Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation
Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve mea...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on medical imaging Jg. 31; H. 12; S. 2307 - 2321 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.12.2012
|
| Schlagworte: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications. |
|---|---|
| AbstractList | Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications.Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications. Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications. |
| Author | Walther, T. Comaniciu, D. Brockmann, G. John, M. Yefeng Zheng Rui Liao Nottling, A. Kempfert, J. Boese, J. |
| Author_xml | – sequence: 1 surname: Yefeng Zheng fullname: Yefeng Zheng email: yefeng.zheng@siemens.com organization: Imaging & Comput. Vision Technol. Field, Siemens Corp. Res., Princeton, NJ, USA – sequence: 2 givenname: M. surname: John fullname: John, M. email: matthias.mj.john@siemens.com organization: Healthcare Sector, Siemens AG, Forchheim, Germany – sequence: 3 surname: Rui Liao fullname: Rui Liao email: rui.liao@siemens.com organization: Imaging & Comput. Vision Technol. Field, Siemens Corp. Res., Princeton, NJ, USA – sequence: 4 givenname: A. surname: Nottling fullname: Nottling, A. email: alois.noetting@siemens.com organization: Healthcare Sector, Siemens AG, Forchheim, Germany – sequence: 5 givenname: J. surname: Boese fullname: Boese, J. email: jan.boese@siemens.com organization: Healthcare Sector, Siemens AG, Forchheim, Germany – sequence: 6 givenname: J. surname: Kempfert fullname: Kempfert, J. email: kempfertj@googlemail.com organization: Dept. of Cardiac Surg., Kerckhoff Klinik, Bad Nauheim, Germany – sequence: 7 givenname: T. surname: Walther fullname: Walther, T. email: t.walther@kerckhoff-klinik.de organization: Dept. of Cardiac Surg., Kerckhoff Klinik, Bad Nauheim, Germany – sequence: 8 givenname: G. surname: Brockmann fullname: Brockmann, G. email: brockmann@dhm.mhn.de organization: Dept. of Cardiovascular Surg., German Heart Center, Munich, Germany – sequence: 9 givenname: D. surname: Comaniciu fullname: Comaniciu, D. email: dorin.comaniciu@siemens.com organization: Imaging & Comput. Vision Technol. Field, Siemens Corp. Res., Princeton, NJ, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22955891$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPxCAUhYnR6PjYm5gYlm46cqFUWE7G1yRjXDgadw2lt1rtYwTGxH8v2tGFC1cQ-M65cM4u2ez6Dgk5BDYGYPp0cTMbcwZ8zDlkMoUNMgIpVcJl-rhJRoyfqYSxjO-QXe9fGINUMr1NdjjXEdMwIm-TVehbE2pLJ70Lht7hU4tdiCd9R01X0gfTvCOdx21r3Cs9x4D2-7Lu6DSZuJZOF7TqHV0403lrwnMk3LdbNB3Us3bZmLXpPtmqTOPxYL3ukfvLi8X0OpnfXs2mk3lihZIhyVCXBQeoitRCUUleikIoo0Valhx4wXWqbIGV4Mba0kqjrIQqQyUlM5IxsUdOBt-l699W6EPe1t5iEx-C_crnEDNTMlNCR_R4ja6KFst86er414_8J6YIsAGwrvfeYfWLAMu_mshjE_lXE_m6iSjJ_khsPQQQnKmb_4RHg7BGxN85GddCMxCfR9uVxA |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1007_s10554_015_0793_9 crossref_primary_10_1007_s12194_025_00926_x crossref_primary_10_1155_2020_9843275 crossref_primary_10_1007_s12572_015_0139_9 crossref_primary_10_3414_ME15_01_0104 crossref_primary_10_1016_j_media_2020_101729 crossref_primary_10_1109_TMI_2013_2275233 crossref_primary_10_1109_TMI_2016_2544199 