Predictive Modeling of Shear Strength of Enzyme-Induced Calcium Carbonate Precipitation (EICP)-Solidified Rubber–Clay Mixtures Using Machine Learning Algorithms

The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers Jg. 17; H. 7; S. 976
Hauptverfasser: Ma, Qiang, Li, Meng, Shu, Hang, Xi, Lei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 03.04.2025
MDPI
Schlagworte:
ISSN:2073-4360, 2073-4360
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle size and content are often resource-intensive, time-consuming, and subject to significant variability. In this study, the shear strength of clay mixed with rubber particles solidified by the Enzyme-Induced Calcium Carbonate Precipitation (EICP) technique was investigated and predictively modeled using a machine learning algorithm. The effects of different rubber contents and particle sizes on the shear strength of the clay were analyzed experimentally, and a hybrid model of a convolutional neural network (CNN) and long short-term memory (LSTM) network optimized based on the crown porcupine optimization (CPO) algorithm was proposed to predict the shear strength of the EICP-treated clay mixed with rubber particles. The superiority of the CPO-CNN-LSTM model in predicting shear strength was verified by comparing multiple machine learning algorithms. The results show that the addition of rubber particles significantly improves the shear strength of the clay, especially at a 5% rubber content. The coefficient of determination (R2) of the CPO-CNN-LSTM model on the training and test datasets reaches 0.98 and 0.97, respectively, which exhibit high prediction accuracy and generalization ability.
AbstractList The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle size and content are often resource-intensive, time-consuming, and subject to significant variability. In this study, the shear strength of clay mixed with rubber particles solidified by the Enzyme-Induced Calcium Carbonate Precipitation (EICP) technique was investigated and predictively modeled using a machine learning algorithm. The effects of different rubber contents and particle sizes on the shear strength of the clay were analyzed experimentally, and a hybrid model of a convolutional neural network (CNN) and long short-term memory (LSTM) network optimized based on the crown porcupine optimization (CPO) algorithm was proposed to predict the shear strength of the EICP-treated clay mixed with rubber particles. The superiority of the CPO-CNN-LSTM model in predicting shear strength was verified by comparing multiple machine learning algorithms. The results show that the addition of rubber particles significantly improves the shear strength of the clay, especially at a 5% rubber content. The coefficient of determination (R2) of the CPO-CNN-LSTM model on the training and test datasets reaches 0.98 and 0.97, respectively, which exhibit high prediction accuracy and generalization ability.
The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle size and content are often resource-intensive, time-consuming, and subject to significant variability. In this study, the shear strength of clay mixed with rubber particles solidified by the Enzyme-Induced Calcium Carbonate Precipitation (EICP) technique was investigated and predictively modeled using a machine learning algorithm. The effects of different rubber contents and particle sizes on the shear strength of the clay were analyzed experimentally, and a hybrid model of a convolutional neural network (CNN) and long short-term memory (LSTM) network optimized based on the crown porcupine optimization (CPO) algorithm was proposed to predict the shear strength of the EICP-treated clay mixed with rubber particles. The superiority of the CPO-CNN-LSTM model in predicting shear strength was verified by comparing multiple machine learning algorithms. The results show that the addition of rubber particles significantly improves the shear strength of the clay, especially at a 5% rubber content. The coefficient of determination ( ) of the CPO-CNN-LSTM model on the training and test datasets reaches 0.98 and 0.97, respectively, which exhibit high prediction accuracy and generalization ability.
The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle size and content are often resource-intensive, time-consuming, and subject to significant variability. In this study, the shear strength of clay mixed with rubber particles solidified by the Enzyme-Induced Calcium Carbonate Precipitation (EICP) technique was investigated and predictively modeled using a machine learning algorithm. The effects of different rubber contents and particle sizes on the shear strength of the clay were analyzed experimentally, and a hybrid model of a convolutional neural network (CNN) and long short-term memory (LSTM) network optimized based on the crown porcupine optimization (CPO) algorithm was proposed to predict the shear strength of the EICP-treated clay mixed with rubber particles. The superiority of the CPO-CNN-LSTM model in predicting shear strength was verified by comparing multiple machine learning algorithms. The results show that the addition of rubber particles significantly improves the shear strength of the clay, especially at a 5% rubber content. The coefficient of determination (R [sup.2]) of the CPO-CNN-LSTM model on the training and test datasets reaches 0.98 and 0.97, respectively, which exhibit high prediction accuracy and generalization ability.
