A clustering-based surrogate-assisted evolutionary algorithm (CSMOEA) for expensive multi-objective optimization
This paper presents a novel surrogate-assisted evolutionary algorithm, CSMOEA, for multi-objective optimization problems (MOPs) with computationally expensive objectives. Considering most surrogate-assisted evolutionary algorithms (SAEAs) do not make full use of population information and only use p...
Saved in:
| Published in: | Soft computing (Berlin, Germany) Vol. 27; no. 15; pp. 10665 - 10686 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!