crossref_primary_10_1002_cnm_2827 crossref_primary_10_1109_TMI_2019_2946345 crossref_primary_10_1007_s10554_016_0886_0 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1016_j_cviu_2019_102881 crossref_primary_10_1016_j_compmedimag_2020_101840 crossref_primary_10_1016_j_jcct_2013_12_001 crossref_primary_10_1016_j_iccl_2014_09_009 crossref_primary_10_1007_s00259_021_05341_z crossref_primary_10_1109_TMI_2020_3009002 crossref_primary_10_1007_s11548_015_1328_5 crossref_primary_10_1109_TMI_2016_2538802 crossref_primary_10_1007_s11517_014_1165_7 crossref_primary_10_1016_j_nexres_2024_100059 crossref_primary_10_1080_13645706_2018_1488734 crossref_primary_10_3390_app13137778 crossref_primary_10_1371_journal_pone_0200317 crossref_primary_10_1016_j_media_2020_101659 crossref_primary_10_1016_j_compmedimag_2023_102201 crossref_primary_10_1109_ACCESS_2019_2955448 crossref_primary_10_1007_s11548_020_02131_0 crossref_primary_10_1016_j_acra_2019_12_013 crossref_primary_10_1002_mp_12438 crossref_primary_10_1016_j_tcm_2021_02_002 crossref_primary_10_1109_TBME_2016_2617401 crossref_primary_10_1007_s10527_020_09961_x crossref_primary_10_1016_j_cmpb_2022_107177 crossref_primary_10_1016_j_compmedimag_2014_09_005 crossref_primary_10_1088_0031_9155_59_14_3861 crossref_primary_10_1002_mp_14811 crossref_primary_10_1016_j_ejrad_2019_108713 crossref_primary_10_1109_TMI_2012_2234320 crossref_primary_10_1088_1361_6560_ab10c1 crossref_primary_10_1088_1742_6596_1160_1_012005 crossref_primary_10_1080_00325481_2021_2003150 crossref_primary_10_1038_s41598_020_58103_6 crossref_primary_10_1109_ACCESS_2020_2998735 crossref_primary_10_1146_annurev_bioeng_071813_104517 crossref_primary_10_1371_journal_pone_0184133 crossref_primary_10_1016_j_jacc_2018_12_054 |
| Cites_doi | 10.1016/S1076-6332(03)00540-3 10.1109/IEMBS.2000.900759 10.1117/12.593433 10.1109/TMI.2002.801151 10.1007/3-540-32137-3_33 10.1056/NEJMoa1008232 10.1056/NEJMoa1103510 10.1007/978-3-642-15705-9_64 10.1109/IEMBS.2003.1279838 10.1016/j.jcct.2011.04.007 10.1016/j.ejrad.2009.07.027 10.1109/42.640747 10.1016/j.athoracsur.2009.01.029 10.1109/CIC.2007.4745598 10.1109/TMI.2006.889726 10.1007/11812715_40 10.1109/ISBI.2008.4540924 10.1007/978-3-540-85988-8_82 10.1109/ISBI.2011.5872639 10.1109/TMI.2004.843260 10.1109/ISBI.2011.5872620 10.1109/TMI.2010.2048756 10.1117/12.481367 10.1109/IEMBS.2009.5332516 10.1007/s10554-008-9402-5 10.1109/TMI.2008.2004421 10.1213/ane.0b013e31819b07ce 10.1109/TMI.2011.2171357 10.1016/j.ics.2005.03.318 10.1109/CIBEC.2010.5716100 10.1016/j.media.2009.02.005 10.1007/978-3-540-89208-3_139 10.1007/978-3-642-23623-5_35 10.1109/CIC.2007.4745572 10.1016/j.media.2004.01.001 10.1016/j.media.2009.07.011 10.1109/CISP.2009.5305569 10.1007/978-3-540-45087-0_12 10.1117/12.768494 10.1117/12.810270 10.1109/CVPR.2001.990517 10.1006/cviu.1995.1004 10.1109/TSMCB.2003.814305 10.1016/j.media.2011.06.004 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TMI.2012.2216541 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2321 |
| ExternalDocumentID | 22955891 10_1109_TMI_2012_2216541 6293901 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c385t-6e9db211fb4c1bf52d3b38a934dd212b2948cbef32accdc5a8c51f6e8550a5003 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313690600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Thu Oct 02 05:55:47 EDT 2025 Mon Jul 21 05:59:53 EDT 2025 Sat Nov 29 05:13:27 EST 2025 Tue Nov 18 22:12:49 EST 2025 Tue Aug 26 17:19:20 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-6e9db211fb4c1bf52d3b38a934dd212b2948cbef32accdc5a8c51f6e8550a5003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22955891 |
| PQID | 1221856839 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1221856839 ieee_primary_6293901 crossref_primary_10_1109_TMI_2012_2216541 crossref_citationtrail_10_1109_TMI_2012_2216541 pubmed_primary_22955891 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref56 ref15 ref14 ref52 ref10 (ref59) 2010 zheng (ref53) 2009 krissian (ref38) 2003 ref17 ref16 ref18 tek (ref12) 2008 leon (ref2) 2010; 363 ref51 subasic (ref22) 2002 ref50 ref46 john (ref20) 2010 ref45 ref48 ref47 ref42 ref41 ref44 (ref54) 1996 kirchberg (ref26) 2006 ref49 saur (ref11) 2008 ref8 ref7 ref9 (ref58) 0 ref3 ref5 gessat (ref6) 2009; 7261 ref40 dryden (ref55) 1998 ref35 ref34 ref37 ref36 ref30 rogers (ref43) 2002 ref33 (ref60) 2011 zheng (ref19) 2010 mack (ref4) 2010; 37 ref1 ref39 kovcs (ref28) 2006 zellerhoff (ref57) 2005; 5745 wang (ref13) 2008 ref24 ref23 ref25 ref21 ref27 ref29 egger (ref31) 2009 ref61 dehmeshki (ref32) 2009 |
| References_xml | – volume: 37 start-page: 658 year: 2010 ident: ref4 article-title: Does transcatheter aortic valve implantation mean the end of surgical aortic valve replacement publication-title: Texas Heart Inst J – ident: ref8 doi: 10.1016/S1076-6332(03)00540-3 – ident: ref21 doi: 10.1109/IEMBS.2000.900759 – volume: 5745 start-page: 646 year: 2005 ident: ref57 article-title: Low contrast 3-D reconstruction from C-arm data publication-title: Proc SPIE Med Imag doi: 10.1117/12.593433 – ident: ref7 doi: 10.1109/TMI.2002.801151 – ident: ref27 doi: 10.1007/3-540-32137-3_33 – start-page: 517 year: 2002 ident: ref43 article-title: Robust active shape model search publication-title: Proc Eur Conf Comput Vis – volume: 363 start-page: 1597 year: 2010 ident: ref2 article-title: Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery publication-title: N Eng J Med doi: 10.1056/NEJMoa1008232 – ident: ref5 doi: 10.1056/NEJMoa1103510 – ident: ref18 doi: 10.1007/978-3-642-15705-9_64 – start-page: 638 year: 2003 ident: ref38 article-title: Multiscale segmentation of the aorta in 3-D ultrasound images publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc doi: 10.1109/IEMBS.2003.1279838 – start-page: 323 year: 2008 ident: ref11 article-title: Automatic ascending aorta detection in CTA datasets publication-title: Proc Workshop Bildverarbeitung fr die Medizin – ident: ref3 doi: 10.1016/j.jcct.2011.04.007 – ident: ref33 doi: 10.1016/j.ejrad.2009.07.027 – start-page: 470 year: 2006 ident: ref26 article-title: Modeling the human aorta for MR-driven real-time virtual endoscopy publication-title: Proc Int Conf Medical Image Computing Computer Assist Intervent – ident: ref42 doi: 10.1109/42.640747 – ident: ref56 doi: 10.1016/j.athoracsur.2009.01.029 – ident: ref29 doi: 10.1109/CIC.2007.4745598 – ident: ref45 doi: 10.1109/TMI.2006.889726 – year: 2008 ident: ref12 article-title: Automatic coronary tree modeling