Finite difference formulas in the complex plane
Among general functions of two variables f ( x , y ), analytic functions f ( z ) with z = x + i y form a very important special case. One consequence of analyticity turns out to be that 2-D finite difference (FD) formulas can be made remarkably accurate already for small stencil sizes. This article...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 90; číslo 3; s. 1305 - 1326 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Among general functions of two variables
f
(
x
,
y
), analytic functions
f
(
z
) with
z
=
x
+
i
y
form a very important special case. One consequence of analyticity turns out to be that 2-D finite difference (FD) formulas can be made remarkably accurate already for small stencil sizes. This article discusses some key properties of such complex plane FD formulas. Application areas include numerical differentiation, interpolation, contour integration, and analytic continuation. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-021-01231-5 |