The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle size and content are often resource-intensive, time-consuming, and subject to significant variability. In this study, the shear strength of clay mixed with rubber particles solidified by the Enzyme-Induced Calcium Carbonate Precipitation (EICP) technique was investigated and predictively modeled using a machine learning algorithm. The effects of different rubber contents and particle sizes on the shear strength of the clay were analyzed experimentally, and a hybrid model of a convolutional neural network (CNN) and long short-term memory (LSTM) network optimized based on the crown porcupine optimization (CPO) algorithm was proposed to predict the shear strength of the EICP-treated clay mixed with rubber particles. The superiority of the CPO-CNN-LSTM model in predicting shear strength was verified by comparing multiple machine learning algorithms. The results show that the addition of rubber particles significantly improves the shear strength of the clay, especially at a 5% rubber content. The coefficient of determination (R2) of the CPO-CNN-LSTM model on the training and test datasets reaches 0.98 and 0.97, respectively, which exhibit high prediction accuracy and generalization ability.The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing material compositions and reducing experimental uncertainties. Traditional experimental approaches for determining the optimal rubber particle size and content are often resource-intensive, time-consuming, and subject to significant variability. In this study, the shear strength of clay mixed with rubber particles solidified by the Enzyme-Induced Calcium Carbonate Precipitation (EICP) technique was investigated and predictively modeled using a machine learning algorithm. The effects of different rubber contents and particle sizes on the shear strength of the clay were analyzed experimentally, and a hybrid model of a convolutional neural network (CNN) and long short-term memory (LSTM) network optimized based on the crown porcupine optimization (CPO) algorithm was proposed to predict the shear strength of the EICP-treated clay mixed with rubber particles. The superiority of the CPO-CNN-LSTM model in predicting shear strength was verified by comparing multiple machine learning algorithms. The results show that the addition of rubber particles significantly improves the shear strength of the clay, especially at a 5% rubber content. The coefficient of determination (R2) of the CPO-CNN-LSTM model on the training and test datasets reaches 0.98 and 0.97, respectively, which exhibit high prediction accuracy and generalization ability.
Audience Academic
Author Ma, Qiang
Shu, Hang
Li, Meng
Xi, Lei
AuthorAffiliation 1 Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan 430068, China; maqiang927@163.com (Q.M.); lmeng1014@163.com (M.L.); leixi@whut.edu.cn (L.X.)
3 Hubei Provincial Ecological Road Engineering Technology Research Center, Hubei University of Technology, Wuhan 430068, China
2 Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
AuthorAffiliation_xml – name: 3 Hubei Provincial Ecological Road Engineering Technology Research Center, Hubei University of Technology, Wuhan 430068, China
– name: 2 Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
– name: 1 Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan 430068, China; maqiang927@163.com (Q.M.); lmeng1014@163.com (M.L.); leixi@whut.edu.cn (L.X.)
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0001-7335-4182
  surname: Ma
  fullname: Ma, Qiang
– sequence: 2
  givenname: Meng
  surname: Li
  fullname: Li, Meng
– sequence: 3
  givenname: Hang
  orcidid: 0000-0002-4773-4007
  surname: Shu
  fullname: Shu, Hang
– sequence: 4
  givenname: Lei
  surname: Xi
  fullname: Xi, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40219363$$D View this record in MEDLINE/PubMed
BookMark eNptUsFu1DAQjVARLaVHrigSl3JIseMkdk5otVpgpV1RsfRsOfZk15VjL45TdTn1H_oHfBpfgqPdorbCPoz1_N6bGc28To6ss5AkbzG6IKRGH7fO7DpMEUU1rV4kJzmiJCtIhY4evY-Ts76_RvEUZVVh-io5LlCOa1KRk-T3pQelZdA3kC6dAqPtOnVtutqA8OkqeLDrsBmRmf216yCbWzVIUOlUGKmHLkbfOCsCpNFJ6q0OImhn0_PZfHr5IVs5o5VudVR8H5oG_J-7-6kRu3Spb8PgoU-v-jHlUsiNtpAuYlo7AhOzdl6HTde_SV62wvRwdoinydXn2Y_p12zx7ct8OllkkrAyZJWCSrYsz1FLVCmIlAVtSoRpWxOCEWNNXtRIIpGXilFggqJSSiaQEAqXTUFOk0973-3QdKAk2OCF4VuvO-F33AnNn_5YveFrd8MxrmtUMxQdzg8O3v0coA-8070EY4QFN_ScYFYXVU7zMlLfP6Neu8Hb2N_IYqwqajyWdLFnrYUBrm3rYmIZr4JOy7gLrY74hBFGKlogEgXvHvfwr_iHgUcC2ROkd33voeXyMLHorA3HiI-bxZ9sVlRlz1QPxv_n_wXb2dNC
CitedBy_id crossref_primary_10_1007_s11274_025_04393_9
Cites_doi 10.1111/sum.12571
10.1016/j.catena.2019.104451
10.1016/j.trgeo.2024.101235
10.1139/T08-070
10.1061/(ASCE)1090-0241(1997)123:4(295)
10.1007/s12665-023-11352-w
10.1080/19648189.2019.1679671
10.1007/s11440-017-0574-9
10.1061/(ASCE)GT.1943-5606.0001302
10.1016/j.clay.2009.01.020
10.3390/su151612174
10.1016/j.powtec.2015.07.026
10.1016/j.conbuildmat.2023.131887
10.1016/j.knosys.2023.111257
10.1680/jenge.19.00125
10.3311/PPci.9539
10.3141/1619-06
10.4236/ijg.2012.31012
10.1016/j.enggeo.2009.03.002
10.1016/j.jclepro.2021.128205
10.1007/s11440-021-01176-y
10.1016/j.jclepro.2020.122627
10.1016/j.mtcomm.2023.106403
10.1061/(ASCE)GT.1943-5606.0001973
10.3390/app11041949
10.1002/eqe.2171
10.1080/19386362.2016.1277829
10.3389/feart.2023.1270102
10.1016/j.clay.2018.01.035
10.1016/j.jobe.2017.01.001
10.3390/buildings12050613
10.1080/01490450701436505
10.1016/j.aei.2017.02.005
10.1007/s12517-023-11470-6
10.1016/j.egyr.2022.11.130
10.1038/s41598-018-38361-1
10.1007/s40999-016-0057-7
10.1007/s10706-017-0161-8
10.1016/j.resconrec.2018.10.042
10.1016/j.conbuildmat.2015.07.166
10.1016/j.apgeog.2023.103035
10.1680/jgeot.15.P.168
10.1016/j.enggeo.2021.106374
10.1061/(ASCE)GT.1943-5606.0002480
10.1061/(ASCE)MT.1943-5533.0000696
10.1007/s12145-023-00950-8
10.1080/1064119X.2017.1297877
10.1680/jgein.18.00009
10.1016/j.enggeo.2006.09.002
10.1016/j.conbuildmat.2022.126526
10.1016/j.sandf.2015.02.018
10.1007/s11356-021-16442-5
10.1061/(ASCE)MT.1943-5533.0001804
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym17070976
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC11990980
A838367403
40219363
10_3390_polym17070976
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the Young Top-notch Talent Cultivation Program of Hubei Province, the Outstanding Young and middle-aged Science and Technology Innovation Team of colleges and universities in Hubei Province
  grantid: No.T2022010
– fundername: the National Natural Science Foundation of China
  grantid: No.52478338
– fundername: the National Young Top-notch Talent of Ten Thousand Talents Program, the Science Fund for Distinguished Young Scholars of Hubei Province
  grantid: 2022CFA043
– fundername: the Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes
  grantid: No.2020EJB004
– fundername: National Young Top-notch Talent of Ten Thousand Talents Program, the Science Fund for Distinguished Young Scholars of Hubei Province
  grantid: 2022CFA043
– fundername: Young Top-notch Talent Cultivation Program of Hubei Province, the Outstanding Young and mid-dle-aged Science and Technology Innovation Team of colleges and universities in Hubei Province
  grantid: T2022010
– fundername: National Natural Science Foundation of China
  grantid: 52478338
– fundername: Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes
  grantid: 2020EJB004
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c385t-6de6cf8220f3d5a3cc47b5017f9331088b2490c0a25d87e8a705cc8a0aad15b43
IEDL.DBID KB.
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463611500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4360
IngestDate Tue Nov 04 02:04:50 EST 2025
Fri Sep 05 17:39:08 EDT 2025
Fri Jul 25 11:47:12 EDT 2025
Sat Nov 29 10:30:20 EST 2025
Mon Jul 21 05:57:53 EDT 2025
Tue Nov 18 22:30:42 EST 2025
Sat Nov 29 07:16:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords shear strength
enzyme-induced carbonate precipitation
predictive modeling
rubber
soil solidification
machine learning
rubber–clay mixtures
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-6de6cf8220f3d5a3cc47b5017f9331088b2490c0a25d87e8a705cc8a0aad15b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4773-4007
0000-0001-7335-4182
OpenAccessLink https://www.proquest.com/docview/3188864914?pq-origsite=%requestingapplication%
PMID 40219363
PQID 3188864914
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11990980
proquest_miscellaneous_3189462725
proquest_journals_3188864914
gale_infotracacademiconefile_A838367403
pubmed_primary_40219363
crossref_citationtrail_10_3390_polym17070976
crossref_primary_10_3390_polym17070976
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hoppe (ref_27) 1998; 1619
Salimi (ref_33) 2024; 46
Montoya (ref_47) 2015; 141
Kim (ref_51) 2008; 45
Wang (ref_3) 2017; 35
Ikeagwuani (ref_41) 2023; 16
Dao (ref_31) 2020; 188
Wang (ref_21) 2022; 26
Neupane (ref_6) 2015; 55
Tang (ref_15) 2009; 106
Almajed (ref_5) 2018; 144
Mohamed (ref_48) 2024; 284
ref_24
Lu (ref_49) 2017; 32
Cui (ref_29) 2021; 16
Zhao (ref_54) 2022; 323
Tsang (ref_20) 2012; 41
Krishnan (ref_9) 2021; 147
Jiang (ref_1) 2020; 36
Saberian (ref_28) 2018; 12
Mashiri (ref_22) 2013; 25
Qiu (ref_50) 2022; 8
Xi (ref_42) 2023; 35
Yadav (ref_53) 2017; 9
Whiffin (ref_46) 2007; 24
Zhang (ref_2) 2024; 11
Almajed (ref_11) 2020; 274
Gao (ref_52) 2022; 17
Ahmad (ref_38) 2024; 7
Hosseinpour (ref_12) 2017; 35
Hajiazizi (ref_25) 2019; 53
Talamkhani (ref_39) 2023; 2023
ref_34
ref_30
Cui (ref_55) 2017; 12
Oliveira (ref_7) 2017; 29
Rezaei (ref_13) 2012; 3
Cetin (ref_17) 2006; 88
Meng (ref_4) 2021; 294
ref_37
Tajabadipour (ref_57) 2016; 61
Soltani (ref_18) 2018; 25
Shamshirband (ref_43) 2015; 284
Tajdini (ref_16) 2017; 15
Bosscher (ref_19) 1997; 123
Hamdan (ref_10) 2016; 66
An (ref_56) 2024; 83
ref_44
Borji (ref_32) 2023; 158
Zhang (ref_36) 2023; 392
Yilmaz (ref_14) 2009; 44
Yuan (ref_8) 2022; 29
Saberian (ref_26) 2019; 141
Cardoso (ref_45) 2018; 156
Niyogi (ref_35) 2023; 16
Angelin (ref_23) 2015; 95
Wang (ref_40) 2021; 315
References_xml – volume: 36
  start-page: 185
  year: 2020
  ident: ref_1
  article-title: Bio-mediated Soil Improvement: The Way Forward
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12571
– volume: 188
  start-page: 104451
  year: 2020
  ident: ref_31
  article-title: A Spatially Explicit Deep Learning Neural Network Model for the Prediction of Landslide Susceptibility
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104451
– volume: 46
  start-page: 101235
  year: 2024
  ident: ref_33
  article-title: Predicting the Precipitated Calcium Carbonate and Unconfined Compressive Strength of Bio-Mediated Sands through Robust Hybrid Optimization Algorithms
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2024.101235
– volume: 45
  start-page: 1457
  year: 2008
  ident: ref_51
  article-title: Sand–Rubber Mixtures (Large Rubber Chips)
  publication-title: Can. Geotech. J.
  doi: 10.1139/T08-070
– volume: 123
  start-page: 295
  year: 1997
  ident: ref_19
  article-title: Design of Highway Embankments Using Tire Chips
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(1997)123:4(295)
– volume: 83
  start-page: 31
  year: 2024
  ident: ref_56
  article-title: Mechanical Behaviour and Microstructure of Granite Residual Bio-Cemented Soil by Microbially Induced Calcite Precipitation with Different Cementation–Solution Concentrations
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-023-11352-w
– volume: 26
  start-page: 779
  year: 2022
  ident: ref_21
  article-title: Research on Hoop Capacity of Composite Foundation of Discarded Rubber Tires
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2019.1679671
– volume: 12
  start-page: 971
  year: 2017
  ident: ref_55
  article-title: Influence of Cementation Level on the Strength Behaviour of Bio-Cemented Sand
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-017-0574-9
– volume: 141
  start-page: 04015019
  year: 2015
  ident: ref_47
  article-title: Stress-Strain Behavior of Sands Cemented by Microbially Induced Calcite Precipitation
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001302
– volume: 7
  start-page: 217
  year: 2024
  ident: ref_38
  article-title: Unconfined Compressive Strength Prediction of Stabilized Expansive Clay Soil Using Machine Learning Techniques. Multiscale and Multidiscip
  publication-title: Model. Exp. Des.
– volume: 44
  start-page: 166
  year: 2009
  ident: ref_14
  article-title: Gypsum: An Additive for Stabilization of Swelling Clay Soils
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2009.01.020
– ident: ref_24
  doi: 10.3390/su151612174
– volume: 284
  start-page: 560
  year: 2015
  ident: ref_43
  article-title: Hybrid Intelligent Model for Approximating Unconfined Compressive Strength of Cement-Based Bricks with Odd-Valued Array of Peat Content (0–29%)
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.07.026
– volume: 392
  start-page: 131887
  year: 2023
  ident: ref_36
  article-title: Efficient Machine Learning Method for Evaluating Compressive Strength of Cement Stabilized Soft Soil
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131887
– volume: 284
  start-page: 111257
  year: 2024
  ident: ref_48
  article-title: Crested Porcupine Optimizer: A New Nature-Inspired Metaheuristic
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.111257
– volume: 11
  start-page: 29
  year: 2024
  ident: ref_2
  article-title: Environmental Impact and Mechanical Improvement of Microbially Induced Calcium Carbonate Precipitation-Treated Coal Fly Ash–Soil Mixture
  publication-title: Environ. Geotech.
  doi: 10.1680/jenge.19.00125
– volume: 61
  start-page: 322
  year: 2016
  ident: ref_57
  article-title: Effect of Rubber Tire Chips-Sand Mixtures on Performance of Geosynthetic Reinforced Earth Walls
  publication-title: Period. Polytech. Civ. Eng.
  doi: 10.3311/PPci.9539
– volume: 1619
  start-page: 47
  year: 1998
  ident: ref_27
  article-title: Field Study of Shredded-Tire Embankment
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/1619-06
– volume: 3
  start-page: 105
  year: 2012
  ident: ref_13
  article-title: Geotechnical Properties of Problematic Soils Emphasis on Collapsible Cases
  publication-title: Int. J. Geosci.
  doi: 10.4236/ijg.2012.31012
– volume: 106
  start-page: 68
  year: 2009
  ident: ref_15
  article-title: Analysis of the Railway Heave Induced by Soil Swelling at a Site in Southern France
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.03.002
– volume: 315
  start-page: 128205
  year: 2021
  ident: ref_40
  article-title: Unconfined Compressive Strength of Bio-Cemented Sand: State-of-the-Art Review and MEP-MC-Based Model Development
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128205
– volume: 16
  start-page: 1429
  year: 2021
  ident: ref_29
  article-title: Effect of Waste Rubber Particles on the Shear Behaviour of Bio-Cemented Calcareous Sand
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-021-01176-y
– volume: 53
  start-page: 183
  year: 2019
  ident: ref_25
  article-title: Experimental Study of Sand Slopes Reinforced by Waste Tires
  publication-title: Int. J. Min. Geo-Eng.
– volume: 274
  start-page: 122627
  year: 2020
  ident: ref_11
  article-title: Enzyme-Induced Carbonate Precipitation (EICP)-Based Methods for Ecofriendly Stabilization of Different Types of Natural Sands
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122627
– volume: 35
  start-page: 106403
  year: 2023
  ident: ref_42
  article-title: Integration of Machine Learning Models and Metaheuristic Algorithms for Predicting Compressive Strength of Waste Granite Powder Concrete
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106403
– volume: 144
  start-page: 04018081
  year: 2018
  ident: ref_5
  article-title: Baseline Investigation on Enzyme-Induced Calcium Carbonate Precipitation
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001973
– volume: 2023
  start-page: 3692090
  year: 2023
  ident: ref_39
  article-title: Machine Learning-Based Prediction of Unconfined Compressive Strength of Sands Treated by Microbially-Induced Calcite Precipitation (MICP): A Gradient Boosting Approach and Correlation Analysis
  publication-title: Adv. Civ. Eng.
– ident: ref_34
  doi: 10.3390/app11041949
– volume: 41
  start-page: 2009
  year: 2012
  ident: ref_20
  article-title: Seismic Isolation for Low-to-medium-rise Buildings Using Granulated Rubber–Soil Mixtures: Numerical Study
  publication-title: Earthq. Engng. Struct. Dyn.
  doi: 10.1002/eqe.2171
– volume: 12
  start-page: 347
  year: 2018
  ident: ref_28
  article-title: Experimental and Phenomenological Study of the Effects of Adding Shredded Tire Chips on Geotechnical Properties of Peat
  publication-title: Int. J. Geotech. Eng.
  doi: 10.1080/19386362.2016.1277829
– ident: ref_30
  doi: 10.3389/feart.2023.1270102
– volume: 156
  start-page: 96
  year: 2018
  ident: ref_45
  article-title: Effects of Clay’s Chemical Interactions on Biocementation
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2018.01.035
– volume: 9
  start-page: 177
  year: 2017
  ident: ref_53
  article-title: A Study on the Potential Utilization of Crumb Rubber in Cement Treated Soft Clay
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2017.01.001
– ident: ref_37
  doi: 10.3390/buildings12050613
– volume: 24
  start-page: 417
  year: 2007
  ident: ref_46
  article-title: Microbial Carbonate Precipitation as a Soil Improvement Technique
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490450701436505
– volume: 32
  start-page: 139
  year: 2017
  ident: ref_49
  article-title: Intelligent Fault Diagnosis of Rolling Bearing Using Hierarchical Convolutional Network Based Health State Classification
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2017.02.005
– volume: 16
  start-page: 390
  year: 2023
  ident: ref_41
  article-title: Taguchi Regression Analysis and Constrained Particle Swarm Optimization for Amended Unconfined Compressive Strength (UCS) of Expansive Subgrade Soil
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-023-11470-6
– volume: 8
  start-page: 15436
  year: 2022
  ident: ref_50
  article-title: Optimized Long Short-Term Memory (LSTM) Network for Performance Prediction in Unconventional Reservoirs
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.11.130
– ident: ref_44
  doi: 10.1038/s41598-018-38361-1
– volume: 15
  start-page: 949
  year: 2017
  ident: ref_16
  article-title: Effect of Added Waste Rubber on the Properties and Failure Mode of Kaolinite Clay
  publication-title: Int. J. Civ. Eng.
  doi: 10.1007/s40999-016-0057-7
– volume: 35
  start-page: 1051
  year: 2017
  ident: ref_12
  article-title: Strength and Compressibility Characteristics of a Soft Clay Subjected to Ground Treatment
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-017-0161-8
– volume: 141
  start-page: 301
  year: 2019
  ident: ref_26
  article-title: Estimating the Resilient Modulus of Crushed Recycled Pavement Materials Containing Crumb Rubber Using the Clegg Impact Value
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.10.042
– volume: 95
  start-page: 525
  year: 2015
  ident: ref_23
  article-title: Effects of Spheroid and Fiber-like Waste-Tire Rubbers on Interrelation of Strength-to-Porosity in Rubberized Cement and Mortars
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.07.166
– volume: 158
  start-page: 103035
  year: 2023
  ident: ref_32
  article-title: A Novel Approach for Assessing Flood Risk with Machine Learning and Multi-Criteria Decision-Making Methods
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2023.103035
– volume: 66
  start-page: 546
  year: 2016
  ident: ref_10
  article-title: Enzyme-Induced Carbonate Mineral Precipitation for Fugitive Dust Control
  publication-title: Géotechnique
  doi: 10.1680/jgeot.15.P.168
– volume: 294
  start-page: 106374
  year: 2021
  ident: ref_4
  article-title: Multiple-Phase Enzyme-Induced Carbonate Precipitation (EICP) Method for Soil Improvement
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2021.106374
– volume: 147
  start-page: 06021001
  year: 2021
  ident: ref_9
  article-title: Variability in the Unconfined Compressive Strength of EICP-Treated “Standard” Sand
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002480
– volume: 25
  start-page: 1366
  year: 2013
  ident: ref_22
  article-title: Shear and Compressibility Behavior of Sand–Tire Crumb Mixtures
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000696
– volume: 16
  start-page: 899
  year: 2023
  ident: ref_35
  article-title: Machine Learning Algorithm for the Shear Strength Prediction of Basalt-Driven Lateritic Soil
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-023-00950-8
– volume: 35
  start-page: 1135
  year: 2017
  ident: ref_3
  article-title: Review of Ground Improvement Using Microbial Induced Carbonate Precipitation (MICP)
  publication-title: Mar. Georesources Geotechnol.
  doi: 10.1080/1064119X.2017.1297877
– volume: 25
  start-page: 304
  year: 2018
  ident: ref_18
  article-title: Rubber Powder–Polymer Combined Stabilization of South Australian Expansive Soils
  publication-title: Geosynth. Int.
  doi: 10.1680/jgein.18.00009
– volume: 88
  start-page: 110
  year: 2006
  ident: ref_17
  article-title: Geotechnical Properties of Tire-Cohesive Clayey Soil Mixtures as a Fill Material
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2006.09.002
– volume: 323
  start-page: 126526
  year: 2022
  ident: ref_54
  article-title: Surface Improvement of Scrap Rubber by Microbially Induced Carbonate Precipitation and Its Effect on Mechanical Behavior of Rubberised Mortar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126526
– volume: 17
  start-page: e01416
  year: 2022
  ident: ref_52
  article-title: Study on the Strength Mechanism of Red Clay Improved by Waste Tire Rubber Powder
  publication-title: Case Stud. Constr. Mater.
– volume: 55
  start-page: 447
  year: 2015
  ident: ref_6
  article-title: Distribution of Mineralized Carbonate and Its Quantification Method in Enzyme Mediated Calcite Precipitation Technique
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2015.02.018
– volume: 29
  start-page: 10332
  year: 2022
  ident: ref_8
  article-title: Mechanical Properties of Na-Montmorillonite-Modified EICP-Treated Silty Sand
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-16442-5
– volume: 29
  start-page: 04016263
  year: 2017
  ident: ref_7
  article-title: Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0001804
SSID ssj0000456617
Score 2.3765361
Snippet The development of reliable predictive models for soil behavior represents a crucial advancement in geotechnical engineering, particularly for optimizing...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 976
SubjectTerms Algorithms
Artificial neural networks
Calcium carbonate
Civil engineering
Clay
Data mining
Defense mechanisms
Enzymes
Geotechnical engineering
Geotechnology
Machine learning
Mechanical properties
Microorganisms
Neural networks
Optimization
Particle size
Performance evaluation
Prediction models
Rubber
Shear strength
Title Predictive Modeling of Shear Strength of Enzyme-Induced Calcium Carbonate Precipitation (EICP)-Solidified Rubber–Clay Mixtures Using Machine Learning Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/40219363
https://www.proquest.com/docview/3188864914
https://www.proquest.com/docview/3189462725
https://pubmed.ncbi.nlm.nih.gov/PMC11990980
Volume 17
WOSCitedRecordID wos001463611500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KB.