publication-title: Insight J – year: 2010 ident: ref59 publication-title: 59th Annu Sci Session Am College Cardiol – start-page: 317 year: 2006 ident: ref28 article-title: Automatic segmentation of the aortic dissection membrane from 3-D CTA images publication-title: Proc Medical Imaging and Augmented Reality doi: 10.1007/11812715_40 – ident: ref34 doi: 10.1109/ISBI.2008.4540924 – ident: ref15 doi: 10.1007/978-3-540-85988-8_82 – ident: ref49 doi: 10.1109/ISBI.2011.5872639 – ident: ref25 doi: 10.1109/TMI.2004.843260 – ident: ref61 doi: 10.1109/ISBI.2011.5872620 – year: 0 ident: ref58 publication-title: 23rd Annu Meeting Eur Assoc Cardio-Thoracic Surg – start-page: 283 year: 1996 ident: ref54 article-title: Optimal surface smoothing as filter design publication-title: Proc Eur Conf Comput Vis – ident: ref48 doi: 10.1109/TMI.2010.2048756 – start-page: 32 year: 2009 ident: ref32 article-title: Automatic detection, segmentation and quantification of abdominal aortic aneurysm using computed tomography angiography publication-title: Proc Med Image Understand Anal – year: 2011 ident: ref60 publication-title: 23rd Annual Scientific Symposium of Transcatheter Cardiovascular Therapeutics – ident: ref23 doi: 10.1117/12.481367 – ident: ref37 doi: 10.1109/IEMBS.2009.5332516 – ident: ref9 doi: 10.1007/s10554-008-9402-5 – start-page: 476 year: 2010 ident: ref19 article-title: Automatic aorta segmentation and valve landmark detection in C-arm CT: Application to aortic valve implantation publication-title: Proc Int Conf Med Image Computing Computer Assisted Intervent – ident: ref16 doi: 10.1109/TMI.2008.2004421 – ident: ref1 doi: 10.1213/ane.0b013e31819b07ce – start-page: 375 year: 2010 ident: ref20 article-title: System to guide transcatheter aortic valve implantations based on interventional 3-D C-arm CT imaging publication-title: Proc Int Conf Medical Image Computing Computer Assist Intervent – ident: ref44 doi: 10.1109/TMI.2011.2171357 – ident: ref10 doi: 10.1016/j.ics.2005.03.318 – ident: ref35 doi: 10.1109/CIBEC.2010.5716100 – ident: ref17 doi: 10.1016/j.media.2009.02.005 – ident: ref30 doi: 10.1007/978-3-540-89208-3_139 – ident: ref50 doi: 10.1007/978-3-642-23623-5_35 – ident: ref36 doi: 10.1109/CIC.2007.4745572 – year: 2008 ident: ref13 article-title: An automatic seeding method for coronary artery segmentation and skeletonization in CTA publication-title: Insight J – ident: ref24 doi: 10.1016/j.media.2004.01.001 – ident: ref41 doi: 10.1016/j.media.2009.07.011 – ident: ref14 doi: 10.1109/CISP.2009.5305569 – ident: ref40 doi: 10.1007/978-3-540-45087-0_12 – start-page: 1 year: 2009 ident: ref31 article-title: Aorta segmentation for stent simulation publication-title: Proc MICCAI Workshop Cardiovas Intervent Imag Biophys Model – start-page: 61 year: 2002 ident: ref22 article-title: Segmentation of abdominal aortic aneurysm using deformable models publication-title: Proceedings of East-West Vision – ident: ref46 doi: 10.1117/12.768494 – volume: 7261 year: 2009 ident: ref6 article-title: A planning system for transapical aortic valve implantation publication-title: Proc SPIE Med Imag doi: 10.1117/12.810270 – ident: ref51 doi: 10.1109/CVPR.2001.990517 – ident: ref52 doi: 10.1006/cviu.1995.1004 – start-page: 194 year: 2009 ident: ref53 article-title: Constrained marginal space learning for efficient 3-D anatomical structure detection in medical images publication-title: Proc IEEE Conf Comput Vis and Pattern Recog – ident: ref39 doi: 10.1109/TSMCB.2003.814305 – year: 1998 ident: ref55 publication-title: Statistical Shape Analysis – ident: ref47 doi: 10.1016/j.media.2011.06.004 |
| SSID | ssj0014509 |
| Score | 2.3820558 |
| Snippet | Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2307 |
| SubjectTerms | Algorithms Aorta segmentation Aortic Valve - diagnostic imaging Aortic Valve - surgery aortic valve landmark detection Aortography - methods Biomedical imaging C-arm computed tomography (CT) Computed tomography Heart Valve Prosthesis Implantation - methods Humans Image Processing, Computer-Assisted - methods Image segmentation Reproducibility of Results Robustness Surgery Surgery, Computer-Assisted - methods Tomography, X-Ray Computed - methods transcatheter aortic valve implantation transcatheter aortic valve replacement Valves |
| Title | Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation |
| URI | https://ieeexplore.ieee.org/document/6293901 https://www.ncbi.nlm.nih.gov/pubmed/22955891 https://www.proquest.com/docview/1221856839 |
| Volume | 31 |
| WOSCitedRecordID | wos000313690600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qEdEHP1o_zo-ygi-C6eV2s7ndx-O0KNgieMq9hd3ZSSm2ufaa69_vziYXFFTwLQ87k8BvlpnJzPwG4E2OymPuTebrWmWFNRSvFBaZJa-RTHTZtls2MT05Mcul_bID74ZZGCJKzWd0yI-plh9WuOFfZeMy-ibLw1q3ptNpN6s1VAwK3bVzSGaMzUu5LUnmdrw4_sQ9XPJQSp7d4eUwvMSa9-n95o3SepW_R5rJ4xw9-L9vfQj3-8hSzDpTeAQ71OzBvV_4BvfgznFfSd-Hq9mmXSW6VjHjCFx8pdOLfg6pEa4J4rs7vyHxOT5euPUP8Z7a1LXViLNGzLNoIGK-EDHkFcndJfrXiFHSFpV20sw97Hqlj-Hb0YfF_GPWr1_IUBndZiXZ4GN-WPsCJ77WMiivjLOqCCE6PC9tYdBTraRDDKidQT2pS2KKNN6zoJ7AbrNq6BkIzspKGdASMsObjGm3ldoHhbrOybkRjLcwVNhzk_OKjPMq5Si5rSKGFWNY9RiO4O0gcdnxcvzj7D7jM5zroRnB6y3SVbxTXChxDa0219UkChpdxthxBE87ExiEt5bz_M9KX8BdfnXX8PISdtv1hl7Bbbxpz67XB9Fwl-YgGe5P9dbnbw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8QJH48iALqCeia-GJiud5ut-w-Xg4IxLuLiafhrdmPKSFAT48efz87216DiZr41oedySYzm5npzPx-AB9TJ6xLrUpsWYok0wrDk3JZotFKhyqEbN2QTRxOp-r8XH9dg8_dLgwixuEzPKDP2Mv3c7ekX2X9PMQmTctaj2SW8UGzrdX1DDLZDHRwwoxNc75qSqa6P5uc0RQXP-CctneIHoZorIlR77d4FAlW_p5rxphzsvl_t30Bz9vckg0bZ3gJa1htwbMHiINb8HjS9tK34ddwWc8jYCsbUg7OvuHFTbuJVDFTefbDXN8hG4fPG7O4YkdYx7mtil1WbJQEF2GjGQtJL4sBLwLABitFbUFpI03ow6ZVugPfT45no9OkJWBInFCyTnLU3oYKsbSZG9hSci-sUEaLzPsQ8izXmXIWS8GNc95Jo5wclDkSSBoxLYhXsF7NK3wDjOqynHun0RHGGw-Ft-bSeuFkmaIxPeivzFC4Fp2cSDKui1ilpLoINizIhkVrwx586iR-Nsgc_zi7TfbpzrWm6cGHlaWL8KqoVWIqnC9vi0EQVDIP2WMPXjcu0AmvPOftn5W-hyens8m4GJ9Nv-zCU7pGM_6yB-v1Yon7sOHu6svbxbvovvexoenO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Aorta+Segmentation+and+Valve+Landmark+Detection+in+C-Arm+CT+for+Transcatheter+Aortic+Valve+Implantation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Yefeng+Zheng&rft.au=John%2C+M.&rft.au=Rui+Liao&rft.au=Nottling%2C+A.&rft.date=2012-12-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=31&rft.issue=12&rft.spage=2307&rft.epage=2321&rft_id=info:doi/10.1109%2FTMI.2012.2216541&rft_id=info%3Apmid%2F22955891&rft.externalDocID=6293901 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |