Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images
Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low contrast. Most of previous single image contrast enhancement (SICE) methods adjust the tone curve to correct the contrast of an input image. Those m...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 27; číslo 4; s. 2049 - 2062 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.04.2018
|
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low contrast. Most of previous single image contrast enhancement (SICE) methods adjust the tone curve to correct the contrast of an input image. Those methods, however, often fail in revealing image details because of the limited information in a single image. On the other hand, the SICE task can be better accomplished if we can learn extra information from appropriately collected training data. In this paper, we propose to use the convolutional neural network (CNN) to train a SICE enhancer. One key issue is how to construct a training data set of low-contrast and high-contrast image pairs for end-to-end CNN learning. To this end, we build a large-scale multi-exposure image data set, which contains 589 elaborately selected high-resolution multi-exposure sequences with 4,413 images. Thirteen representative multi-exposure image fusion and stack-based high dynamic range imaging algorithms are employed to generate the contrast enhanced images for each sequence, and subjective experiments are conducted to screen the best quality one as the reference image of each scene. With the constructed data set, a CNN can be easily trained as the SICE enhancer to improve the contrast of an under-/over-exposure image. Experimental results demonstrate the advantages of our method over existing SICE methods with a significant margin. |
|---|---|
| AbstractList | Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low contrast. Most of previous single image contrast enhancement (SICE) methods adjust the tone curve to correct the contrast of an input image. Those methods, however, often fail in revealing image details because of the limited information in a single image. On the other hand, the SICE task can be better accomplished if we can learn extra information from appropriately collected training data. In this paper, we propose to use the convolutional neural network (CNN) to train a SICE enhancer. One key issue is how to construct a training data set of low-contrast and high-contrast image pairs for end-to-end CNN learning. To this end, we build a large-scale multi-exposure image data set, which contains 589 elaborately selected high-resolution multi-exposure sequences with 4,413 images. Thirteen representative multi-exposure image fusion and stack-based high dynamic range imaging algorithms are employed to generate the contrast enhanced images for each sequence, and subjective experiments are conducted to screen the best quality one as the reference image of each scene. With the constructed data set, a CNN can be easily trained as the SICE enhancer to improve the contrast of an under-/over-exposure image. Experimental results demonstrate the advantages of our method over existing SICE methods with a significant margin. Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low contrast. Most of previous single image contrast enhancement (SICE) methods adjust the tone curve to correct the contrast of an input image. Those methods, however, often fail in revealing image details because of the limited information in a single image. On the other hand, the SICE task can be better accomplished if we can learn extra information from appropriately collected training data. In this work, we propose to use the convolutional neural network (CNN) to train a SICE enhancer. One key issue is how to construct a training dataset of low-contrast and high-contrast image pairs for end-to-end CNN learning. To this end, we build a large-scale multi-exposure image dataset, which contains 589 elaborately selected high-resolution multi-exposure sequences with 4,413 images. Thirteen representative multi-exposure image fusion and stack-based high dynamic range imaging algorithms are employed to generate the contrast enhanced images for each sequence, and subjective experiments are conducted to screen the best quality one as the reference image of each scene. With the constructed dataset, a CNN can be easily trained as the SICE enhancer to improve the contrast of an under-/over-exposure image. Experimental results demonstrate the advantages of our method over existing SICE methods with a significant margin.Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low contrast. Most of previous single image contrast enhancement (SICE) methods adjust the tone curve to correct the contrast of an input image. Those methods, however, often fail in revealing image details because of the limited information in a single image. On the other hand, the SICE task can be better accomplished if we can learn extra information from appropriately collected training data. In this work, we propose to use the convolutional neural network (CNN) to train a SICE enhancer. One key issue is how to construct a training dataset of low-contrast and high-contrast image pairs for end-to-end CNN learning. To this end, we build a large-scale multi-exposure image dataset, which contains 589 elaborately selected high-resolution multi-exposure sequences with 4,413 images. Thirteen representative multi-exposure image fusion and stack-based high dynamic range imaging algorithms are employed to generate the contrast enhanced images for each sequence, and subjective experiments are conducted to screen the best quality one as the reference image of each scene. With the constructed dataset, a CNN can be easily trained as the SICE enhancer to improve the contrast of an under-/over-exposure image. Experimental results demonstrate the advantages of our method over existing SICE methods with a significant margin. Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low contrast. Most of previous single image contrast enhancement (SICE) methods adjust the tone curve to correct the contrast of an input image. Those methods, however, often fail in revealing image details because of the limited information in a single image. On the other hand, the SICE task can be better accomplished if we can learn extra information from appropriately collected training data. In this work, we propose to use the convolutional neural network (CNN) to train a SICE enhancer. One key issue is how to construct a training dataset of low-contrast and high-contrast image pairs for end-to-end CNN learning. To this end, we build a large-scale multi-exposure image dataset, which contains 589 elaborately selected high-resolution multi-exposure sequences with 4,413 images. Thirteen representative multi-exposure image fusion and stack-based high dynamic range imaging algorithms are employed to generate the contrast enhanced images for each sequence, and subjective experiments are conducted to screen the best quality one as the reference image of each scene. With the constructed dataset, a CNN can be easily trained as the SICE enhancer to improve the contrast of an under-/over-exposure image. Experimental results demonstrate the advantages of our method over existing SICE methods with a significant margin. |
| Author | Shuhang Gu Jianrui Cai Lei Zhang |
| Author_xml | – sequence: 1 givenname: Jianrui surname: Cai fullname: Cai, Jianrui – sequence: 2 givenname: Shuhang surname: Gu fullname: Gu, Shuhang – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994747$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM1LwzAYh4NM3IfeBUF69NL5Jk2b9ChzamGi4DyXLH07K_0yaUH_ezNXd_DgKS_h-b0fz5SM6qZGQs4pzCmF-HqdPM8ZUDlnIuaMyiMyoTGnPgBnI1dDKHxBeTwmU2vfASgPaXRCxiyOYy64mJBkhcrURb31lHeL2Hovri7RSyq1RW_R1J1RtvOW9ZuqNRovN03lPfZlV_jLz7axvRlYe0qOc1VaPBveGXm9W64XD_7q6T5Z3Kx8Hciw80UWAcpIyYDpIMsFKqm0dL9aqgxzzd3SOQITIeciC2SkwzyEHDKudKT5JpiRq33f1jQfPdourQqrsSxVjU1vUwaRDDgLARx6OaD9psIsbU1RKfOV_p7vANgD2jTWGswPCIV0Zzh1htOd4XQw7CLRn4guOtUVP6aK8r_gxT5YIOJhjmRh7LYNvgEHMYcr |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1007_s11263_024_02266_6 crossref_primary_10_1109_TCSVT_2021_3073371 crossref_primary_10_1109_TCSVT_2023_3292940 crossref_primary_10_1002_cpe_5841 crossref_primary_10_1049_ipr2_12173 crossref_primary_10_1109_TPAMI_2020_2984244 crossref_primary_10_3390_app12126227 crossref_primary_10_1049_ipr2_70059 crossref_primary_10_1016_j_displa_2021_102091 crossref_primary_10_1109_TITS_2023_3342799 crossref_primary_10_1109_TMM_2020_2982045 crossref_primary_10_3390_sym11040574 crossref_primary_10_1016_j_infrared_2021_103698 crossref_primary_10_1016_j_jvcir_2019_06_002 crossref_primary_10_1109_ACCESS_2021_3137993 crossref_primary_10_1007_s10846_019_01124_9 crossref_primary_10_1016_j_eswa_2023_121958 crossref_primary_10_1109_TNNLS_2021_3052903 crossref_primary_10_1109_TMM_2025_3535390 crossref_primary_10_3390_app122110767 crossref_primary_10_1109_TCSVT_2022_3195996 crossref_primary_10_1016_j_neucom_2024_128146 crossref_primary_10_1016_j_neucom_2024_129236 crossref_primary_10_1109_ACCESS_2021_3078457 crossref_primary_10_1016_j_heliyon_2023_e14558 crossref_primary_10_1186_s13640_023_00611_2 crossref_primary_10_1109_LSENS_2024_3380889 crossref_primary_10_1016_j_image_2021_116527 crossref_primary_10_1016_j_jvcir_2024_104242 crossref_primary_10_1038_s41598_025_92161_y crossref_primary_10_1007_s11042_022_13275_3 crossref_primary_10_3390_wevj16020072 crossref_primary_10_1109_JAS_2024_124263 crossref_primary_10_1364_AO_457726 crossref_primary_10_1016_j_inffus_2023_101895 crossref_primary_10_1016_j_aei_2025_103463 crossref_primary_10_1016_j_jvcir_2024_104127 crossref_primary_10_1016_j_image_2023_117059 crossref_primary_10_1109_ACCESS_2021_3068534 crossref_primary_10_1109_ACCESS_2025_3565727 crossref_primary_10_1007_s13351_021_1138_3 crossref_primary_10_1109_TITS_2023_3308894 crossref_primary_10_1109_TCSVT_2023_3233989 crossref_primary_10_1109_TIP_2023_3242824 crossref_primary_10_1007_s00371_024_03784_7 crossref_primary_10_3390_app11052013 crossref_primary_10_1007_s11760_025_03832_2 crossref_primary_10_1109_TCSVT_2018_2828141 crossref_primary_10_1016_j_patcog_2024_111076 crossref_primary_10_1108_IR_05_2024_0215 crossref_primary_10_1007_s10044_020_00908_2 crossref_primary_10_1016_j_cam_2023_115435 crossref_primary_10_3390_s20185300 crossref_primary_10_1016_j_jnlssr_2024_10_001 crossref_primary_10_1109_TGRS_2024_3473020 crossref_primary_10_3390_s25061825 crossref_primary_10_1109_TIM_2024_3353285 crossref_primary_10_1007_s11263_021_01466_8 crossref_primary_10_1016_j_image_2024_117229 crossref_primary_10_1109_TIP_2020_2970541 crossref_primary_10_1109_TPAMI_2021_3123686 crossref_primary_10_1109_TCSVT_2023_3311766 crossref_primary_10_1109_JOE_2023_3245686 crossref_primary_10_1109_TMM_2023_3254141 crossref_primary_10_1038_s41598_025_95329_8 crossref_primary_10_1109_TCSVT_2023_3299232 crossref_primary_10_1016_j_heliyon_2023_e23241 