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9NAFB7cXUFfvF-qaxlBvIBxJ8kkmTxJN3RxkZawKtSnMJmZtIE0qW0q1if_g__An-Yv8Zw0ra2gLz6FZIYwwzk5lzkn30fIE6HARwhmLO1nmcU1V5YMmLJYZtzQkyy1vTXZRDAcitEojNsDt0XbVrmxiY2h1pXCM_IT0D0hfB7a_PXsk4WsUVhdbSk0DsgRoiQgdcPb01fbMxYMV8BDr6E1XcjuT2ZVsZraAeh5iCgjO67oT4O845H2uyV33M_Z9f9d-A1yrQ08aW-tKTfJJVPeIleiDd_bbfIjnmPRBs0fRYY0_E-dVhltOK8pVq_LcT3BJ_3y62pqLGT9UEbTSBYqX07hOk_xLN7QGCEzZi36N33eP4_iF9a7qsh1nkHISy-WaWrmP799jwq5ooP8C5YxFrRpX6CDpr3T0Bb5dUx7xRj2U0-mizvkw1n_ffTGahkcLOUKr7Z8bXyVQQzCMld70lWKB6kHRiALXYgrhUgh-2OKScfTIjAC1MRTSkgmpba9lLt3yWFZleY-oQacim8rHOJcSciDjHJSHUiIH7XRvENeboSZqHaDyLJRJJDmoOyTPdl3yNPt9Nka1-NvE5-hZiT4vcP7lGx_W4BVIXJW0hOQ4_sBZ26HHG8UIGkNwSL5Lf0OebwdBsliXUaWplo2c0LuO4Hjdci9ta5t1wTpPYTYPrxc7GnhdgLCg--PlPmkgQm3bYg0QsEe_HtdD8lVBzmNsRvJPSaH9XxpHpHL6nOdL-ZdchCMRJccnfaH8UW3-bzgLj4fxB9_AXFwNNk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ZjtMwFLWGDtLwwr4UBjASq0Q0WZzEeUCoKh1NNdNRBIM0PAXHdtpIaVK6AOWJf-AP-AA-ii_h3iylRYK3eeCpUmxZrnPulnt9DyEPuQQbwU1tKC9JDKaYNIRvSsNMtBO4wowttyKb8I-P-elpEG6RH81dGCyrbHRiqahVIfEb-R5gj3OPBRZ7OflgIGsUZlcbCo0KFod6-QlCttmL_it4v49se7930j0walYBQzrcnRue0p5MwC6aiaNc4UjJ_NgFYCYQ21sgdDFEJKY0he0q7msOW3el5MIUQlluzBxY9xzZZgB23iLbYX8Qvlt91UEHCXyCqpmn4wTm3qTIlmPLB8kKsK_JmvH70wSs2cDN-sw1g7d_6X87qsvkYu1a004lC1fIls6vkp1uw2h3jXwPp5iWQgVPkQMOb-LTIqElqzfF_Hw-nI_wSS__shxrA3lNpFa0KzKZLsbwO40x26BpiE1BJnV_c_q01--Gz4w3RZaqNAGnnr5exLGe_vz6rZuJJR2knzFRM6NlgQYdlAWsmta9bYe0kw3h_Oaj8ew6eXsmR3SDtPIi17cI1WA2PUviEGNSQKSnpR0rX4CHrLRibfK8AU8k6z-IPCJZBIEcYi3awFqbPF5Nn1SdS_428QkiMUKNButJUV_MgF1hb7Cowx3ueD4znTbZbQAX1apuFv1GW5s8WA3Dm8XMk8h1sSjnBMyzfdttk5sVtld7YuBlBo4Hi_MN1K8mYAP0zZE8HZWN0C0LfKmAm7f_va_7ZOfgZHAUHfWPD--QCzYyOGPtlbNLWvPpQt8l5-XHeTqb3qvFmZL3Zy0WvwCKfI7F
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ZjtMwFLWGAQEv7EthACOxSoQmsZM4DwiVTiuqMlXFIs1bcGxnGqlNShegPPEP_AGfwefwJdybpbRI8DYPPFWqLctxzt1yr-8h5J5QYCOEbSztJ4nFNVeWDGxl2YlhoSft2PFKsolgMBCHh-Fwh_yo78JgWWWtEwtFrXOF38ibgD0hfB46vJlUZRHD_e7z6QcLGaQw01rTaZQQ6ZvVJwjf5s96-_Cu77tut_O2_dKqGAYsxYS3sHxtfJWAjbQTpj3JlOJB7AFIE4jzHRDAGKITW9nS9bQIjIDH8JQS0pZSO17MGax7gpwEK-wje0L_xdP19x10lcA7KNt6MhbazWk-Xk2cAGQsxA4nG2bwT2OwYQ23KzU3TF_3_P98aBfIucrhpq1SQi6SHZNdImfaNc_dZfJ9OMNkFap9isxweD-f5gktuL4pZu2zo8UI_-lkX1YTYyHbiTKatuVYpcsJ_M5izEEYOsRWIdOq6zl91Om1h4-tN_k41WkCrj59vYxjM_v59Vt7LFf0IP2M6Zs5Lco26EFR1mpo1fH2iLbGR3B-i9FkfoW8O5Yjukp2szwz1wk1YEx9R-EQ50pC_GeUG-tAgt-sjeYN8qQGUqSqB0R2kXEE4R3iLtrCXYM8WE-flv1M_jbxIaIyQj0H6ylZXdeAXWHHsKglmGB-wG3WIHs1-KJKAc6j38hrkLvrYXizmI-SmcmXxZyQ-27geg1yrcT5ek8cfM-Q-bC42JKA9QRsi749kqWjoj2644CHFQr7xr_3dYecBlmIXvUG_ZvkrIu0zliQxfbI7mK2NLfIKfVxkc5ntwu5puT9ccvEL5GXldY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Modeling+of+Shear+Strength+of+Enzyme-Induced+Calcium+Carbonate+Precipitation+%28EICP%29-Solidified+Rubber-Clay+Mixtures+Using+Machine+Learning+Algorithms&rft.jtitle=Polymers&rft.au=Ma%2C+Qiang&rft.au=Li%2C+Meng&rft.au=Shu%2C+Hang&rft.au=Xi%2C+Lei&rft.date=2025-04-03&rft.eissn=2073-4360&rft.volume=17&rft.issue=7&rft_id=info:doi/10.3390%2Fpolym17070976&rft_id=info%3Apmid%2F40219363&rft.externalDocID=40219363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon