdu8OYZWZOy-2VrEBtfFokhzBcvSOlhwd22X6AVcO3nM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah9807IkXZr0UdSpqGPgB3sLSZuCoN1YO_9-k6zdpqggPpZeQrkkd79r7n4HcNzCTIVEMR8rrHzjb2NfJlz6kiiUSmJiDsVdswnW6fBeL-rOVPG7bPfqSnJc02BZmrKiOUjS5kzhG7a_2IhNqqKU-nQeFlo2kd7G6w_PE1uMA86rpq0WKZRlM9_P8dk1TfHmlytS53naa___5nVYLVGndzbeJhswp7NNWJnhIjRP9xMC13wLriwIdRzOZtiwr0Z5YW2i95J5Zqda6O4NJh1KSgGvb8zPW1nX6bkWO_k2PLUvH8-v_bLngh8HnBY-x0wSpBMdIBWGDCsiGU8wZQYmBgk3_j6MtImalSKIJRxFmmIZETPGIL_UYIMdqGX9TO-Cl1IVpTIkTNGoFaskSlmsEZGI8lDiNKgDrtQt4pKQ3PbFeBVTKmWrMmFUJpzKBK3DyWTMYEzH8at0o1pFUR7NXBDKkXHdJmyrw2m1atPXP8-29zfxI1jqXrTF3U3ndh-WiU2FcSWMDagVw5E-gMX43Szk8NDt2A_CkudX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+robustness+in+utility+preference+robust+optimization+models&rft.jtitle=Mathematical+programming&rft.au=Guo+Shaoyan&rft.au=Xu+Huifu&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=190&rft.issue=1-2&rft.spage=679&rft.epage=720&rft_id=info:doi/10.1007%2Fs10107-020-01555-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon