Statistical robustness in utility preference robust optimization models
Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 190; číslo 1-2; s. 679 - 720 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in the PRO models is that the true probability distribution is either known or can be recovered by real data generated by the true distribution. In data-driven optimization, this assumption may not be satisfied when perceived data differ from real data and consequently it raises a question as to whether statistical estimators of the PRO models based on perceived data are reliable. In this paper, we investigate the issue which is also known as qualitative robustness in the literature of statistics (Huber in Robust statistics, 3rd edn, Wiley, New York, 1981) and risk management (Krätschmer et al. in Finance Stoch 18:271–295, 2014). By utilizing the framework proposed by Krätschmer et al. (2014), we derive moderate sufficient conditions under which the optimal value and optimal solution of the PRO models are robust against perturbation of the exogenous uncertainty data, and examine how the tail behaviour of utility functions affects the robustness. Moreover, under some additional conditions on the Lipschitz continuity of the underlying functions with respect to random data, we establish quantitative robustness of the statistical estimators under the Kantorovich metric. Finally, we investigate uniform consistency of the optimal value and optimal solution of the PRO models. The results cover utility selection problems and stochastic optimization problems as special cases. |
|---|---|
| AbstractList | Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in the PRO models is that the true probability distribution is either known or can be recovered by real data generated by the true distribution. In data-driven optimization, this assumption may not be satisfied when perceived data differ from real data and consequently it raises a question as to whether statistical estimators of the PRO models based on perceived data are reliable. In this paper, we investigate the issue which is also known as qualitative robustness in the literature of statistics (Huber in Robust statistics, 3rd edn, Wiley, New York, 1981) and risk management (Krätschmer et al. in Finance Stoch 18:271–295, 2014). By utilizing the framework proposed by Krätschmer et al. (2014), we derive moderate sufficient conditions under which the optimal value and optimal solution of the PRO models are robust against perturbation of the exogenous uncertainty data, and examine how the tail behaviour of utility functions affects the robustness. Moreover, under some additional conditions on the Lipschitz continuity of the underlying functions with respect to random data, we establish quantitative robustness of the statistical estimators under the Kantorovich metric. Finally, we investigate uniform consistency of the optimal value and optimal solution of the PRO models. The results cover utility selection problems and stochastic optimization problems as special cases. |
| Author | Xu, Huifu Guo, Shaoyan |
| Author_xml | – sequence: 1 givenname: Shaoyan surname: Guo fullname: Guo, Shaoyan organization: School of Mathematical Sciences, Dalian University of Technology – sequence: 2 givenname: Huifu orcidid: 0000-0001-8307-2920 surname: Xu fullname: Xu, Huifu email: hfxu@se.cuhk.edu.hk organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnlcnyeZPj1K0FQoe1HPI7qaSsk3WJHuon97YLQgeehoY3u-9mTdDE-edQegWwz0GEA8RAwZRAoESMGOsZBdoiivKy4pXfIKmACQvOYYrNItxBwCYSjlFq7ekk43JNrorgq-HmJyJsbCuGJLtbDoUfTBbE4xrzElQ-D7Zvf3OoHfF3remi9focqu7aG5Oc44-np_el-ty87p6WT5uyoZKlkqJhSZgWkOh5lzgmmghW8yEEBVtJakwXxgpZV0TEK2EhWFYL0hmKmBbjukc3Y2-ffBfg4lJ7fwQXI5UhEmg2YDzrCKjqgk-xny_6oPd63BQGNRvYWosTOXC1LEwxTIk_0GNTccfU9C2O4_SEY05x32a8HfVGeoHi1mBFw |
| CitedBy_id | crossref_primary_10_1007_s10287_022_00432_0 crossref_primary_10_1137_23M1585131 crossref_primary_10_1016_j_ejor_2023_10_020 crossref_primary_10_1137_19M1298032 crossref_primary_10_1080_14697688_2021_1892171 crossref_primary_10_1137_20M1316524 crossref_primary_10_1016_j_ejor_2022_08_004 crossref_primary_10_1137_21M1448069 crossref_primary_10_1007_s11590_021_01838_6 crossref_primary_10_1007_s10107_023_01925_9 crossref_primary_10_1007_s10107_024_02128_6 crossref_primary_10_1016_j_trb_2025_103251 crossref_primary_10_1080_10556788_2023_2167995 |
| Cites_doi | 10.1287/mnsc.2014.2059 10.2139/ssrn.3254587 10.1214/aoms/1177693054 10.1287/mnsc.30.11.1283 10.1016/0030-5073(78)90039-9 10.1016/0377-2217(87)90168-8 10.1111/jeea.12164 10.1016/j.ejor.2007.08.013 10.1002/9780470316962 10.1111/j.1540-5915.1979.tb00043.x 10.1016/j.jmva.2011.06.005 10.1007/s00780-013-0225-4 10.1002/9780470434697 10.1137/16M1105050 10.1016/j.jmva.2017.02.005 10.1287/mnsc.2016.2593 10.1515/9783110218053 10.2307/1914185 10.1007/978-3-319-20451-2_21 10.1287/mnsc.2018.3108 10.1080/0740817X.2014.919045 10.1007/978-3-642-02431-3 10.1111/j.1468-0262.2006.00716.x 10.1080/14697681003685597 10.1016/j.jmva.2015.08.004 10.1137/1.9781611973433 10.1016/j.ejor.2016.03.016 10.1016/0304-4068(89)90018-9 10.1016/j.ejor.2018.02.018 10.1515/9780691213255-010 10.1137/1101016 10.1002/0471725250 10.1016/S0927-0507(03)10008-4 10.1137/15M1048689 10.1214/aoms/1177704588 10.1007/s10107-012-0585-0 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-020-01555-5 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 720 |
| ExternalDocumentID | 10_1007_s10107_020_01555_5 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c385t-817a20ede30b6671b2a78d1577743d824169e888bb207d809e51a92a20405f613 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564522500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:57:07 EDT 2025 Tue Nov 18 22:22:44 EST 2025 Sat Nov 29 03:34:02 EST 2025 Fri Feb 21 02:47:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90C31 Qualitative statistical robustness 90C47 Quantitative statistical robustness 90C15 Uniform consistency PRO |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-817a20ede30b6671b2a78d1577743d824169e888bb207d809e51a92a20405f613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8307-2920 |
| PQID | 2580341666 |
| PQPubID | 25307 |
| PageCount | 42 |
| ParticipantIDs | proquest_journals_2580341666 crossref_primary_10_1007_s10107_020_01555_5 crossref_citationtrail_10_1007_s10107_020_01555_5 springer_journals_10_1007_s10107_020_01555_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | FishburnPKochenbergerGTwo-piece von Neumann-Morgenstern utility functionsDecis. Sci.19791050351810.1111/j.1540-5915.1979.tb00043.x KrätschmerVSchiedAZähleHQualitative and infinitesimal robustness of tail-dependent statistical functionalsJ. Multivar. Anal.20121033547282370610.1016/j.jmva.2011.06.005 Römisch, W.: Stability of stochastic programming problems. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, chapter 8. Elsevier, Amsterdam (2003) HuberPJRonchettiEMRobust Statistics20092HobokenWiley10.1002/9780470434697 TrainKDiscrete Choice Methods with Simulation2009New YorkCambridge University Press1269.62073 ClausMKrätschmerVSchultzRWeak continuity of risk functionals with applications to stochastic programmingSIAM J. Optim.20172791109359588310.1137/15M1048689 MarinacciMModel uncertaintyJ. Eur. Econ. Assoc.2015131022110010.1111/jeea.12164 GrecoSMousseauVSłowińskiROrdinal regression revisited: multiple criteria ranking using a set of additive vaulr functionsEur. J. Oper. Res.200819141543510.1016/j.ejor.2007.08.013 Von NeumannJMorgensternOTheory of Games and Economic Behavior1947PrincetonPrinceton University Press1241.91002 HampelFRA general statistical definition of robustnessAnn. Math. Stat.1971421887189610.1214/aoms/1177693054 ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming: Modeling and Theory20142PhiladelphiaSIAM10.1137/1.9781611973433 RabinMPsychology and economiesJ. Econ. Lit.1998361146 WeberMDecision making with incomplete informationEur. J. Oper. Res.198728445710.1016/0377-2217(87)90168-8 ZähleHA definition of statistical robustness for general point estimators, and examplesJ. Multivar. Anal.2016143123110.1016/j.jmva.2015.08.004 DelageEKuhnDWiesemannW“Dice”-sion making under uncertainty: when can a random decision reduce risk?Manag. Sci.2019653282330110.1287/mnsc.2018.3108 HaskellWFuLDessoukMAmbiguity in risk preferences in robust stochastic optimizationEur. J. Oper. Res.2016254214225349447010.1016/j.ejor.2016.03.016 Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm In: Arlo`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {\grave{o}}$$\end{document}-CCosta, H., Hendricks, V.F., & van Benthem, J. (eds.) Readings in Formal Epistemology. Springer, Berlin (2016) BergeCTopological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity1997ChelmsfordCourier Corporation0114.38602 RockafellarRTWetsRJ-BVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-3 LiuYXuHStability analysis of stochastic programs with second order dominance constraintsMath. Program.2013142435460312708110.1007/s10107-012-0585-0 KarmarkarUSSubjectively weighted utility: a descriptive extension of the expected utility modelOrgan. Behav. Hum. Perform.197821617210.1016/0030-5073(78)90039-9 HuJStepanyanGOptimization with reference-based robust preference constraintsSIAM J. Optim.20172722302257371390810.1137/16M1105050 Delage, E., Guo, S., Xu, H.: Shortfall risk models when information of loss function is incomplete. Working paper (2017) Guo, S., Xu, H.: Utility preference robust optimization: piecewise linear approximation, error bounds and stability. Manuscript (2018) KrätschmerVSchiedAZähleHComparative and statistical robustness for law-invariant risk measuresFinance Stoch.201418271295317740710.1007/s00780-013-0225-4 BillingsleyPConvergence of Probability Measures19992New YorkWiley10.1002/9780470316962 FöllmerHSchiedAStochastic Finance: An Introduction in Discrete Time20113Berlinde Gruyter10.1515/9783110218053 AndersonEJBusiness Risk Management: Models and Analysis2014ChichesterWiley Haskell, B., Huang, W., Xu, H.: Preference elicitation and robust optimization with quasi-concave choice functions in multi-attribute decision making (2018). arXiv:1805.06632 HuJBansalMMehrotraSRobust decision making using a general utility setEur. J. Oper. Res.2018269699714379004610.1016/j.ejor.2018.02.018 CamererCKagelJHRothAIndividual decision makingThe Handbook of Experimental Economics1995PrincetonPrinceton University Press587703 ArmbrusterBDelageEDecision making under uncertainty when preference information is incompleteManag. Sci.20156111112810.1287/mnsc.2014.2059 ThurstoneLLA law of comparative judgementPsychol. Rev.192734278286 DelageELiJYMinimizing risk exposure when the choice of a risk measure is ambiguousManag. Sci.20186432734410.1287/mnsc.2016.2593 GilboaISchmeidlerDMaxmin expected utility with non-unique priorJ. Math. Econ.19891814115310.1016/0304-4068(89)90018-9 Ranga RaoRRelations between weak and uniform convergence of measures with applicationsAnn. Math. Stat.19623365968013780910.1214/aoms/1177704588 Claus, M.: Advancing stability analysis of mean-risk stochastic programs: bilevel and two-stage models. Ph.D. Thesis, Universität Dusburg-Essen (2016) FarquharPHUtility assessment methodsManag. Sci.1984301283130077474610.1287/mnsc.30.11.1283 ProkhorovYVConvergence of random processes and limit theorems in probability theoryTheory Probab. Appl.195611572148489610.1137/1101016 HuJMehrotraSRobust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimizationIIE Trans.20154735837210.1080/0740817X.2014.919045 KrätschmerVSchiedAZähleHDomains of weak continuity of statistical functionals with a view toward robust statisticsJ. Multivar. Anal.2017158119365136910.1016/j.jmva.2017.02.005 KahnemanDTverskyAProspect Theory: an analysis of decisions under riskEconometrica197947263291361858010.2307/1914185 Embrechts, P., Schied, A., Wang, R.: Robustness in the optimization of risk measures (2018). arXiv:1809.09268 ContRDeguestRScandoloGRobustness and sensitivity analysis of risk measurement proceduresQuant Finance201010593606267678610.1080/14697681003685597 MaccheroniFMarinacciMRustichiniAAmbiguity aversion, robustness, and the variational representation of preferencesEconometrica20067414471498226840710.1111/j.1468-0262.2006.00716.x HuberPJRobust Statistics19813New YorkWiley10.1002/0471725250 B Armbruster (1555_CR2) 2015; 61 FR Hampel (1555_CR20) 1971; 42 W Haskell (1555_CR21) 2016; 254 1555_CR12 M Rabin (1555_CR37) 1998; 36 A Shapiro (1555_CR41) 2014 E Delage (1555_CR10) 2019; 65 V Krätschmer (1555_CR32) 2012; 103 M Weber (1555_CR45) 1987; 28 PJ Huber (1555_CR27) 2009 J Von Neumann (1555_CR44) 1947 EJ Anderson (1555_CR1) 2014 YV Prokhorov (1555_CR36) 1956; 1 LL Thurstone (1555_CR42) 1927; 34 F Maccheroni (1555_CR34) 2006; 74 H Zähle (1555_CR46) 2016; 143 Y Liu (1555_CR33) 2013; 142 I Gilboa (1555_CR16) 1989; 18 1555_CR17 V Krätschmer (1555_CR31) 2017; 158 M Claus (1555_CR7) 2017; 27 S Greco (1555_CR18) 2008; 191 1555_CR19 E Delage (1555_CR11) 2018; 64 J Hu (1555_CR24) 2015; 47 1555_CR9 J Hu (1555_CR25) 2017; 27 1555_CR6 1555_CR22 R Ranga Rao (1555_CR38) 1962; 33 1555_CR40 P Fishburn (1555_CR14) 1979; 10 V Krätschmer (1555_CR30) 2014; 18 P Billingsley (1555_CR4) 1999 R Cont (1555_CR8) 2010; 10 J Hu (1555_CR23) 2018; 269 H Föllmer (1555_CR15) 2011 D Kahneman (1555_CR28) 1979; 47 PH Farquhar (1555_CR13) 1984; 30 M Marinacci (1555_CR35) 2015; 13 C Berge (1555_CR3) 1997 K Train (1555_CR43) 2009 C Camerer (1555_CR5) 1995 US Karmarkar (1555_CR29) 1978; 21 RT Rockafellar (1555_CR39) 1998 PJ Huber (1555_CR26) 1981 |
| References_xml | – reference: KrätschmerVSchiedAZähleHComparative and statistical robustness for law-invariant risk measuresFinance Stoch.201418271295317740710.1007/s00780-013-0225-4 – reference: ZähleHA definition of statistical robustness for general point estimators, and examplesJ. Multivar. Anal.2016143123110.1016/j.jmva.2015.08.004 – reference: HuberPJRobust Statistics19813New YorkWiley10.1002/0471725250 – reference: KrätschmerVSchiedAZähleHQualitative and infinitesimal robustness of tail-dependent statistical functionalsJ. Multivar. Anal.20121033547282370610.1016/j.jmva.2011.06.005 – reference: FöllmerHSchiedAStochastic Finance: An Introduction in Discrete Time20113Berlinde Gruyter10.1515/9783110218053 – reference: HaskellWFuLDessoukMAmbiguity in risk preferences in robust stochastic optimizationEur. J. Oper. Res.2016254214225349447010.1016/j.ejor.2016.03.016 – reference: DelageEKuhnDWiesemannW“Dice”-sion making under uncertainty: when can a random decision reduce risk?Manag. Sci.2019653282330110.1287/mnsc.2018.3108 – reference: Embrechts, P., Schied, A., Wang, R.: Robustness in the optimization of risk measures (2018). arXiv:1809.09268 – reference: ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming: Modeling and Theory20142PhiladelphiaSIAM10.1137/1.9781611973433 – reference: Claus, M.: Advancing stability analysis of mean-risk stochastic programs: bilevel and two-stage models. Ph.D. Thesis, Universität Dusburg-Essen (2016) – reference: MarinacciMModel uncertaintyJ. Eur. Econ. Assoc.2015131022110010.1111/jeea.12164 – reference: LiuYXuHStability analysis of stochastic programs with second order dominance constraintsMath. Program.2013142435460312708110.1007/s10107-012-0585-0 – reference: FarquharPHUtility assessment methodsManag. Sci.1984301283130077474610.1287/mnsc.30.11.1283 – reference: WeberMDecision making with incomplete informationEur. J. Oper. Res.198728445710.1016/0377-2217(87)90168-8 – reference: Delage, E., Guo, S., Xu, H.: Shortfall risk models when information of loss function is incomplete. Working paper (2017) – reference: HuJMehrotraSRobust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimizationIIE Trans.20154735837210.1080/0740817X.2014.919045 – reference: RockafellarRTWetsRJ-BVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-3 – reference: GilboaISchmeidlerDMaxmin expected utility with non-unique priorJ. Math. Econ.19891814115310.1016/0304-4068(89)90018-9 – reference: KahnemanDTverskyAProspect Theory: an analysis of decisions under riskEconometrica197947263291361858010.2307/1914185 – reference: AndersonEJBusiness Risk Management: Models and Analysis2014ChichesterWiley – reference: KarmarkarUSSubjectively weighted utility: a descriptive extension of the expected utility modelOrgan. Behav. Hum. Perform.197821617210.1016/0030-5073(78)90039-9 – reference: HampelFRA general statistical definition of robustnessAnn. Math. Stat.1971421887189610.1214/aoms/1177693054 – reference: Römisch, W.: Stability of stochastic programming problems. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, chapter 8. Elsevier, Amsterdam (2003) – reference: Guo, S., Xu, H.: Utility preference robust optimization: piecewise linear approximation, error bounds and stability. Manuscript (2018) – reference: ContRDeguestRScandoloGRobustness and sensitivity analysis of risk measurement proceduresQuant Finance201010593606267678610.1080/14697681003685597 – reference: Haskell, B., Huang, W., Xu, H.: Preference elicitation and robust optimization with quasi-concave choice functions in multi-attribute decision making (2018). arXiv:1805.06632 – reference: ThurstoneLLA law of comparative judgementPsychol. Rev.192734278286 – reference: TrainKDiscrete Choice Methods with Simulation2009New YorkCambridge University Press1269.62073 – reference: BillingsleyPConvergence of Probability Measures19992New YorkWiley10.1002/9780470316962 – reference: HuJStepanyanGOptimization with reference-based robust preference constraintsSIAM J. Optim.20172722302257371390810.1137/16M1105050 – reference: MaccheroniFMarinacciMRustichiniAAmbiguity aversion, robustness, and the variational representation of preferencesEconometrica20067414471498226840710.1111/j.1468-0262.2006.00716.x – reference: BergeCTopological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity1997ChelmsfordCourier Corporation0114.38602 – reference: ClausMKrätschmerVSchultzRWeak continuity of risk functionals with applications to stochastic programmingSIAM J. Optim.20172791109359588310.1137/15M1048689 – reference: Ranga RaoRRelations between weak and uniform convergence of measures with applicationsAnn. Math. Stat.19623365968013780910.1214/aoms/1177704588 – reference: CamererCKagelJHRothAIndividual decision makingThe Handbook of Experimental Economics1995PrincetonPrinceton University Press587703 – reference: Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm In: Arlo`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {\grave{o}}$$\end{document}-CCosta, H., Hendricks, V.F., & van Benthem, J. (eds.) Readings in Formal Epistemology. Springer, Berlin (2016) – reference: ProkhorovYVConvergence of random processes and limit theorems in probability theoryTheory Probab. Appl.195611572148489610.1137/1101016 – reference: FishburnPKochenbergerGTwo-piece von Neumann-Morgenstern utility functionsDecis. Sci.19791050351810.1111/j.1540-5915.1979.tb00043.x – reference: KrätschmerVSchiedAZähleHDomains of weak continuity of statistical functionals with a view toward robust statisticsJ. Multivar. Anal.2017158119365136910.1016/j.jmva.2017.02.005 – reference: Von NeumannJMorgensternOTheory of Games and Economic Behavior1947PrincetonPrinceton University Press1241.91002 – reference: GrecoSMousseauVSłowińskiROrdinal regression revisited: multiple criteria ranking using a set of additive vaulr functionsEur. J. Oper. Res.200819141543510.1016/j.ejor.2007.08.013 – reference: ArmbrusterBDelageEDecision making under uncertainty when preference information is incompleteManag. Sci.20156111112810.1287/mnsc.2014.2059 – reference: RabinMPsychology and economiesJ. Econ. Lit.1998361146 – reference: HuberPJRonchettiEMRobust Statistics20092HobokenWiley10.1002/9780470434697 – reference: DelageELiJYMinimizing risk exposure when the choice of a risk measure is ambiguousManag. Sci.20186432734410.1287/mnsc.2016.2593 – reference: HuJBansalMMehrotraSRobust decision making using a general utility setEur. J. Oper. Res.2018269699714379004610.1016/j.ejor.2018.02.018 – volume: 61 start-page: 111 year: 2015 ident: 1555_CR2 publication-title: Manag. Sci. doi: 10.1287/mnsc.2014.2059 – ident: 1555_CR12 doi: 10.2139/ssrn.3254587 – volume: 42 start-page: 1887 year: 1971 ident: 1555_CR20 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177693054 – volume: 30 start-page: 1283 year: 1984 ident: 1555_CR13 publication-title: Manag. Sci. doi: 10.1287/mnsc.30.11.1283 – volume: 21 start-page: 61 year: 1978 ident: 1555_CR29 publication-title: Organ. Behav. Hum. Perform. doi: 10.1016/0030-5073(78)90039-9 – volume: 28 start-page: 44 year: 1987 ident: 1555_CR45 publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(87)90168-8 – volume: 13 start-page: 1022 year: 2015 ident: 1555_CR35 publication-title: J. Eur. Econ. Assoc. doi: 10.1111/jeea.12164 – ident: 1555_CR19 – volume: 191 start-page: 415 year: 2008 ident: 1555_CR18 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.08.013 – volume-title: Discrete Choice Methods with Simulation year: 2009 ident: 1555_CR43 – volume-title: Convergence of Probability Measures year: 1999 ident: 1555_CR4 doi: 10.1002/9780470316962 – volume: 10 start-page: 503 year: 1979 ident: 1555_CR14 publication-title: Decis. Sci. doi: 10.1111/j.1540-5915.1979.tb00043.x – volume: 103 start-page: 35 year: 2012 ident: 1555_CR32 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2011.06.005 – volume: 18 start-page: 271 year: 2014 ident: 1555_CR30 publication-title: Finance Stoch. doi: 10.1007/s00780-013-0225-4 – volume-title: Robust Statistics year: 2009 ident: 1555_CR27 doi: 10.1002/9780470434697 – volume: 27 start-page: 2230 year: 2017 ident: 1555_CR25 publication-title: SIAM J. Optim. doi: 10.1137/16M1105050 – volume: 158 start-page: 1 year: 2017 ident: 1555_CR31 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2017.02.005 – volume: 64 start-page: 327 year: 2018 ident: 1555_CR11 publication-title: Manag. Sci. doi: 10.1287/mnsc.2016.2593 – volume-title: Stochastic Finance: An Introduction in Discrete Time year: 2011 ident: 1555_CR15 doi: 10.1515/9783110218053 – volume: 47 start-page: 263 year: 1979 ident: 1555_CR28 publication-title: Econometrica doi: 10.2307/1914185 – ident: 1555_CR17 doi: 10.1007/978-3-319-20451-2_21 – volume: 34 start-page: 278 year: 1927 ident: 1555_CR42 publication-title: Psychol. Rev. – volume: 65 start-page: 3282 year: 2019 ident: 1555_CR10 publication-title: Manag. Sci. doi: 10.1287/mnsc.2018.3108 – volume: 47 start-page: 358 year: 2015 ident: 1555_CR24 publication-title: IIE Trans. doi: 10.1080/0740817X.2014.919045 – volume-title: Variational Analysis year: 1998 ident: 1555_CR39 doi: 10.1007/978-3-642-02431-3 – volume-title: Theory of Games and Economic Behavior year: 1947 ident: 1555_CR44 – volume: 74 start-page: 1447 year: 2006 ident: 1555_CR34 publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00716.x – volume: 10 start-page: 593 year: 2010 ident: 1555_CR8 publication-title: Quant Finance doi: 10.1080/14697681003685597 – volume: 143 start-page: 12 year: 2016 ident: 1555_CR46 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2015.08.004 – volume-title: Lectures on Stochastic Programming: Modeling and Theory year: 2014 ident: 1555_CR41 doi: 10.1137/1.9781611973433 – volume: 254 start-page: 214 year: 2016 ident: 1555_CR21 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.03.016 – volume-title: Business Risk Management: Models and Analysis year: 2014 ident: 1555_CR1 – volume: 18 start-page: 141 year: 1989 ident: 1555_CR16 publication-title: J. Math. Econ. doi: 10.1016/0304-4068(89)90018-9 – ident: 1555_CR6 – ident: 1555_CR9 – volume-title: Topological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity year: 1997 ident: 1555_CR3 – volume: 269 start-page: 699 year: 2018 ident: 1555_CR23 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.02.018 – start-page: 587 volume-title: The Handbook of Experimental Economics year: 1995 ident: 1555_CR5 doi: 10.1515/9780691213255-010 – volume: 1 start-page: 157 year: 1956 ident: 1555_CR36 publication-title: Theory Probab. Appl. doi: 10.1137/1101016 – volume-title: Robust Statistics year: 1981 ident: 1555_CR26 doi: 10.1002/0471725250 – ident: 1555_CR40 doi: 10.1016/S0927-0507(03)10008-4 – volume: 27 start-page: 91 year: 2017 ident: 1555_CR7 publication-title: SIAM J. Optim. doi: 10.1137/15M1048689 – volume: 33 start-page: 659 year: 1962 ident: 1555_CR38 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704588 – volume: 142 start-page: 435 year: 2013 ident: 1555_CR33 publication-title: Math. Program. doi: 10.1007/s10107-012-0585-0 – ident: 1555_CR22 – volume: 36 start-page: 11 year: 1998 ident: 1555_CR37 publication-title: J. Econ. Lit. |
| SSID | ssj0001388 |
| Score | 2.4281719 |
| Snippet | Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 679 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Continuity (mathematics) Decision making Estimators Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Optimization models Perturbation Risk management Statistical analysis Theoretical |
| Title | Statistical robustness in utility preference robust optimization models |
| URI | https://link.springer.com/article/10.1007/s10107-020-01555-5 https://www.proquest.com/docview/2580341666 |
| Volume | 190 |
| WOSCitedRecordID | wos000564522500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoB64QaQmadb0iBCDA0yIx7Rb1TSphATdtG78fpws3QYCJDhWjaPKduwvTfwZ4FTxDPdVWUIsHCdRniiSmcgQZThThci0dMTzvdu425X9fnLvi8Kq-rZ7fSTpIvVCsRu1v9WYvUglhCBiGVYw3UnbsOHhsTeLv5RLWTdqtejAl8p8P8fndDTHmF-ORV226Wz-7zu3YMOjy-Bi6g7bsGTKHVhf4BzEp7sZUWu1C9cWbDquZhQbDdSkGtvYF7yUAXqkhejBcNaJxA8IBhhm3nz9ZuBa6VR78Ny5erq8Ib63Asm5FGMiaZyx0GjDQ9Vux1SxLJaaihjhINcS83o7MWhFpVgYaxkmRtAsYSiDCK9ADLAPjXJQmgMItKURy6Mi0rGOTI4RgQq0ORdFwZnQtAm0VnGae-Jx2__iNZ1TJluVpaiy1KksFU04m8kMp7Qbv45u1ZZL_RKsUiZkiCkat2dNOK8tNX_982yHfxt-BGvM3nNx9YktaIxHE3MMq_k7Wm904lzzA6Qd24U |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1D74poUmbdb0UcQ5cRuic-wtNE0KgnZj3fz7vWTtNkUFfSzNhXJ3ufvS5L4DOJd-jPuqOHINHHeDJJJurAPtSu1TmbJYcUs832uFnQ7v96OHoigsL2-7l0eSNlIvFLsR81uNmotUjDGXLcNKgBnLMOY_PvVm8Zf4nJeNWg06KEplvp_jczqaY8wvx6I22zS2_ved27BZoEvnauoOO7Cks13YWOAcxKf2jKg134NbAzYtVzOKjQZyko9N7HNeMgc90kB0ZzjrRFIMcAYYZt6K-k3HttLJ9-G5cdO9brpFbwU38Tkbu5yEMfW00r4n6_WQSBqHXBEWIhz0Fce8Xo80WlFK6oWKe5FmJI4oyiDCSxEDHEAlG2T6EBxlaMSSIA1UqAKdYEQgDG3uszT1KVOkCqRUsUgK4nHT_-JVzCmTjcoEqkxYlQlWhYuZzHBKu_Hr6FppOVEswVxQxj1M0bg9q8Jlaan5659nO_rb8DNYa3bbLdG669wfwzo1d15srWINKuPRRJ_AavKOlhydWjf9APdi3mk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDv8Xp1D74pmFN2qzpo6hTcY6BOvZWmiYFQbuxdv79Xrq2m6KC-FiahHJ3ufvS3H0HcCqdEM9VoU8MHCdu5EsSalcTqR0mYx4qkRPP9ztetysGA783V8WfZ7uXV5LTmgbD0pRkzZGKm3OFb9T8YmMmqYpzTvgiLLkmkd6c1x_7lS-mjhBl01aDFIqyme_X-ByaZnjzyxVpHnnaG___5k1YL1CndTE1ky1Y0Mk2rM1xEeLTQ0Xgmu7AjQGhOYczThsP5STNjE-0XhILLdVAd2tUdSgpBlhDdD9vRV2nlbfYSXfhuX39dHlLip4LJHIEz4igXshsrbRjy1bLo5KFnlCUewgTHSUw3rd8jdqVktmeEravOQ19hnMQ-cWIDfaglgwTvQ-WMvRikRu7ylOujtBTUI624PA4dhhXtA60FHcQFYTkpi_GazCjUjYiC1BkQS6ygNfhrJozmtJx_Dq6UWoxKLZmGjAubAzdeGyrw3mptdnrn1c7-NvwE1jpXbWDzl33_hBWmUmFyUsYG1DLxhN9BMvROypyfJxb7Adrh-dN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+robustness+in+utility+preference+robust+optimization+models&rft.jtitle=Mathematical+programming&rft.au=Guo%2C+Shaoyan&rft.au=Xu%2C+Huifu&rft.date=2021-11-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=190&rft.issue=1-2&rft.spage=679&rft.epage=720&rft_id=info:doi/10.1007%2Fs10107-020-01555-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_020_01555_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |