Finite difference formulas in the complex plane

Among general functions of two variables f ( x , y ), analytic functions f ( z ) with z = x + i y form a very important special case. One consequence of analyticity turns out to be that 2-D finite difference (FD) formulas can be made remarkably accurate already for small stencil sizes. This article...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 90; číslo 3; s. 1305 - 1326
Hlavní autor: Fornberg, Bengt
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2022
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Among general functions of two variables f ( x , y ), analytic functions f ( z ) with z = x + i y form a very important special case. One consequence of analyticity turns out to be that 2-D finite difference (FD) formulas can be made remarkably accurate already for small stencil sizes. This article discusses some key properties of such complex plane FD formulas. Application areas include numerical differentiation, interpolation, contour integration, and analytic continuation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-021-01231-5