crossref_primary_10_1017_S0373463322000467 crossref_primary_10_1007_s00034_023_02591_0 crossref_primary_10_3390_s24155019 crossref_primary_10_1016_j_inffus_2021_10_006 crossref_primary_10_1002_sdtp_17731 crossref_primary_10_3390_s20164614 crossref_primary_10_1016_j_cviu_2024_104218 crossref_primary_10_1016_j_jvcir_2024_104148 crossref_primary_10_1016_j_patcog_2025_112203 crossref_primary_10_1117_1_JEI_31_5_053001 crossref_primary_10_1007_s11042_021_11590_9 crossref_primary_10_1109_TPAMI_2024_3524538 crossref_primary_10_1016_j_cag_2023_03_004 crossref_primary_10_1109_TCI_2023_3288300 crossref_primary_10_1016_j_neucom_2025_129726 crossref_primary_10_1109_TPAMI_2024_3487361 crossref_primary_10_3390_math11102404 crossref_primary_10_3390_s25175521 crossref_primary_10_1007_s11760_024_03431_7 crossref_primary_10_1109_TITS_2021_3117868 crossref_primary_10_1007_s11042_024_20086_1 crossref_primary_10_3390_s23187763 crossref_primary_10_1016_j_imavis_2023_104693 crossref_primary_10_3390_s25082500 crossref_primary_10_1007_s11042_020_09562_6 crossref_primary_10_1109_ACCESS_2021_3080331 crossref_primary_10_3390_e26020139 crossref_primary_10_1109_TCSVT_2022_3181781 crossref_primary_10_3390_electronics10222756 crossref_primary_10_3390_e26030184 crossref_primary_10_1007_s11042_021_10614_8 crossref_primary_10_1007_s11760_021_01856_y crossref_primary_10_1109_ACCESS_2019_2956747 crossref_primary_10_1109_TIP_2020_3042083 crossref_primary_10_3390_s24165246 crossref_primary_10_1016_j_cag_2023_12_014 crossref_primary_10_1016_j_dsp_2025_105179 crossref_primary_10_1016_j_optlaseng_2024_108800 crossref_primary_10_1109_TIP_2021_3050850 crossref_primary_10_3390_en15228508 crossref_primary_10_1109_TCSVT_2021_3129691 crossref_primary_10_1016_j_inffus_2020_08_012 crossref_primary_10_1088_1742_6596_2478_6_062022 crossref_primary_10_1109_LSP_2022_3182143 crossref_primary_10_1109_TCYB_2021_3140202 crossref_primary_10_3788_PI_2025_R03 crossref_primary_10_1016_j_neucom_2021_05_063 crossref_primary_10_1109_TBME_2019_2936460 crossref_primary_10_3390_s21154986 crossref_primary_10_7746_jkros_2025_20_3_456 crossref_primary_10_1016_j_ins_2022_07_051 crossref_primary_10_3390_app14146320 crossref_primary_10_3390_app14072846 crossref_primary_10_1016_j_jksuci_2023_101635 crossref_primary_10_1007_s00530_025_01867_6 crossref_primary_10_1016_j_inffus_2022_12_002 crossref_primary_10_1109_TCSVT_2021_3129201 crossref_primary_10_1109_ACCESS_2021_3134316 crossref_primary_10_1016_j_knosys_2023_110730 crossref_primary_10_1016_j_jvcir_2024_104293 crossref_primary_10_1109_TCSVT_2022_3202692 crossref_primary_10_1016_j_jvcir_2024_104050 crossref_primary_10_1016_j_dsp_2024_104821 crossref_primary_10_1016_j_eswa_2025_127638 crossref_primary_10_1109_TMM_2023_3268867 crossref_primary_10_1111_cgf_14350 crossref_primary_10_1016_j_neunet_2025_107162 crossref_primary_10_1371_journal_pone_0294609 crossref_primary_10_1016_j_neucom_2022_12_007 crossref_primary_10_1109_TIV_2024_3451245 crossref_primary_10_1364_AO_491768 crossref_primary_10_1049_ipr2_70077 crossref_primary_10_1109_ACCESS_2020_3006525 crossref_primary_10_1016_j_kscej_2025_100410 crossref_primary_10_1016_j_patrec_2025_07_026 crossref_primary_10_1109_TIM_2025_3556902 crossref_primary_10_1016_j_jksuci_2023_101888 crossref_primary_10_17694_bajece_1415025 crossref_primary_10_3390_photonics11070623 crossref_primary_10_1016_j_displa_2024_102637 crossref_primary_10_1016_j_sigpro_2021_108280 crossref_primary_10_1109_TNNLS_2022_3190880 crossref_primary_10_1016_j_eswa_2024_126024 crossref_primary_10_1016_j_optlastec_2024_112181 crossref_primary_10_3724_SP_J_1089_2022_19719 crossref_primary_10_1016_j_anucene_2021_108207 crossref_primary_10_1016_j_micpro_2021_104357 crossref_primary_10_3390_s23031080 crossref_primary_10_1109_TCSVT_2019_2925208 crossref_primary_10_1109_TETCI_2023_3327397 crossref_primary_10_1007_s40031_024_01004_3 crossref_primary_10_1016_j_patcog_2025_111554 crossref_primary_10_1109_ACCESS_2022_3187209 crossref_primary_10_1111_cgf_15210 crossref_primary_10_1007_s10489_021_02627_5 crossref_primary_10_1016_j_sigpro_2022_108590 crossref_primary_10_1109_TMM_2022_3172882 crossref_primary_10_1016_j_ijleo_2020_165494 crossref_primary_10_1049_iet_ipr_2020_0100 crossref_primary_10_1109_TIE_2020_3013783 crossref_primary_10_1016_j_neucom_2022_07_058 crossref_primary_10_1007_s00371_024_03554_5 crossref_primary_10_1145_3498341 crossref_primary_10_1145_3569464 crossref_primary_10_1016_j_inffus_2020_08_022 crossref_primary_10_1109_TCI_2021_3063872 crossref_primary_10_1007_s00034_022_02028_0 crossref_primary_10_3390_rs15143580 crossref_primary_10_1016_j_matdes_2023_111852 crossref_primary_10_1049_ipr2_12450 crossref_primary_10_1109_ACCESS_2023_3328579 crossref_primary_10_1016_j_engappai_2019_08_008 crossref_primary_10_1109_JSEN_2023_3314898 crossref_primary_10_1109_ACCESS_2019_2938200 crossref_primary_10_1109_TIM_2023_3284141 crossref_primary_10_1007_s11042_023_17141_8 crossref_primary_10_3390_electronics12143038 crossref_primary_10_1016_j_patcog_2025_111504 crossref_primary_10_1145_3457905 crossref_primary_10_1016_j_patcog_2025_111628 crossref_primary_10_1109_ACCESS_2022_3161527 crossref_primary_10_1109_TETCI_2023_3301337 crossref_primary_10_1007_s00603_023_03490_1 crossref_primary_10_1109_TITS_2024_3495034 crossref_primary_10_1016_j_inffus_2023_101812 crossref_primary_10_1145_3735973 crossref_primary_10_1016_j_infrared_2022_104417 crossref_primary_10_1007_s00371_021_02079_5 crossref_primary_10_1007_s11831_025_10226_7 crossref_primary_10_1016_j_knosys_2025_114227 crossref_primary_10_1177_30504554251342571 crossref_primary_10_3389_fmars_2024_1321549 crossref_primary_10_1109_TCSVT_2024_3441713 crossref_primary_10_1109_TIP_2020_2963956 crossref_primary_10_1016_j_ins_2022_05_018 crossref_primary_10_1109_JSEN_2025_3554806 crossref_primary_10_1109_ACCESS_2021_3051257 crossref_primary_10_1109_TIM_2022_3232641 crossref_primary_10_1016_j_image_2023_116925 crossref_primary_10_1016_j_patcog_2022_109039 crossref_primary_10_1016_j_image_2022_116742 crossref_primary_10_1016_j_cviu_2024_104276 crossref_primary_10_1109_TMM_2025_3543047 crossref_primary_10_1007_s11760_022_02422_w crossref_primary_10_3390_app11167754 crossref_primary_10_1007_s00371_022_02582_3 crossref_primary_10_1109_TMM_2020_3037526 crossref_primary_10_1080_15459624_2025_2499600 crossref_primary_10_1109_TIP_2019_2952716 crossref_primary_10_1007_s10489_025_06771_0 crossref_primary_10_3390_photonics10030273 crossref_primary_10_1007_s11554_024_01532_7 crossref_primary_10_3390_electronics13183713 crossref_primary_10_1109_TIP_2023_3315123 crossref_primary_10_1016_j_knosys_2022_109244 crossref_primary_10_1016_j_image_2021_116141 crossref_primary_10_1137_24M1680179 crossref_primary_10_3390_s23167306 crossref_primary_10_1109_LSP_2022_3160652 crossref_primary_10_3390_s25175353 crossref_primary_10_1016_j_image_2022_116848 crossref_primary_10_1109_TITS_2022_3165176 crossref_primary_10_1007_s00138_025_01692_x crossref_primary_10_1016_j_engappai_2023_106755 crossref_primary_10_1016_j_neucom_2018_09_064 crossref_primary_10_1016_j_jvcir_2019_04_008 crossref_primary_10_1109_ACCESS_2020_2964823 crossref_primary_10_3389_fphy_2023_1147031 crossref_primary_10_1016_j_dsp_2025_105044 crossref_primary_10_1109_ACCESS_2019_2954912 crossref_primary_10_1016_j_neucom_2024_127915 crossref_primary_10_1016_j_dsp_2025_105048 crossref_primary_10_1016_j_image_2022_116722 crossref_primary_10_1109_TIP_2021_3135473 crossref_primary_10_1109_TMM_2019_2903413 crossref_primary_10_1109_TIP_2021_3058764 crossref_primary_10_3390_math11071620 crossref_primary_10_1109_TCSVT_2023_3343696 crossref_primary_10_1007_s00521_024_09687_x crossref_primary_10_1016_j_eswa_2025_128308 crossref_primary_10_1109_TNNLS_2021_3088907 crossref_primary_10_1016_j_jvcir_2024_104313 crossref_primary_10_1007_s11042_023_15908_7 crossref_primary_10_1049_ipr2_12011 crossref_primary_10_1109_TMM_2020_2969790 crossref_primary_10_1016_j_ins_2020_09_066 crossref_primary_10_1016_j_engappai_2023_106969 crossref_primary_10_1016_j_compind_2023_103862 crossref_primary_10_1007_s44443_025_00102_6 crossref_primary_10_1007_s00371_021_02289_x crossref_primary_10_1109_JPHOT_2021_3058740 crossref_primary_10_1007_s00521_021_06836_4 crossref_primary_10_1016_j_inffus_2021_06_008 crossref_primary_10_1109_LSP_2025_3547269 crossref_primary_10_1038_s41598_024_65270_3 crossref_primary_10_1109_TVCG_2025_3566377 crossref_primary_10_3390_sym17091381 crossref_primary_10_3390_rs14030771 crossref_primary_10_1007_s11263_021_01535_y crossref_primary_10_1016_j_eswa_2025_127106 crossref_primary_10_1016_j_engappai_2023_106611 crossref_primary_10_1109_ACCESS_2022_3197629 crossref_primary_10_1145_3638772 crossref_primary_10_1007_s10586_025_05494_8 crossref_primary_10_1049_ipr2_13110 crossref_primary_10_1109_ACCESS_2020_3005022 crossref_primary_10_3390_math12081228 crossref_primary_10_1016_j_dsp_2022_103547 crossref_primary_10_1016_j_dsp_2025_105221 crossref_primary_10_1016_j_inffus_2025_103594 crossref_primary_10_1109_ACCESS_2022_3233546 crossref_primary_10_1109_LSP_2020_3029738 crossref_primary_10_1007_s00371_023_02986_9 crossref_primary_10_1016_j_imavis_2024_105102 crossref_primary_10_1007_s12200_024_00129_z crossref_primary_10_3233_JIFS_211664 crossref_primary_10_1016_j_imavis_2025_105645 crossref_primary_10_1109_TIP_2024_3457246 crossref_primary_10_1016_j_eswa_2023_121363 crossref_primary_10_1145_3757730 crossref_primary_10_1007_s11263_021_01501_8 crossref_primary_10_1016_j_inffus_2022_09_030 crossref_primary_10_1016_j_neucom_2025_131052 crossref_primary_10_3390_electronics14122419 crossref_primary_10_1016_j_jvcir_2024_104211 crossref_primary_10_1016_j_jvcir_2025_104410 crossref_primary_10_1016_j_dsp_2022_103537 crossref_primary_10_1109_TIM_2024_3386922 crossref_primary_10_1007_s11263_020_01418_8 crossref_primary_10_1109_TAI_2023_3339092 crossref_primary_10_1016_j_image_2022_116657 crossref_primary_10_1016_j_patcog_2024_110799 crossref_primary_10_1109_TCSVT_2022_3144455 crossref_primary_10_1016_j_dsp_2025_105355 crossref_primary_10_1088_1674_1056_ad1174 crossref_primary_10_1109_ACCESS_2021_3068861 crossref_primary_10_1007_s42423_025_00175_5 crossref_primary_10_1016_j_image_2025_117276 crossref_primary_10_1007_s13042_022_01716_2 crossref_primary_10_1109_TIM_2021_3109379 crossref_primary_10_1049_ipr2_12148 crossref_primary_10_1049_ipr2_13239 crossref_primary_10_1016_j_heliyon_2024_e35831 crossref_primary_10_1109_TCE_2022_3200707 crossref_primary_10_1109_TCSVT_2024_3351933 crossref_primary_10_1007_s11042_020_10310_z crossref_primary_10_1016_j_jvcir_2025_104402 crossref_primary_10_1109_TIP_2019_2904267 crossref_primary_10_1007_s00371_024_03694_8 crossref_primary_10_1016_j_image_2021_116466 crossref_primary_10_1007_s00371_023_03258_2 crossref_primary_10_1007_s11801_025_4090_0 crossref_primary_10_3390_app15020701 crossref_primary_10_1007_s13369_023_07923_5 crossref_primary_10_1109_ACCESS_2022_3207299 crossref_primary_10_3390_app13179645 crossref_primary_10_1016_j_cag_2025_104167 crossref_primary_10_1109_TPAMI_2022_3152562 crossref_primary_10_1016_j_imavis_2025_105660 crossref_primary_10_1109_TIP_2024_3519997 crossref_primary_10_1007_s11042_020_09919_x crossref_primary_10_1016_j_eswa_2025_129782 crossref_primary_10_1016_j_inffus_2023_02_031 crossref_primary_10_1360_SSI_2024_0394 crossref_primary_10_1016_j_ndteint_2025_103361 crossref_primary_10_1016_j_sigpro_2022_108902 crossref_primary_10_1109_LGRS_2021_3093935 crossref_primary_10_1016_j_knosys_2023_111226 crossref_primary_10_1007_s00530_024_01298_9 crossref_primary_10_1016_j_inffus_2023_02_027 crossref_primary_10_1137_22M1543161 crossref_primary_10_1109_ACCESS_2020_3043048 crossref_primary_10_1109_TIM_2023_3267525 crossref_primary_10_1038_s41598_025_10779_4 crossref_primary_10_1109_TMM_2019_2933333 crossref_primary_10_3390_e26090726 crossref_primary_10_1016_j_ijleo_2021_167433 crossref_primary_10_1016_j_image_2019_02_001 crossref_primary_10_1016_j_infrared_2019_103039 crossref_primary_10_1038_s41598_025_95366_3 crossref_primary_10_1109_JSEN_2023_3346642 crossref_primary_10_3390_app14020822 crossref_primary_10_1016_j_jksuci_2024_102234 crossref_primary_10_1016_j_engappai_2025_110867 crossref_primary_10_1016_j_eswa_2018_03_048 crossref_primary_10_1007_s00371_025_04115_0 crossref_primary_10_1016_j_inffus_2022_07_013 crossref_primary_10_1016_j_inffus_2022_07_016 crossref_primary_10_3390_s22072457 crossref_primary_10_1109_TPAMI_2021_3063604 crossref_primary_10_1142_S0129156425401524 crossref_primary_10_1109_TIP_2020_2999855 crossref_primary_10_3390_s21227446 crossref_primary_10_1007_s00371_021_02210_6 crossref_primary_10_1007_s11831_021_09587_6 crossref_primary_10_1109_JSYST_2023_3262593 crossref_primary_10_1016_j_jvcir_2019_03_027 crossref_primary_10_1109_TPAMI_2021_3126387 crossref_primary_10_3390_app15094801 crossref_primary_10_1007_s00371_025_03875_z crossref_primary_10_1109_TETC_2019_2943231 crossref_primary_10_1109_TIP_2020_2995048 crossref_primary_10_1145_3700136 crossref_primary_10_1016_j_compind_2019_01_008 crossref_primary_10_1016_j_eswa_2022_118920 crossref_primary_10_1016_j_sigpro_2023_109135 crossref_primary_10_3390_e27080785 crossref_primary_10_1007_s00371_021_02343_8 crossref_primary_10_3390_electronics10040383 crossref_primary_10_3389_fmars_2024_1378817 crossref_primary_10_3390_drones8010022 crossref_primary_10_1109_TIM_2024_3372230 crossref_primary_10_1109_LSP_2021_3099746 crossref_primary_10_1016_j_jvcir_2023_103795 crossref_primary_10_1016_j_cviu_2021_103260 crossref_primary_10_1049_iet_ipr_2018_5520 crossref_primary_10_1109_TIP_2021_3062184 crossref_primary_10_1007_s11042_019_7383_0 crossref_primary_10_3390_rs17183129 crossref_primary_10_1007_s00371_023_02883_1 crossref_primary_10_1016_j_neucom_2023_126378 crossref_primary_10_1142_S1793545825430059 crossref_primary_10_3390_rs15174327 crossref_primary_10_1080_13682199_2024_2343979 crossref_primary_10_1109_LSP_2022_3167331 crossref_primary_10_1109_TGRS_2022_3201530 crossref_primary_10_1007_s11760_020_01773_6 crossref_primary_10_1109_JSEN_2025_3547995 crossref_primary_10_1109_LSP_2025_3562822 crossref_primary_10_1109_TPAMI_2020_3012548 crossref_primary_10_1155_2021_5563698 crossref_primary_10_1364_OL_558705 crossref_primary_10_1016_j_sigpro_2022_108821 crossref_primary_10_1007_s10489_024_05534_7 crossref_primary_10_1007_s00521_022_07612_8 crossref_primary_10_1007_s11263_025_02542_z crossref_primary_10_1016_j_neucom_2025_129399 crossref_primary_10_1016_j_jksuci_2021_12_005 crossref_primary_10_3390_s22186799 crossref_primary_10_1016_j_optlaseng_2024_108488 crossref_primary_10_1109_TIM_2024_3417547 crossref_primary_10_1016_j_cag_2022_04_002 crossref_primary_10_1007_s00371_024_03262_0 crossref_primary_10_1109_TPAMI_2023_3334624 crossref_primary_10_1016_j_cviu_2024_104079 crossref_primary_10_1016_j_patcog_2024_110502 crossref_primary_10_1109_TMM_2024_3379883 crossref_primary_10_1109_MCG_2020_2972522 crossref_primary_10_3390_electronics12245022 crossref_primary_10_3390_photonics10020198 crossref_primary_10_1007_s11042_024_19594_x crossref_primary_10_1109_TIM_2025_3557114 crossref_primary_10_1016_j_asoc_2020_106492 crossref_primary_10_1109_JPROC_2023_3338272 crossref_primary_10_1049_ipr2_12418 crossref_primary_10_1007_s00371_022_02402_8 crossref_primary_10_1007_s11042_022_12429_7 crossref_primary_10_1109_TPAMI_2024_3410140 crossref_primary_10_1016_j_mineng_2024_108919 crossref_primary_10_1109_LSP_2024_3475969 crossref_primary_10_1016_j_jvcir_2025_104392 crossref_primary_10_1109_TIP_2021_3122004 crossref_primary_10_1007_s11554_025_01744_5 crossref_primary_10_1109_TIM_2019_2951864 crossref_primary_10_1109_ACCESS_2021_3118416 crossref_primary_10_1016_j_ins_2019_05_015 crossref_primary_10_1109_LSP_2021_3134943 crossref_primary_10_1109_TCE_2022_3214382 crossref_primary_10_1007_s11063_024_11565_5 crossref_primary_10_1109_TIP_2022_3140610 crossref_primary_10_1109_TCSVT_2019_2919310 crossref_primary_10_3390_rs16183501 crossref_primary_10_1016_j_cviu_2025_104496 crossref_primary_10_1007_s00530_025_01708_6 crossref_primary_10_1109_TIP_2021_3051486 crossref_primary_10_1109_TCSVT_2023_3286802 crossref_primary_10_1109_TMM_2024_3400668 crossref_primary_10_1016_j_engappai_2025_110841 crossref_primary_10_1109_TIP_2020_2981922 crossref_primary_10_1117_1_JEI_32_5_053023 crossref_primary_10_1109_LSP_2018_2877893 crossref_primary_10_1016_j_knosys_2024_111779 crossref_primary_10_3390_rs14184608 crossref_primary_10_1007_s11554_024_01588_5 crossref_primary_10_1109_ACCESS_2020_3043257 crossref_primary_10_1109_TMM_2022_3233299 crossref_primary_10_3390_electronics11172750 crossref_primary_10_1016_j_cag_2023_07_034 crossref_primary_10_1016_j_neucom_2024_127688 crossref_primary_10_1111_cgf_13833 crossref_primary_10_1016_j_displa_2025_103219 crossref_primary_10_1109_ACCESS_2021_3108879 crossref_primary_10_1007_s00530_025_01750_4 crossref_primary_10_1109_ACCESS_2020_2992749 crossref_primary_10_1016_j_eswa_2024_124301 crossref_primary_10_1109_ACCESS_2019_2923987 crossref_primary_10_1109_LSP_2023_3343972 crossref_primary_10_1007_s11760_021_02093_z crossref_primary_10_1007_s00530_025_01940_0 crossref_primary_10_1016_j_inffus_2022_10_021 crossref_primary_10_1016_j_neunet_2024_106809 crossref_primary_10_3390_e25060932 crossref_primary_10_3390_s23239593 crossref_primary_10_1016_j_jvcir_2023_103947 crossref_primary_10_3390_rs11131557 crossref_primary_10_1109_TIP_2021_3051462 crossref_primary_10_1007_s00371_022_02412_6 crossref_primary_10_1109_TCI_2020_3001398 crossref_primary_10_1016_j_knosys_2024_112324 crossref_primary_10_1016_j_dsp_2023_104054 crossref_primary_10_1016_j_patcog_2023_109775 crossref_primary_10_1007_s11263_024_01995_y crossref_primary_10_1016_j_neucom_2021_05_025 crossref_primary_10_1016_j_image_2020_115892 crossref_primary_10_1109_TIM_2023_3317384 crossref_primary_10_1016_j_jvcir_2023_103932 crossref_primary_10_1109_TPAMI_2020_3026740 crossref_primary_10_1016_j_compeleceng_2024_109622 crossref_primary_10_1016_j_optlastec_2025_113686 crossref_primary_10_1109_ACCESS_2020_3046268 crossref_primary_10_1016_j_patrec_2020_07_041 crossref_primary_10_1109_ACCESS_2021_3122540 crossref_primary_10_1109_TCSVT_2022_3186880 crossref_primary_10_3390_rs13142768 crossref_primary_10_1016_j_inffus_2024_102639 crossref_primary_10_3390_s22010024 crossref_primary_10_3390_sym14061165 crossref_primary_10_3390_electronics10162029 crossref_primary_10_1016_j_cviu_2020_103079 crossref_primary_10_3724_SP_J_1089_2022_18833 crossref_primary_10_1016_j_inffus_2025_102931 crossref_primary_10_1016_j_knosys_2025_113827 crossref_primary_10_1109_TETCI_2021_3053253 crossref_primary_10_1007_s10489_020_02119_y crossref_primary_10_1016_j_knosys_2024_112780 crossref_primary_10_1016_j_optlastec_2025_113550 crossref_primary_10_1007_s40747_024_01387_2 crossref_primary_10_1049_iet_ipr_2019_1147 crossref_primary_10_1109_LSP_2020_2965824 crossref_primary_10_1016_j_neucom_2025_129572 crossref_primary_10_1117_1_JEI_31_6_063050 crossref_primary_10_1109_TIP_2020_2987133 crossref_primary_10_1016_j_dsp_2023_104271 crossref_primary_10_1016_j_knosys_2025_113815 crossref_primary_10_1016_j_compeleceng_2023_108859 crossref_primary_10_1109_TIP_2022_3180213 crossref_primary_10_1109_TCSVT_2025_3544771 crossref_primary_10_1109_TMM_2020_3039361 crossref_primary_10_1109_TCSVT_2023_3340506 crossref_primary_10_1109_TGRS_2024_3422314 crossref_primary_10_1109_TMM_2022_3162493 crossref_primary_10_1109_TMM_2024_3521752 crossref_primary_10_1016_j_optlastec_2025_113662 crossref_primary_10_1109_TIP_2024_3512365 crossref_primary_10_1016_j_neucom_2025_129441 crossref_primary_10_3390_app142311033 crossref_primary_10_3390_app15137382 crossref_primary_10_3390_app8112332 crossref_primary_10_1016_j_neucom_2020_11_056 crossref_primary_10_1016_j_eswa_2023_119909 crossref_primary_10_1016_j_neucom_2019_12_093 crossref_primary_10_1109_TCSVT_2020_2985427 crossref_primary_10_1016_j_neucom_2021_08_044 crossref_primary_10_1016_j_cviu_2024_103930 crossref_primary_10_3390_ijgi12100400 crossref_primary_10_1016_j_jvcir_2023_103863 crossref_primary_10_1016_j_neucom_2022_08_042 crossref_primary_10_1007_s11760_025_04195_4 crossref_primary_10_1007_s11128_025_04735_4 crossref_primary_10_1109_TAI_2024_3404910 crossref_primary_10_1016_j_neunet_2024_106733 crossref_primary_10_1109_JIOT_2024_3446036 crossref_primary_10_1016_j_displa_2023_102614 crossref_primary_10_1109_TCE_2024_3377110 crossref_primary_10_1016_j_ijleo_2022_169023 crossref_primary_10_1007_s11063_022_10872_z crossref_primary_10_1016_j_infrared_2024_105270 crossref_primary_10_1016_j_patcog_2022_108776 crossref_primary_10_3390_app142311289 crossref_primary_10_3390_s21124136 crossref_primary_10_1016_j_jvcir_2021_103175 crossref_primary_10_1007_s00371_022_02761_2 crossref_primary_10_1109_JAS_2022_105686 crossref_primary_10_1007_s11760_022_02319_8 crossref_primary_10_1109_ACCESS_2021_3057167 crossref_primary_10_1109_TNNLS_2025_3566647 crossref_primary_10_1016_j_dsp_2024_104757 crossref_primary_10_1016_j_neunet_2023_11_014 crossref_primary_10_1016_j_cag_2023_10_016 crossref_primary_10_4218_etrij_2024_0294 crossref_primary_10_1007_s00371_023_02880_4 crossref_primary_10_1109_JSEN_2025_3590815 crossref_primary_10_3390_s25165192 crossref_primary_10_1007_s10489_024_06044_2 crossref_primary_10_1016_j_inffus_2022_11_010 crossref_primary_10_32604_cmc_2024_059000 crossref_primary_10_3390_s24020673 crossref_primary_10_1016_j_neunet_2024_106622 crossref_primary_10_1117_1_JEI_31_4_043050 crossref_primary_10_1007_s11063_023_11295_0 crossref_primary_10_1109_JBHI_2024_3469630 crossref_primary_10_1016_j_patrec_2021_12_010 crossref_primary_10_1007_s00138_022_01365_z crossref_primary_10_32604_cmc_2025_059669 crossref_primary_10_1016_j_inffus_2021_02_005 crossref_primary_10_1016_j_inffus_2024_102534 crossref_primary_10_1016_j_inffus_2024_102655 crossref_primary_10_1002_ima_22551 crossref_primary_10_1109_LSP_2022_3233005 crossref_primary_10_1007_s13042_023_01983_7 crossref_primary_10_1016_j_asoc_2024_112240 crossref_primary_10_1016_j_jvcir_2023_103887 crossref_primary_10_1016_j_autcon_2024_105404 crossref_primary_10_1109_ACCESS_2021_3119586 crossref_primary_10_3390_su15021029 crossref_primary_10_3390_jimaging10050112 crossref_primary_10_1016_j_patrec_2024_02_011 crossref_primary_10_1109_ACCESS_2019_2957775 crossref_primary_10_1109_LSP_2021_3138351 crossref_primary_10_3390_electronics12081887 crossref_primary_10_3390_app13010380 crossref_primary_10_1109_TIP_2019_2913536 crossref_primary_10_1109_TGRS_2021_3124252 crossref_primary_10_3390_land12111977 crossref_primary_10_1109_TCI_2023_3240087 crossref_primary_10_1109_TCSVT_2022_3163649 crossref_primary_10_1109_TIP_2024_3378176 crossref_primary_10_1007_s11128_020_02952_7 crossref_primary_10_1016_j_engappai_2023_107003 crossref_primary_10_1109_TMM_2023_3278385 crossref_primary_10_1109_JSEN_2025_3543768 crossref_primary_10_1007_s11263_024_02256_8 crossref_primary_10_1049_iet_ipr_2019_0118 crossref_primary_10_1016_j_displa_2025_103174 crossref_primary_10_1016_j_neucom_2020_12_057 crossref_primary_10_1109_JSEN_2024_3481416 crossref_primary_10_1016_j_jestch_2018_11_006 crossref_primary_10_1109_TCSVT_2023_3290351 crossref_primary_10_1109_TMM_2021_3089324 crossref_primary_10_1109_TIM_2022_3176881 crossref_primary_10_1109_TMM_2022_3175634 crossref_primary_10_1109_TPAMI_2021_3078906 crossref_primary_10_1117_1_JEI_32_2_023005 crossref_primary_10_1007_s11760_025_04292_4 crossref_primary_10_1016_j_ijleo_2022_169132 crossref_primary_10_1007_s11042_023_15233_z crossref_primary_10_1016_j_jvcir_2022_103585 crossref_primary_10_1016_j_neucom_2024_128011 crossref_primary_10_1016_j_inffus_2024_102414 crossref_primary_10_1007_s00530_020_00691_4 crossref_primary_10_3390_electronics11010032 |
| Cites_doi | 10.1145/882262.882270 10.1109/ICME.2017.8019529 10.1145/3072959.3073592 10.1364/JOSA.61.000001 10.1109/TIP.2015.2436340 10.1023/A:1026501619075 10.1109/CVPR.2016.182 10.1109/83.597272 10.1109/TIP.2011.2150235 10.1109/CVPR.2010.5539850 10.1007/978-3-642-33765-9_55 10.1109/TIP.2017.2671921 10.1109/ICCV.2003.1238624 10.1016/j.cag.2013.10.001 10.1109/TIP.2014.2371234 10.1145/3072959.3073609 10.1145/1360612.1360666 10.1109/TIP.2011.2109730 10.1109/CVPR.2010.5540170 10.1145/2366145.2366222 10.1201/b11373 10.1109/TCYB.2013.2290435 10.1109/ICIF.2006.301574 10.1109/TIP.2011.2170079 10.1145/3130800.3130816 10.1109/CVPR.2017.737 10.1109/CVPR.2013.154 10.1109/TIP.2015.2442920 10.1109/TIP.2017.2651366 10.1109/CVPR.2016.304 10.1109/TIP.2016.2639450 10.1109/TIP.2009.2021548 10.1109/TPAMI.2014.2361338 10.1109/TIP.2012.2207396 10.1109/CVPR.2016.90 10.1109/TIP.2014.2349432 10.1111/j.1467-8659.2008.01171.x 10.1145/566654.566574 10.1109/ICCV.2015.123 10.1145/1401132.1401174 10.1109/TIP.2011.2157513 10.1109/TIP.2003.819861 10.1145/3130800.3130834 10.1109/TIP.2012.2226047 10.1109/83.557356 10.1109/TIP.2017.2662206 10.1109/TIP.2013.2244222 10.1109/TIP.2013.2261309 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TIP.2018.2794218 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 2062 |
| ExternalDocumentID | 29994747 10_1109_TIP_2018_2794218 8259342 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Hong Kong RGC GRF grantid: PolyU 5313/13E |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION NPM RIG Z5M 7X8 |
| ID | FETCH-LOGICAL-c385t-7d60e86a832c3df7ea8ac87d6c8adefc4105fe0275447d386c5f50f0d4ac6c4b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 864 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429464300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Oct 02 09:56:26 EDT 2025 Wed Feb 19 02:09:29 EST 2025 Sat Nov 29 03:21:07 EST 2025 Tue Nov 18 22:28:51 EST 2025 Wed Aug 27 02:52:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-7d60e86a832c3df7ea8ac87d6c8adefc4105fe0275447d386c5f50f0d4ac6c4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29994747 |
| PQID | 2068342500 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2068342500 pubmed_primary_29994747 crossref_primary_10_1109_TIP_2018_2794218 ieee_primary_8259342 crossref_citationtrail_10_1109_TIP_2018_2794218 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref58 ref14 ref53 ref52 xie (ref34) 2012 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref51 ref50 ref46 jain (ref24) 2009 ref48 ref47 ref42 ref41 ref44 ref43 (ref45) 2015 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 li (ref59) 2014 ref40 ref35 ref36 ref31 ref33 ioffe (ref56) 2015 ref32 ref2 ref1 ref38 reinhard (ref30) 2010 xu (ref22) 2015 ronneberger (ref57) 2015 nemoto (ref37) 2015 ref26 raman (ref39) 2009 ref25 li (ref27) 2015; 24 ref20 ref21 ref28 ref29 bychkovsky (ref19) 2011 ref60 dong (ref23) 2014 |
| References_xml | – ident: ref38 doi: 10.1145/882262.882270 – ident: ref43 doi: 10.1109/ICME.2017.8019529 – ident: ref29 doi: 10.1145/3072959.3073592 – ident: ref49 doi: 10.1364/JOSA.61.000001 – start-page: 341 year: 2012 ident: ref34 article-title: Image denoising and inpainting with deep neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1109/TIP.2015.2436340 – ident: ref18 doi: 10.1023/A:1026501619075 – ident: ref21 doi: 10.1109/CVPR.2016.182 – ident: ref7 doi: 10.1109/83.597272 – ident: ref40 doi: 10.1109/TIP.2011.2150235 – start-page: 97 year: 2011 ident: ref19 article-title: Learning photographic global tonal adjustment with a database of input/output image pairs publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref20 doi: 10.1109/CVPR.2010.5539850 – ident: ref26 doi: 10.1007/978-3-642-33765-9_55 – ident: ref2 doi: 10.1109/TIP.2017.2671921 – start-page: 174 year: 2014 ident: ref59 article-title: A contrast enhancement framework with JPEG artifacts suppression publication-title: Proc Eur Conf Comput Vis – ident: ref11 doi: 10.1109/ICCV.2003.1238624 – ident: ref44 doi: 10.1016/j.cag.2013.10.001 – volume: 24 start-page: 120 year: 2015 ident: ref27 article-title: Weighted guided image filtering publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2371234 – ident: ref33 doi: 10.1145/3072959.3073609 – year: 2015 ident: ref45 publication-title: Commercially-Available HDR Processing Software – ident: ref54 doi: 10.1145/1360612.1360666 – ident: ref60 doi: 10.1109/TIP.2011.2109730 – year: 2015 ident: ref37 article-title: Visual attention in LDR and HDR images publication-title: Proc 9th Int Workshop Video Process Quality Metrics Consumer Electron (VPQM) – year: 2010 ident: ref30 publication-title: High Dynamic Range Imaging Acquisition Display and Image-Based Lighting – ident: ref25 doi: 10.1109/CVPR.2010.5540170 – ident: ref14 doi: 10.1145/2366145.2366222 – start-page: 1669 year: 2015 ident: ref22 article-title: Deep edge-aware filters publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 234 year: 2015 ident: ref57 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref46 doi: 10.1201/b11373 – ident: ref42 doi: 10.1109/TCYB.2013.2290435 – start-page: 1 year: 2009 ident: ref39 article-title: Bilateral filter based compositing for variable exposure photography publication-title: In Eurographics (Short papers) – start-page: 184 year: 2014 ident: ref23 article-title: Learning a deep convolutional network for image super-resolution publication-title: Proc Eur Conf Comput Vis – ident: ref47 doi: 10.1109/ICIF.2006.301574 – ident: ref41 doi: 10.1109/TIP.2011.2170079 – ident: ref28 doi: 10.1145/3130800.3130816 – ident: ref36 doi: 10.1109/CVPR.2017.737 – ident: ref32 doi: 10.1109/CVPR.2013.154 – ident: ref16 doi: 10.1109/TIP.2015.2442920 – ident: ref51 doi: 10.1109/TIP.2017.2651366 – ident: ref3 doi: 10.1109/CVPR.2016.304 – ident: ref1 doi: 10.1109/TIP.2016.2639450 – ident: ref4 doi: 10.1109/TIP.2009.2021548 – ident: ref15 doi: 10.1109/TPAMI.2014.2361338 – ident: ref52 doi: 10.1109/TIP.2012.2207396 – ident: ref58 doi: 10.1109/CVPR.2016.90 – ident: ref53 doi: 10.1109/TIP.2014.2349432 – ident: ref13 doi: 10.1111/j.1467-8659.2008.01171.x – ident: ref50 doi: 10.1145/566654.566574 – ident: ref55 doi: 10.1109/ICCV.2015.123 – start-page: 769 year: 2009 ident: ref24 article-title: Natural image denoising with convolutional networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref10 doi: 10.1145/1401132.1401174 – start-page: 448 year: 2015 ident: ref56 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref5 doi: 10.1109/TIP.2011.2157513 – ident: ref48 doi: 10.1109/TIP.2003.819861 – ident: ref31 doi: 10.1145/3130800.3130834 – ident: ref6 doi: 10.1109/TIP.2012.2226047 – ident: ref9 doi: 10.1109/83.557356 – ident: ref35 doi: 10.1109/TIP.2017.2662206 – ident: ref12 doi: 10.1109/TIP.2013.2244222 – ident: ref8 doi: 10.1109/TIP.2013.2261309 |
| SSID | ssj0014516 |
| Score | 2.7082233 |
| Snippet | Due to the poor lighting condition and limited dynamic range of digital imaging devices, the recorded images are often under-/over-exposed and with low... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2049 |
| SubjectTerms | convolutional neural network Dynamic range Heuristic algorithms Image sequences Imaging Lighting multi-exposure image fusion Single image contrast enhancement Training Training data |
| Title | Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images |
| URI | https://ieeexplore.ieee.org/document/8259342 https://www.ncbi.nlm.nih.gov/pubmed/29994747 https://www.proquest.com/docview/2068342500 |
| Volume | 27 |
| WOSCitedRecordID | wos000429464300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzALEAQ68H-OlIHFBoiysaZMcEQyxC0ICpN2qLHUBCbpp3RCfj912FQdAoqeoctootmM7fgGcSIXGklgPjEcTqNi4wEb-gjOW085ADXQnq5pN6Ls70-_b-zk4a3JhELEMPsNzHpa-_HTop3xV1iZrxoaKDtx5reMqV6vxGHDD2dKzGelAk9o_c0lK237s3XMMlznvEPF1uL3HNxFU9lT5Xb0sxczN6v8WuAYrtTopLiv8r8Mc5huwWquWombcYgOWv9Ud3IReXVX1WThxjTgSDzR-Q9F7p9NFcMGqsSsmopu_ME2MBeegiDJVN-h-joZ8qVjBFlvwdNN9vLoN6p4KgQ9NNAl0Gks0sSNG9mGaaXTGeUNvvXEpZp6jPjNkX6ZSOg1N7KMskplMlfOxV4NwGxbyYY67IJC4newZekjEkSJgUuelRRk5O7Bemha0Z9uc-LrgOPe9eEtKw0PahBCTMGKSGjEtOG1mjKpiG3_AbvL-N3D11rfgeIbJhBiFvR8ux-G0oMmxIYBIyhbsVChuJpNMtooMq72fP7oPS_zrKmDnABYm4ykewqL_mLwW4yOixr45KqnxC5GN2O8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS-QwcBBPUB_8_ti7UyP4Ilg3tmmbPB7niou6CK7gW8mmUxW0u2x35X7-zbTd4oMK9imUSQiZmcxM5gvgSCrUhsS6px1qT0XaeiZ0Z5yxnPoDNYj9rGo2Efd6-uHB3M7BSZMLg4hl8Bme8rD05adDN-WnsjZZMyZQdOH-CJXyZZWt1fgMuOVs6dsMYy8mxX_mlJSm3e_echSXPvWJ_Hxu8PFOCJVdVT5XMEtBc7H6vS2uwUqtUIo_FQWswxzmG7BaK5eiZt1iA5bfVR7chG5dV_VRWHGOOBJ3NH5B0X2l-0VwyaqxLSaikz8xVYwFZ6GIMlnX6_wbDflZsYIttuD-otP_e-nVXRU8F-hw4sVpJFFHlljZBWkWo9XWafrrtE0xcxz3mSF7M5WK00BHLsxCmclUWRc5NQi2YT4f5rgLAonfyaKhj4QcqQI6tU4alKE1A-OkbkF7dsyJq0uOc-eLl6Q0PaRJCDEJIyapEdOC42bGqCq38QXsJp9_A1cffQsOZ5hMiFXY_2FzHE4LmhxpAgilbMFOheJmMkllo8i0-vnxogeweNm_uU6uu72rX7DE26jCd37D_GQ8xT1YcG-T52K8X9Lkf-Tg204 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+Deep+Single+Image+Contrast+Enhancer+from+Multi-Exposure+Images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jianrui+Cai&rft.au=Shuhang+Gu&rft.au=Lei+Zhang&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=27&rft.issue=4&rft.spage=2049&rft.epage=2062&rft_id=info:doi/10.1109%2FTIP.2018.2794218&rft.externalDocID=8259342 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |