Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation

Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 31; H. 12; S. 2307 - 2321
Hauptverfasser: Yefeng Zheng, John, M., Rui Liao, Nottling, A., Boese, J., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.12.2012
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications.
AbstractList Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications.Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications.
Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications.
Author Walther, T.
Comaniciu, D.
Brockmann, G.
John, M.
Yefeng Zheng
Rui Liao
Nottling, A.
Kempfert, J.
Boese, J.
Author_xml – sequence: 1
  surname: Yefeng Zheng
  fullname: Yefeng Zheng
  email: yefeng.zheng@siemens.com
  organization: Imaging & Comput. Vision Technol. Field, Siemens Corp. Res., Princeton, NJ, USA
– sequence: 2
  givenname: M.
  surname: John
  fullname: John, M.
  email: matthias.mj.john@siemens.com
  organization: Healthcare Sector, Siemens AG, Forchheim, Germany
– sequence: 3
  surname: Rui Liao
  fullname: Rui Liao
  email: rui.liao@siemens.com
  organization: Imaging & Comput. Vision Technol. Field, Siemens Corp. Res., Princeton, NJ, USA
– sequence: 4
  givenname: A.
  surname: Nottling
  fullname: Nottling, A.
  email: alois.noetting@siemens.com
  organization: Healthcare Sector, Siemens AG, Forchheim, Germany
– sequence: 5
  givenname: J.
  surname: Boese
  fullname: Boese, J.
  email: jan.boese@siemens.com
  organization: Healthcare Sector, Siemens AG, Forchheim, Germany
– sequence: 6
  givenname: J.
  surname: Kempfert
  fullname: Kempfert, J.
  email: kempfertj@googlemail.com
  organization: Dept. of Cardiac Surg., Kerckhoff Klinik, Bad Nauheim, Germany
– sequence: 7
  givenname: T.
  surname: Walther
  fullname: Walther, T.
  email: t.walther@kerckhoff-klinik.de
  organization: Dept. of Cardiac Surg., Kerckhoff Klinik, Bad Nauheim, Germany
– sequence: 8
  givenname: G.
  surname: Brockmann
  fullname: Brockmann, G.
  email: brockmann@dhm.mhn.de
  organization: Dept. of Cardiovascular Surg., German Heart Center, Munich, Germany
– sequence: 9
  givenname: D.
  surname: Comaniciu
  fullname: Comaniciu, D.
  email: dorin.comaniciu@siemens.com
  organization: Imaging & Comput. Vision Technol. Field, Siemens Corp. Res., Princeton, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22955891$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPxCAUhYnR6PjYm5gYlm46cqFUWE7G1yRjXDgadw2lt1rtYwTGxH8v2tGFC1cQ-M65cM4u2ez6Dgk5BDYGYPp0cTMbcwZ8zDlkMoUNMgIpVcJl-rhJRoyfqYSxjO-QXe9fGINUMr1NdjjXEdMwIm-TVehbE2pLJ70Lht7hU4tdiCd9R01X0gfTvCOdx21r3Cs9x4D2-7Lu6DSZuJZOF7TqHV0403lrwnMk3LdbNB3Us3bZmLXpPtmqTOPxYL3ukfvLi8X0OpnfXs2mk3lihZIhyVCXBQeoitRCUUleikIoo0Valhx4wXWqbIGV4Mba0kqjrIQqQyUlM5IxsUdOBt-l699W6EPe1t5iEx-C_crnEDNTMlNCR_R4ja6KFst86er414_8J6YIsAGwrvfeYfWLAMu_mshjE_lXE_m6iSjJ_khsPQQQnKmb_4RHg7BGxN85GddCMxCfR9uVxA
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s10554_015_0793_9
crossref_primary_10_1007_s12194_025_00926_x
crossref_primary_10_1155_2020_9843275
crossref_primary_10_1007_s12572_015_0139_9
crossref_primary_10_3414_ME15_01_0104
crossref_primary_10_1016_j_media_2020_101729
crossref_primary_10_1109_TMI_2013_2275233
crossref_primary_10_1109_TMI_2016_2544199
crossref_primary_10_1002_cnm_2827
crossref_primary_10_1109_TMI_2019_2946345
crossref_primary_10_1007_s10554_016_0886_0
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_cviu_2019_102881
crossref_primary_10_1016_j_compmedimag_2020_101840
crossref_primary_10_1016_j_jcct_2013_12_001
crossref_primary_10_1016_j_iccl_2014_09_009
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1109_TMI_2020_3009002
crossref_primary_10_1007_s11548_015_1328_5
crossref_primary_10_1109_TMI_2016_2538802
crossref_primary_10_1007_s11517_014_1165_7
crossref_primary_10_1016_j_nexres_2024_100059
crossref_primary_10_1080_13645706_2018_1488734
crossref_primary_10_3390_app13137778
crossref_primary_10_1371_journal_pone_0200317
crossref_primary_10_1016_j_media_2020_101659
crossref_primary_10_1016_j_compmedimag_2023_102201
crossref_primary_10_1109_ACCESS_2019_2955448
crossref_primary_10_1007_s11548_020_02131_0
crossref_primary_10_1016_j_acra_2019_12_013
crossref_primary_10_1002_mp_12438
crossref_primary_10_1016_j_tcm_2021_02_002
crossref_primary_10_1109_TBME_2016_2617401
crossref_primary_10_1007_s10527_020_09961_x
crossref_primary_10_1016_j_cmpb_2022_107177
crossref_primary_10_1016_j_compmedimag_2014_09_005
crossref_primary_10_1088_0031_9155_59_14_3861
crossref_primary_10_1002_mp_14811
crossref_primary_10_1016_j_ejrad_2019_108713
crossref_primary_10_1109_TMI_2012_2234320
crossref_primary_10_1088_1361_6560_ab10c1
crossref_primary_10_1088_1742_6596_1160_1_012005
crossref_primary_10_1080_00325481_2021_2003150
crossref_primary_10_1038_s41598_020_58103_6
crossref_primary_10_1109_ACCESS_2020_2998735
crossref_primary_10_1146_annurev_bioeng_071813_104517
crossref_primary_10_1371_journal_pone_0184133
crossref_primary_10_1016_j_jacc_2018_12_054
Cites_doi 10.1016/S1076-6332(03)00540-3
10.1109/IEMBS.2000.900759
10.1117/12.593433
10.1109/TMI.2002.801151
10.1007/3-540-32137-3_33
10.1056/NEJMoa1008232
10.1056/NEJMoa1103510
10.1007/978-3-642-15705-9_64
10.1109/IEMBS.2003.1279838
10.1016/j.jcct.2011.04.007
10.1016/j.ejrad.2009.07.027
10.1109/42.640747
10.1016/j.athoracsur.2009.01.029
10.1109/CIC.2007.4745598
10.1109/TMI.2006.889726
10.1007/11812715_40
10.1109/ISBI.2008.4540924
10.1007/978-3-540-85988-8_82
10.1109/ISBI.2011.5872639
10.1109/TMI.2004.843260
10.1109/ISBI.2011.5872620
10.1109/TMI.2010.2048756
10.1117/12.481367
10.1109/IEMBS.2009.5332516
10.1007/s10554-008-9402-5
10.1109/TMI.2008.2004421
10.1213/ane.0b013e31819b07ce
10.1109/TMI.2011.2171357
10.1016/j.ics.2005.03.318
10.1109/CIBEC.2010.5716100
10.1016/j.media.2009.02.005
10.1007/978-3-540-89208-3_139
10.1007/978-3-642-23623-5_35
10.1109/CIC.2007.4745572
10.1016/j.media.2004.01.001
10.1016/j.media.2009.07.011
10.1109/CISP.2009.5305569
10.1007/978-3-540-45087-0_12
10.1117/12.768494
10.1117/12.810270
10.1109/CVPR.2001.990517
10.1006/cviu.1995.1004
10.1109/TSMCB.2003.814305
10.1016/j.media.2011.06.004
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2012.2216541
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2321
ExternalDocumentID 22955891
10_1109_TMI_2012_2216541
6293901
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c385t-6e9db211fb4c1bf52d3b38a934dd212b2948cbef32accdc5a8c51f6e8550a5003
IEDL.DBID RIE
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313690600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Thu Oct 02 05:55:47 EDT 2025
Mon Jul 21 05:59:53 EDT 2025
Sat Nov 29 05:13:27 EST 2025
Tue Nov 18 22:12:49 EST 2025
Tue Aug 26 17:19:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-6e9db211fb4c1bf52d3b38a934dd212b2948cbef32accdc5a8c51f6e8550a5003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22955891
PQID 1221856839
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1221856839
ieee_primary_6293901
crossref_primary_10_1109_TMI_2012_2216541
crossref_citationtrail_10_1109_TMI_2012_2216541
pubmed_primary_22955891
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
References ref56
ref15
ref14
ref52
ref10
(ref59) 2010
zheng (ref53) 2009
krissian (ref38) 2003
ref17
ref16
ref18
tek (ref12) 2008
leon (ref2) 2010; 363
ref51
subasic (ref22) 2002
ref50
ref46
john (ref20) 2010
ref45
ref48
ref47
ref42
ref41
ref44
(ref54) 1996
kirchberg (ref26) 2006
ref49
saur (ref11) 2008
ref8
ref7
ref9
(ref58) 0
ref3
ref5
gessat (ref6) 2009; 7261
ref40
dryden (ref55) 1998
ref35
ref34
ref37
ref36
ref30
rogers (ref43) 2002
ref33
(ref60) 2011
zheng (ref19) 2010
mack (ref4) 2010; 37
ref1
ref39
kovcs (ref28) 2006
zellerhoff (ref57) 2005; 5745
wang (ref13) 2008
ref24
ref23
ref25
ref21
ref27
ref29
egger (ref31) 2009
ref61
dehmeshki (ref32) 2009
References_xml – volume: 37
  start-page: 658
  year: 2010
  ident: ref4
  article-title: Does transcatheter aortic valve implantation mean the end of surgical aortic valve replacement
  publication-title: Texas Heart Inst J
– ident: ref8
  doi: 10.1016/S1076-6332(03)00540-3
– ident: ref21
  doi: 10.1109/IEMBS.2000.900759
– volume: 5745
  start-page: 646
  year: 2005
  ident: ref57
  article-title: Low contrast 3-D reconstruction from C-arm data
  publication-title: Proc SPIE Med Imag
  doi: 10.1117/12.593433
– ident: ref7
  doi: 10.1109/TMI.2002.801151
– ident: ref27
  doi: 10.1007/3-540-32137-3_33
– start-page: 517
  year: 2002
  ident: ref43
  article-title: Robust active shape model search
  publication-title: Proc Eur Conf Comput Vis
– volume: 363
  start-page: 1597
  year: 2010
  ident: ref2
  article-title: Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery
  publication-title: N Eng J Med
  doi: 10.1056/NEJMoa1008232
– ident: ref5
  doi: 10.1056/NEJMoa1103510
– ident: ref18
  doi: 10.1007/978-3-642-15705-9_64
– start-page: 638
  year: 2003
  ident: ref38
  article-title: Multiscale segmentation of the aorta in 3-D ultrasound images
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.2003.1279838
– start-page: 323
  year: 2008
  ident: ref11
  article-title: Automatic ascending aorta detection in CTA datasets
  publication-title: Proc Workshop Bildverarbeitung fr die Medizin
– ident: ref3
  doi: 10.1016/j.jcct.2011.04.007
– ident: ref33
  doi: 10.1016/j.ejrad.2009.07.027
– start-page: 470
  year: 2006
  ident: ref26
  article-title: Modeling the human aorta for MR-driven real-time virtual endoscopy
  publication-title: Proc Int Conf Medical Image Computing Computer Assist Intervent
– ident: ref42
  doi: 10.1109/42.640747
– ident: ref56
  doi: 10.1016/j.athoracsur.2009.01.029
– ident: ref29
  doi: 10.1109/CIC.2007.4745598
– ident: ref45
  doi: 10.1109/TMI.2006.889726
– year: 2008
  ident: ref12
  article-title: Automatic coronary tree modeling
  publication-title: Insight J
– year: 2010
  ident: ref59
  publication-title: 59th Annu Sci Session Am College Cardiol
– start-page: 317
  year: 2006
  ident: ref28
  article-title: Automatic segmentation of the aortic dissection membrane from 3-D CTA images
  publication-title: Proc Medical Imaging and Augmented Reality
  doi: 10.1007/11812715_40
– ident: ref34
  doi: 10.1109/ISBI.2008.4540924
– ident: ref15
  doi: 10.1007/978-3-540-85988-8_82
– ident: ref49
  doi: 10.1109/ISBI.2011.5872639
– ident: ref25
  doi: 10.1109/TMI.2004.843260
– ident: ref61
  doi: 10.1109/ISBI.2011.5872620
– year: 0
  ident: ref58
  publication-title: 23rd Annu Meeting Eur Assoc Cardio-Thoracic Surg
– start-page: 283
  year: 1996
  ident: ref54
  article-title: Optimal surface smoothing as filter design
  publication-title: Proc Eur Conf Comput Vis
– ident: ref48
  doi: 10.1109/TMI.2010.2048756
– start-page: 32
  year: 2009
  ident: ref32
  article-title: Automatic detection, segmentation and quantification of abdominal aortic aneurysm using computed tomography angiography
  publication-title: Proc Med Image Understand Anal
– year: 2011
  ident: ref60
  publication-title: 23rd Annual Scientific Symposium of Transcatheter Cardiovascular Therapeutics
– ident: ref23
  doi: 10.1117/12.481367
– ident: ref37
  doi: 10.1109/IEMBS.2009.5332516
– ident: ref9
  doi: 10.1007/s10554-008-9402-5
– start-page: 476
  year: 2010
  ident: ref19
  article-title: Automatic aorta segmentation and valve landmark detection in C-arm CT: Application to aortic valve implantation
  publication-title: Proc Int Conf Med Image Computing Computer Assisted Intervent
– ident: ref16
  doi: 10.1109/TMI.2008.2004421
– ident: ref1
  doi: 10.1213/ane.0b013e31819b07ce
– start-page: 375
  year: 2010
  ident: ref20
  article-title: System to guide transcatheter aortic valve implantations based on interventional 3-D C-arm CT imaging
  publication-title: Proc Int Conf Medical Image Computing Computer Assist Intervent
– ident: ref44
  doi: 10.1109/TMI.2011.2171357
– ident: ref10
  doi: 10.1016/j.ics.2005.03.318
– ident: ref35
  doi: 10.1109/CIBEC.2010.5716100
– ident: ref17
  doi: 10.1016/j.media.2009.02.005
– ident: ref30
  doi: 10.1007/978-3-540-89208-3_139
– ident: ref50
  doi: 10.1007/978-3-642-23623-5_35
– ident: ref36
  doi: 10.1109/CIC.2007.4745572
– year: 2008
  ident: ref13
  article-title: An automatic seeding method for coronary artery segmentation and skeletonization in CTA
  publication-title: Insight J
– ident: ref24
  doi: 10.1016/j.media.2004.01.001
– ident: ref41
  doi: 10.1016/j.media.2009.07.011
– ident: ref14
  doi: 10.1109/CISP.2009.5305569
– ident: ref40
  doi: 10.1007/978-3-540-45087-0_12
– start-page: 1
  year: 2009
  ident: ref31
  article-title: Aorta segmentation for stent simulation
  publication-title: Proc MICCAI Workshop Cardiovas Intervent Imag Biophys Model
– start-page: 61
  year: 2002
  ident: ref22
  article-title: Segmentation of abdominal aortic aneurysm using deformable models
  publication-title: Proceedings of East-West Vision
– ident: ref46
  doi: 10.1117/12.768494
– volume: 7261
  year: 2009
  ident: ref6
  article-title: A planning system for transapical aortic valve implantation
  publication-title: Proc SPIE Med Imag
  doi: 10.1117/12.810270
– ident: ref51
  doi: 10.1109/CVPR.2001.990517
– ident: ref52
  doi: 10.1006/cviu.1995.1004
– start-page: 194
  year: 2009
  ident: ref53
  article-title: Constrained marginal space learning for efficient 3-D anatomical structure detection in medical images
  publication-title: Proc IEEE Conf Comput Vis and Pattern Recog
– ident: ref39
  doi: 10.1109/TSMCB.2003.814305
– year: 1998
  ident: ref55
  publication-title: Statistical Shape Analysis
– ident: ref47
  doi: 10.1016/j.media.2011.06.004
SSID ssj0014509
Score 2.3820558
Snippet Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2307
SubjectTerms Algorithms
Aorta segmentation
Aortic Valve - diagnostic imaging
Aortic Valve - surgery
aortic valve landmark detection
Aortography - methods
Biomedical imaging
C-arm computed tomography (CT)
Computed tomography
Heart Valve Prosthesis Implantation - methods
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Reproducibility of Results
Robustness
Surgery
Surgery, Computer-Assisted - methods
Tomography, X-Ray Computed - methods
transcatheter aortic valve implantation
transcatheter aortic valve replacement
Valves
Title Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation
URI https://ieeexplore.ieee.org/document/6293901
https://www.ncbi.nlm.nih.gov/pubmed/22955891
https://www.proquest.com/docview/1221856839
Volume 31
WOSCitedRecordID wos000313690600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qEdEHP1o_zo-ygi-C6eV2s7ndx-O0KNgieMq9hd3ZSSm2ufaa69_vziYXFFTwLQ87k8BvlpnJzPwG4E2OymPuTebrWmWFNRSvFBaZJa-RTHTZtls2MT05Mcul_bID74ZZGCJKzWd0yI-plh9WuOFfZeMy-ibLw1q3ptNpN6s1VAwK3bVzSGaMzUu5LUnmdrw4_sQ9XPJQSp7d4eUwvMSa9-n95o3SepW_R5rJ4xw9-L9vfQj3-8hSzDpTeAQ71OzBvV_4BvfgznFfSd-Hq9mmXSW6VjHjCFx8pdOLfg6pEa4J4rs7vyHxOT5euPUP8Z7a1LXViLNGzLNoIGK-EDHkFcndJfrXiFHSFpV20sw97Hqlj-Hb0YfF_GPWr1_IUBndZiXZ4GN-WPsCJ77WMiivjLOqCCE6PC9tYdBTraRDDKidQT2pS2KKNN6zoJ7AbrNq6BkIzspKGdASMsObjGm3ldoHhbrOybkRjLcwVNhzk_OKjPMq5Si5rSKGFWNY9RiO4O0gcdnxcvzj7D7jM5zroRnB6y3SVbxTXChxDa0219UkChpdxthxBE87ExiEt5bz_M9KX8BdfnXX8PISdtv1hl7Bbbxpz67XB9Fwl-YgGe5P9dbnbw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8QJH48iALqCeia-GJiud5ut-w-Xg4IxLuLiafhrdmPKSFAT48efz87216DiZr41oedySYzm5npzPx-AB9TJ6xLrUpsWYok0wrDk3JZotFKhyqEbN2QTRxOp-r8XH9dg8_dLgwixuEzPKDP2Mv3c7ekX2X9PMQmTctaj2SW8UGzrdX1DDLZDHRwwoxNc75qSqa6P5uc0RQXP-CctneIHoZorIlR77d4FAlW_p5rxphzsvl_t30Bz9vckg0bZ3gJa1htwbMHiINb8HjS9tK34ddwWc8jYCsbUg7OvuHFTbuJVDFTefbDXN8hG4fPG7O4YkdYx7mtil1WbJQEF2GjGQtJL4sBLwLABitFbUFpI03ow6ZVugPfT45no9OkJWBInFCyTnLU3oYKsbSZG9hSci-sUEaLzPsQ8izXmXIWS8GNc95Jo5wclDkSSBoxLYhXsF7NK3wDjOqynHun0RHGGw-Ft-bSeuFkmaIxPeivzFC4Fp2cSDKui1ilpLoINizIhkVrwx586iR-Nsgc_zi7TfbpzrWm6cGHlaWL8KqoVWIqnC9vi0EQVDIP2WMPXjcu0AmvPOftn5W-hyens8m4GJ9Nv-zCU7pGM_6yB-v1Yon7sOHu6svbxbvovvexoenO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Aorta+Segmentation+and+Valve+Landmark+Detection+in+C-Arm+CT+for+Transcatheter+Aortic+Valve+Implantation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Yefeng+Zheng&rft.au=John%2C+M.&rft.au=Rui+Liao&rft.au=Nottling%2C+A.&rft.date=2012-12-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=31&rft.issue=12&rft.spage=2307&rft.epage=2321&rft_id=info:doi/10.1109%2FTMI.2012.2216541&rft_id=info%3Apmid%2F22955891&rft.externalDocID=6293901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon