A Multi-Agent Centralized Strategy Gradient Reinforcement Learning Algorithm Based on State Transition
The prevalent utilization of deterministic strategy algorithms in Multi-Agent Deep Reinforcement Learning (MADRL) for collaborative tasks has posed a significant challenge in achieving stable and high-performance cooperative behavior. Addressing the need for the balanced exploration and exploitation...
Uloženo v:
| Vydáno v: | Algorithms Ročník 17; číslo 12; s. 579 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.12.2024
|
| Témata: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!