Modelling and integration of multi-parallel organic Rankine Cycles into total site
Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out dur...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 260; S. 124985 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2022
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out during the last few decades. However, it is observed that the existing methodologies for integrating ORCs into industrial sites are still insufficient. Lots of the research efforts deal with ORC integration problems assuming only one single ORC participates, while the options of applying multi-parallel ORCs are rarely taken into account. Besides, existing research mainly focuses on the direct integration of ORC(s) (i.e. waste heat is transferred directly from heat sources to ORC working fluids), whereas the option of utilizing intermediate heat carriers indirectly is neglected. As such, this study proposes a model-based methodology for the indirect integration of multi-parallel ORCs. The overall model covers both waste heat extraction and ORC power generation. For heat extraction modelling, a modified superstructure based on (Isafiade and Fraser, 2008) [1] is proposed, which simplifies the construction of a heat extraction network (HEN) and reduces computational time. For thermodynamics, the Peng-Robinson Equation of State is adopted. The overall model leads to a mixed-integer nonlinear programming (MINLP) problem and can be solved by a General Algebraic Modelling System, e.g., the GAMS software. Two case studies are performed in this work to validate and illustrate the application of the proposed method, the results of which show that applying multi-parallels ORCs instead of using a single ORC can decrease the overall annualized cost effectively.
•A methodology for integrating multi-parallel ORCs with Indirect heat transfer.•An improved superstructure for synthesis the network of ORC integration.•Rigorous thermodynamic correlations for modelling ORC's performances.•A mixed integer non-linear programming optimisation problem.•Case study presented to illustrate the application of the proposed methodology. |
|---|---|
| AbstractList | Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out during the last few decades. However, it is observed that the existing methodologies for integrating ORCs into industrial sites are still insufficient. Lots of the research efforts deal with ORC integration problems assuming only one single ORC participates, while the options of applying multi-parallel ORCs are rarely taken into account. Besides, existing research mainly focuses on the direct integration of ORC(s) (i.e. waste heat is transferred directly from heat sources to ORC working fluids), whereas the option of utilizing intermediate heat carriers indirectly is neglected. As such, this study proposes a model-based methodology for the indirect integration of multi-parallel ORCs. The overall model covers both waste heat extraction and ORC power generation. For heat extraction modelling, a modified superstructure based on (Isafiade and Fraser, 2008) [1] is proposed, which simplifies the construction of a heat extraction network (HEN) and reduces computational time. For thermodynamics, the Peng-Robinson Equation of State is adopted. The overall model leads to a mixed-integer nonlinear programming (MINLP) problem and can be solved by a General Algebraic Modelling System, e.g., the GAMS software. Two case studies are performed in this work to validate and illustrate the application of the proposed method, the results of which show that applying multi-parallels ORCs instead of using a single ORC can decrease the overall annualized cost effectively.
•A methodology for integrating multi-parallel ORCs with Indirect heat transfer.•An improved superstructure for synthesis the network of ORC integration.•Rigorous thermodynamic correlations for modelling ORC's performances.•A mixed integer non-linear programming optimisation problem.•Case study presented to illustrate the application of the proposed methodology. Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out during the last few decades. However, it is observed that the existing methodologies for integrating ORCs into industrial sites are still insufficient. Lots of the research efforts deal with ORC integration problems assuming only one single ORC participates, while the options of applying multi-parallel ORCs are rarely taken into account. Besides, existing research mainly focuses on the direct integration of ORC(s) (i.e. waste heat is transferred directly from heat sources to ORC working fluids), whereas the option of utilizing intermediate heat carriers indirectly is neglected. As such, this study proposes a model-based methodology for the indirect integration of multi-parallel ORCs. The overall model covers both waste heat extraction and ORC power generation. For heat extraction modelling, a modified superstructure based on (Isafiade and Fraser, 2008) [1] is proposed, which simplifies the construction of a heat extraction network (HEN) and reduces computational time. For thermodynamics, the Peng-Robinson Equation of State is adopted. The overall model leads to a mixed-integer nonlinear programming (MINLP) problem and can be solved by a General Algebraic Modelling System, e.g., the GAMS software. Two case studies are performed in this work to validate and illustrate the application of the proposed method, the results of which show that applying multi-parallels ORCs instead of using a single ORC can decrease the overall annualized cost effectively. |
| ArticleNumber | 124985 |
| Author | Chu, Zheng Zhang, Nan Smith, Robin |
| Author_xml | – sequence: 1 givenname: Zheng orcidid: 0000-0001-7480-3293 surname: Chu fullname: Chu, Zheng – sequence: 2 givenname: Nan surname: Zhang fullname: Zhang, Nan email: nan.zhang@manchester.ac.uk – sequence: 3 givenname: Robin surname: Smith fullname: Smith, Robin |
| BookMark | eNqFkM9LwzAYhnOY4Db9Dzzk6KU1adOs9SDI8BdMhLF7SNMvJTNLZpIJ--_trCcPevp44X1e-J4ZmjjvAKErSnJKKL_Z5uAg9Me8IEWR04I1dTVBU1JyklWMFedoFuOWEFLVTTNF61ffgbXG9Vi6DhuXoA8yGe-w13h3sMlkexmktWCxD710RuG1dO_GAV4elYV4gjxOPkmLo0lwgc60tBEuf-4cbR4fNsvnbPX29LK8X2WqrKuU8UVDeKuBSNWWTBdsoalmhFNeU2jbtumqRnHNJNeV0rReDLFrJGlY2Wmmyjm6Hmf3wX8cICaxM1ENv0gH_hBFsaB1yegwOFTZWFXBxxhAi30wOxmOghJxsia2YrQmTtbEaG3Abn9hyqRvNylIY_-D70YYBgWfBoKIyoBT0JkAKonOm78HvgDf_ZBA |
| CitedBy_id | crossref_primary_10_3390_en18143685 crossref_primary_10_1016_j_energy_2024_133252 crossref_primary_10_1016_j_rser_2025_115377 |
| Cites_doi | 10.1016/j.energy.2020.116922 10.1016/0098-1354(90)85010-8 10.1016/j.compchemeng.2017.01.043 10.1016/j.enconman.2013.04.036 10.1002/aic.690320114 10.1007/BF00138693 10.1016/j.energy.2015.02.059 10.1002/aic.690240411 10.1016/0009-2509(87)80128-8 10.1016/j.apenergy.2017.12.094 10.1016/j.energy.2018.07.028 10.1021/ie500301s 10.1002/aic.690320215 10.1016/j.energy.2009.04.037 10.1021/acs.iecr.0c04598 10.1016/0378-3812(81)85002-9 10.1016/S0098-1354(96)00320-1 10.1016/j.jclepro.2016.11.088 10.1016/j.cherd.2007.11.001 10.1016/j.energy.2016.12.061 10.1016/j.compchemeng.2017.05.013 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.124985 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_124985 S0360544222018837 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c385t-67906bfe0acb34f247f1f4061681ebbb9d59c6f4a6f5cf18759cd9a0943df4c3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848560200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 10:18:57 EDT 2025 Tue Nov 18 22:03:48 EST 2025 Sat Nov 29 07:23:35 EST 2025 Fri Feb 23 02:37:45 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c385t-67906bfe0acb34f247f1f4061681ebbb9d59c6f4a6f5cf18759cd9a0943df4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7480-3293 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.energy.2022.124985 |
| PQID | 2718341061 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718341061 crossref_primary_10_1016_j_energy_2022_124985 crossref_citationtrail_10_1016_j_energy_2022_124985 elsevier_sciencedirect_doi_10_1016_j_energy_2022_124985 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kermani, Wallerand, Kantor, Maréchal (bib11) 2018; 212 Stijepovic, Papadopoulos, Linke, Stijepovic, Grujic, Kijevčanin, Seferlis (bib4) 2017; 142 Linnhoff, Flower (bib25) 1978; 24 Dong, Liao, Sun, Huang, Jiang, Wang, Yang (bib12) 2020; 59 Yu, Eason, Biegler, Feng (bib2) 2017; 119 Martelli, Elsido, Mian, Marechal (bib14) 2017; 106 Yu, Feng, Wang (bib18) 2015; 90 Zhu (bib23) 1997; 21 Duran, Grossmann (bib9) 1986; 32 Sahinidis (bib17) 1996; 8 Hipólito-Valencia, Rubio-Castro, Ponce-Ortega, Serna-González, Nápoles-Rivera, El-Halwagi (bib6) 2013; 73 Chen (bib24) 1987; 42 Chen, Chang, Chao, Chen, Lee (bib7) 2014; 53 Papoulias, Grossmann (bib10) 1983; 7 Kyle (bib15) 1992 Aly, Lee (bib19) 1981; 6 Isafiade, Fraser (bib1) 2008; 86 Poling, Prausnitz, O'Connell (bib16) 2001 Yu, Eason, Biegler, Feng (bib8) 2017; 107 Huang, Lu, Luo, Chen, Yang, Liang, Wang, Chen (bib21) 2020; 195 Yee, Grossmann (bib13) 1990; 14 Desai, Bandyopadhyay (bib5) 2009; 34 Yu, Gundersen, Feng (bib3) 2018; 160 Floudas, Ciric, Grossmann (bib20) 1986; 32 Yu (10.1016/j.energy.2022.124985_bib3) 2018; 160 Desai (10.1016/j.energy.2022.124985_bib5) 2009; 34 Floudas (10.1016/j.energy.2022.124985_bib20) 1986; 32 Duran (10.1016/j.energy.2022.124985_bib9) 1986; 32 Linnhoff (10.1016/j.energy.2022.124985_bib25) 1978; 24 Poling (10.1016/j.energy.2022.124985_bib16) 2001 Yu (10.1016/j.energy.2022.124985_bib8) 2017; 107 Martelli (10.1016/j.energy.2022.124985_bib14) 2017; 106 Yu (10.1016/j.energy.2022.124985_bib18) 2015; 90 Yee (10.1016/j.energy.2022.124985_bib13) 1990; 14 Yu (10.1016/j.energy.2022.124985_bib2) 2017; 119 Chen (10.1016/j.energy.2022.124985_bib7) 2014; 53 Chen (10.1016/j.energy.2022.124985_bib24) 1987; 42 Hipólito-Valencia (10.1016/j.energy.2022.124985_bib6) 2013; 73 Kyle (10.1016/j.energy.2022.124985_bib15) 1992 Stijepovic (10.1016/j.energy.2022.124985_bib4) 2017; 142 Aly (10.1016/j.energy.2022.124985_bib19) 1981; 6 Isafiade (10.1016/j.energy.2022.124985_bib1) 2008; 86 Huang (10.1016/j.energy.2022.124985_bib21) 2020; 195 Zhu (10.1016/j.energy.2022.124985_bib23) 1997; 21 Papoulias (10.1016/j.energy.2022.124985_bib10) 1983; 7 Sahinidis (10.1016/j.energy.2022.124985_bib17) 1996; 8 Kermani (10.1016/j.energy.2022.124985_bib11) 2018; 212 Dong (10.1016/j.energy.2022.124985_bib12) 2020; 59 |
| References_xml | – volume: 32 start-page: 276 year: 1986 ident: bib20 article-title: Automatic synthesis of optimum heat exchanger network configurations publication-title: AIChE J – year: 2001 ident: bib16 article-title: T – volume: 90 start-page: 36 year: 2015 end-page: 46 ident: bib18 article-title: A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat publication-title: Energy – volume: 53 start-page: 16924 year: 2014 end-page: 16936 ident: bib7 article-title: Heat-exchanger network synthesis involving organic rankine cycle for waste heat recovery publication-title: Ind Eng Chem Res – volume: 142 start-page: 1950 year: 2017 end-page: 1970 ident: bib4 article-title: Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection publication-title: J Clean Prod – volume: 119 start-page: 322 year: 2017 end-page: 333 ident: bib2 article-title: Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery publication-title: Energy – volume: 7 start-page: 15 year: 1983 ident: bib10 article-title: A structural optimization approach in process synthesisdII: heat recovery networks publication-title: Comput Chem Eng – volume: 24 start-page: 633 year: 1978 end-page: 642 ident: bib25 article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks publication-title: AIChE J. – volume: 86 start-page: 245 year: 2008 end-page: 257 ident: bib1 article-title: Interval-based MINLP superstructure synthesis of heat exchange networks publication-title: Chem Eng Res Des – volume: 160 start-page: 330 year: 2018 end-page: 340 ident: bib3 article-title: Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery publication-title: Energy – volume: 21 start-page: 1095 year: 1997 end-page: 1104 ident: bib23 article-title: Automated design method for heat exchanger network using block decomposition and heuristic rules publication-title: Comput Chem Eng – volume: 107 start-page: 257 year: 2017 end-page: 270 ident: bib8 article-title: Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis publication-title: Comput Chem Eng – volume: 32 start-page: 123 year: 1986 end-page: 138 ident: bib9 article-title: Simultaneous optimization and heat integration of chemical processes publication-title: AIChE J – volume: 212 start-page: 1203 year: 2018 end-page: 1225 ident: bib11 article-title: Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes publication-title: Appl Energy – volume: 34 start-page: 1674 year: 2009 end-page: 1686 ident: bib5 article-title: Process integration of organic Rankine cycle publication-title: Energy – volume: 73 start-page: 285 year: 2013 end-page: 302 ident: bib6 article-title: Optimal integration of organic Rankine cycles with industrial processes publication-title: Energy Convers Manag – volume: 195 year: 2020 ident: bib21 article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle publication-title: Energy – volume: 8 start-page: 201e205 year: 1996 ident: bib17 article-title: BARON: a general purpose global optimization software package publication-title: J Global Optim – volume: 42 start-page: 2488 year: 1987 end-page: 2489 ident: bib24 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem. Eng. Sci. – volume: 106 start-page: 663 year: 2017 end-page: 689 ident: bib14 article-title: MINLP model and two-stage algorithm for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery cycles publication-title: Comput Chem Eng – year: 1992 ident: bib15 article-title: Chemical and process thermodynamics – volume: 6 start-page: 169 year: 1981 end-page: 179 ident: bib19 article-title: Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy publication-title: Fluid Phase Equil – volume: 14 start-page: 1165 year: 1990 end-page: 1184 ident: bib13 article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis publication-title: Comput Chem Eng – volume: 59 start-page: 20455 year: 2020 end-page: 20471 ident: bib12 article-title: Simultaneous optimization for organic rankine cycle design and heat integration publication-title: Ind Eng Chem Res – volume: 195 year: 2020 ident: 10.1016/j.energy.2022.124985_bib21 article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2020.116922 – volume: 14 start-page: 1165 issue: 10 year: 1990 ident: 10.1016/j.energy.2022.124985_bib13 article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis publication-title: Comput Chem Eng doi: 10.1016/0098-1354(90)85010-8 – volume: 106 start-page: 663 year: 2017 ident: 10.1016/j.energy.2022.124985_bib14 article-title: MINLP model and two-stage algorithm for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery cycles publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2017.01.043 – volume: 73 start-page: 285 year: 2013 ident: 10.1016/j.energy.2022.124985_bib6 article-title: Optimal integration of organic Rankine cycles with industrial processes publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.04.036 – year: 1992 ident: 10.1016/j.energy.2022.124985_bib15 – volume: 32 start-page: 123 year: 1986 ident: 10.1016/j.energy.2022.124985_bib9 article-title: Simultaneous optimization and heat integration of chemical processes publication-title: AIChE J doi: 10.1002/aic.690320114 – volume: 8 start-page: 201e205 issue: 2 year: 1996 ident: 10.1016/j.energy.2022.124985_bib17 article-title: BARON: a general purpose global optimization software package publication-title: J Global Optim doi: 10.1007/BF00138693 – volume: 90 start-page: 36 year: 2015 ident: 10.1016/j.energy.2022.124985_bib18 article-title: A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat publication-title: Energy doi: 10.1016/j.energy.2015.02.059 – volume: 24 start-page: 633 issue: 4 year: 1978 ident: 10.1016/j.energy.2022.124985_bib25 article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks publication-title: AIChE J. doi: 10.1002/aic.690240411 – volume: 42 start-page: 2488 issue: 10 year: 1987 ident: 10.1016/j.energy.2022.124985_bib24 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(87)80128-8 – year: 2001 ident: 10.1016/j.energy.2022.124985_bib16 – volume: 212 start-page: 1203 year: 2018 ident: 10.1016/j.energy.2022.124985_bib11 article-title: Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.094 – volume: 160 start-page: 330 year: 2018 ident: 10.1016/j.energy.2022.124985_bib3 article-title: Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2018.07.028 – volume: 53 start-page: 16924 issue: 44 year: 2014 ident: 10.1016/j.energy.2022.124985_bib7 article-title: Heat-exchanger network synthesis involving organic rankine cycle for waste heat recovery publication-title: Ind Eng Chem Res doi: 10.1021/ie500301s – volume: 32 start-page: 276 issue: 2 year: 1986 ident: 10.1016/j.energy.2022.124985_bib20 article-title: Automatic synthesis of optimum heat exchanger network configurations publication-title: AIChE J doi: 10.1002/aic.690320215 – volume: 34 start-page: 1674 issue: 10 year: 2009 ident: 10.1016/j.energy.2022.124985_bib5 article-title: Process integration of organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2009.04.037 – volume: 59 start-page: 20455 issue: 46 year: 2020 ident: 10.1016/j.energy.2022.124985_bib12 article-title: Simultaneous optimization for organic rankine cycle design and heat integration publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.0c04598 – volume: 6 start-page: 169 issue: 3–4 year: 1981 ident: 10.1016/j.energy.2022.124985_bib19 article-title: Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy publication-title: Fluid Phase Equil doi: 10.1016/0378-3812(81)85002-9 – volume: 21 start-page: 1095 issue: 10 year: 1997 ident: 10.1016/j.energy.2022.124985_bib23 article-title: Automated design method for heat exchanger network using block decomposition and heuristic rules publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(96)00320-1 – volume: 142 start-page: 1950 year: 2017 ident: 10.1016/j.energy.2022.124985_bib4 article-title: Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.11.088 – volume: 86 start-page: 245 issue: 3 year: 2008 ident: 10.1016/j.energy.2022.124985_bib1 article-title: Interval-based MINLP superstructure synthesis of heat exchange networks publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2007.11.001 – volume: 7 start-page: 15 issue: 6 year: 1983 ident: 10.1016/j.energy.2022.124985_bib10 article-title: A structural optimization approach in process synthesisdII: heat recovery networks publication-title: Comput Chem Eng – volume: 119 start-page: 322 year: 2017 ident: 10.1016/j.energy.2022.124985_bib2 article-title: Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery publication-title: Energy doi: 10.1016/j.energy.2016.12.061 – volume: 107 start-page: 257 year: 2017 ident: 10.1016/j.energy.2022.124985_bib8 article-title: Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2017.05.013 |
| SSID | ssj0005899 |
| Score | 2.4083707 |
| Snippet | Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124985 |
| SubjectTerms | computer software energy equations heat power generation |
| Title | Modelling and integration of multi-parallel organic Rankine Cycles into total site |
| URI | https://dx.doi.org/10.1016/j.energy.2022.124985 https://www.proquest.com/docview/2718341061 |
| Volume | 260 |
| WOSCitedRecordID | wos000848560200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQ4IXBIOJjQ8ZCfFSuUrzaT9OVSdAVUFTQH2zEsfWNlVJWVrU_ffcxU7S8qGNB16iKrLT5O4X5-58dz9C3gWBSYxWPvMiw1kYmYRlnMdMJQW4z_D6hU3bxW-zZD7ni4X44jjb64ZOIClLvt2K1X9VNZwDZWPp7D-ou7sonIDfoHQ4gtrheCfFI7uZbbRtGyvZdhDOLmzyBxn2-14u9dJxOqnheYYMCno4ucEkOZwEFmmFdZK4ubwXvbe1gtikdGvz4rtIwuRi02x1XGj3NdyNR897FHbBnKb2bDfs4Ps7KRxtuZXHojDcW0rBORquRshnzSP2xwXaxgquRrq52xFe2Y3vP0jtJvz8szz7OpvJdLpI36--M6QKw6d2vCn3yYGfRIIPyMHpx-niU5_Zwxva0O4O24rJJq3v9z_-m0Xyy7e5MTjSJ-Sx8xToqdXwU3JPl4fkYVtIXh-So2lfpAgD3SpdPyPnHQQoQIDuQIBWhu5DgDoIUAcBaiGAkyraQICiMJ6T9GyaTj4wx53BVMCjNYsT4cW50V6m8iA0fpiYsUHjLeZjnee5KCKhYhNmsYmUGYPXKlQhMswzLUyogiMyKKtSvyBUFKLQhQpz7aHvHWXgjuVx5PPCFzzOw2MStOKTyvWVR3qTpWwTCK-kFbpEoUsr9GPCulkr21fllvFJqxnpbENr80lA1i0z37aKlLB04n5YVupqU0sf7DIw4kAoJ3cY85I86t-DV2Swvt7o1-SB-rG-rK_fOAz-BJEKkI0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+and+integration+of+multi-parallel+organic+Rankine+Cycles+into+total+site&rft.jtitle=Energy+%28Oxford%29&rft.au=Chu%2C+Zheng&rft.au=Zhang%2C+Nan&rft.au=Smith%2C+Robin&rft.date=2022-12-01&rft.issn=0360-5442&rft.volume=260+p.124985-&rft_id=info:doi/10.1016%2Fj.energy.2022.124985&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |