Modelling and integration of multi-parallel organic Rankine Cycles into total site

Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 260; S. 124985
Hauptverfasser: Chu, Zheng, Zhang, Nan, Smith, Robin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2022
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out during the last few decades. However, it is observed that the existing methodologies for integrating ORCs into industrial sites are still insufficient. Lots of the research efforts deal with ORC integration problems assuming only one single ORC participates, while the options of applying multi-parallel ORCs are rarely taken into account. Besides, existing research mainly focuses on the direct integration of ORC(s) (i.e. waste heat is transferred directly from heat sources to ORC working fluids), whereas the option of utilizing intermediate heat carriers indirectly is neglected. As such, this study proposes a model-based methodology for the indirect integration of multi-parallel ORCs. The overall model covers both waste heat extraction and ORC power generation. For heat extraction modelling, a modified superstructure based on (Isafiade and Fraser, 2008) [1] is proposed, which simplifies the construction of a heat extraction network (HEN) and reduces computational time. For thermodynamics, the Peng-Robinson Equation of State is adopted. The overall model leads to a mixed-integer nonlinear programming (MINLP) problem and can be solved by a General Algebraic Modelling System, e.g., the GAMS software. Two case studies are performed in this work to validate and illustrate the application of the proposed method, the results of which show that applying multi-parallels ORCs instead of using a single ORC can decrease the overall annualized cost effectively. •A methodology for integrating multi-parallel ORCs with Indirect heat transfer.•An improved superstructure for synthesis the network of ORC integration.•Rigorous thermodynamic correlations for modelling ORC's performances.•A mixed integer non-linear programming optimisation problem.•Case study presented to illustrate the application of the proposed methodology.
AbstractList Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out during the last few decades. However, it is observed that the existing methodologies for integrating ORCs into industrial sites are still insufficient. Lots of the research efforts deal with ORC integration problems assuming only one single ORC participates, while the options of applying multi-parallel ORCs are rarely taken into account. Besides, existing research mainly focuses on the direct integration of ORC(s) (i.e. waste heat is transferred directly from heat sources to ORC working fluids), whereas the option of utilizing intermediate heat carriers indirectly is neglected. As such, this study proposes a model-based methodology for the indirect integration of multi-parallel ORCs. The overall model covers both waste heat extraction and ORC power generation. For heat extraction modelling, a modified superstructure based on (Isafiade and Fraser, 2008) [1] is proposed, which simplifies the construction of a heat extraction network (HEN) and reduces computational time. For thermodynamics, the Peng-Robinson Equation of State is adopted. The overall model leads to a mixed-integer nonlinear programming (MINLP) problem and can be solved by a General Algebraic Modelling System, e.g., the GAMS software. Two case studies are performed in this work to validate and illustrate the application of the proposed method, the results of which show that applying multi-parallels ORCs instead of using a single ORC can decrease the overall annualized cost effectively. •A methodology for integrating multi-parallel ORCs with Indirect heat transfer.•An improved superstructure for synthesis the network of ORC integration.•Rigorous thermodynamic correlations for modelling ORC's performances.•A mixed integer non-linear programming optimisation problem.•Case study presented to illustrate the application of the proposed methodology.
Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration with background waste heat sources is one of the crucial matters that should be considered. Research on ORC integration has been carried out during the last few decades. However, it is observed that the existing methodologies for integrating ORCs into industrial sites are still insufficient. Lots of the research efforts deal with ORC integration problems assuming only one single ORC participates, while the options of applying multi-parallel ORCs are rarely taken into account. Besides, existing research mainly focuses on the direct integration of ORC(s) (i.e. waste heat is transferred directly from heat sources to ORC working fluids), whereas the option of utilizing intermediate heat carriers indirectly is neglected. As such, this study proposes a model-based methodology for the indirect integration of multi-parallel ORCs. The overall model covers both waste heat extraction and ORC power generation. For heat extraction modelling, a modified superstructure based on (Isafiade and Fraser, 2008) [1] is proposed, which simplifies the construction of a heat extraction network (HEN) and reduces computational time. For thermodynamics, the Peng-Robinson Equation of State is adopted. The overall model leads to a mixed-integer nonlinear programming (MINLP) problem and can be solved by a General Algebraic Modelling System, e.g., the GAMS software. Two case studies are performed in this work to validate and illustrate the application of the proposed method, the results of which show that applying multi-parallels ORCs instead of using a single ORC can decrease the overall annualized cost effectively.
ArticleNumber 124985
Author Chu, Zheng
Zhang, Nan
Smith, Robin
Author_xml – sequence: 1
  givenname: Zheng
  orcidid: 0000-0001-7480-3293
  surname: Chu
  fullname: Chu, Zheng
– sequence: 2
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  email: nan.zhang@manchester.ac.uk
– sequence: 3
  givenname: Robin
  surname: Smith
  fullname: Smith, Robin
BookMark eNqFkM9LwzAYhnOY4Db9Dzzk6KU1adOs9SDI8BdMhLF7SNMvJTNLZpIJ--_trCcPevp44X1e-J4ZmjjvAKErSnJKKL_Z5uAg9Me8IEWR04I1dTVBU1JyklWMFedoFuOWEFLVTTNF61ffgbXG9Vi6DhuXoA8yGe-w13h3sMlkexmktWCxD710RuG1dO_GAV4elYV4gjxOPkmLo0lwgc60tBEuf-4cbR4fNsvnbPX29LK8X2WqrKuU8UVDeKuBSNWWTBdsoalmhFNeU2jbtumqRnHNJNeV0rReDLFrJGlY2Wmmyjm6Hmf3wX8cICaxM1ENv0gH_hBFsaB1yegwOFTZWFXBxxhAi30wOxmOghJxsia2YrQmTtbEaG3Abn9hyqRvNylIY_-D70YYBgWfBoKIyoBT0JkAKonOm78HvgDf_ZBA
CitedBy_id crossref_primary_10_3390_en18143685
crossref_primary_10_1016_j_energy_2024_133252
crossref_primary_10_1016_j_rser_2025_115377
Cites_doi 10.1016/j.energy.2020.116922
10.1016/0098-1354(90)85010-8
10.1016/j.compchemeng.2017.01.043
10.1016/j.enconman.2013.04.036
10.1002/aic.690320114
10.1007/BF00138693
10.1016/j.energy.2015.02.059
10.1002/aic.690240411
10.1016/0009-2509(87)80128-8
10.1016/j.apenergy.2017.12.094
10.1016/j.energy.2018.07.028
10.1021/ie500301s
10.1002/aic.690320215
10.1016/j.energy.2009.04.037
10.1021/acs.iecr.0c04598
10.1016/0378-3812(81)85002-9
10.1016/S0098-1354(96)00320-1
10.1016/j.jclepro.2016.11.088
10.1016/j.cherd.2007.11.001
10.1016/j.energy.2016.12.061
10.1016/j.compchemeng.2017.05.013
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.124985
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_124985
S0360544222018837
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c385t-67906bfe0acb34f247f1f4061681ebbb9d59c6f4a6f5cf18759cd9a0943df4c3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848560200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 10:18:57 EDT 2025
Tue Nov 18 22:03:48 EST 2025
Sat Nov 29 07:23:35 EST 2025
Fri Feb 23 02:37:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-67906bfe0acb34f247f1f4061681ebbb9d59c6f4a6f5cf18759cd9a0943df4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7480-3293
OpenAccessLink https://dx.doi.org/10.1016/j.energy.2022.124985
PQID 2718341061
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718341061
crossref_primary_10_1016_j_energy_2022_124985
crossref_citationtrail_10_1016_j_energy_2022_124985
elsevier_sciencedirect_doi_10_1016_j_energy_2022_124985
PublicationCentury 2000
PublicationDate 2022-12-01
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kermani, Wallerand, Kantor, Maréchal (bib11) 2018; 212
Stijepovic, Papadopoulos, Linke, Stijepovic, Grujic, Kijevčanin, Seferlis (bib4) 2017; 142
Linnhoff, Flower (bib25) 1978; 24
Dong, Liao, Sun, Huang, Jiang, Wang, Yang (bib12) 2020; 59
Yu, Eason, Biegler, Feng (bib2) 2017; 119
Martelli, Elsido, Mian, Marechal (bib14) 2017; 106
Yu, Feng, Wang (bib18) 2015; 90
Zhu (bib23) 1997; 21
Duran, Grossmann (bib9) 1986; 32
Sahinidis (bib17) 1996; 8
Hipólito-Valencia, Rubio-Castro, Ponce-Ortega, Serna-González, Nápoles-Rivera, El-Halwagi (bib6) 2013; 73
Chen (bib24) 1987; 42
Chen, Chang, Chao, Chen, Lee (bib7) 2014; 53
Papoulias, Grossmann (bib10) 1983; 7
Kyle (bib15) 1992
Aly, Lee (bib19) 1981; 6
Isafiade, Fraser (bib1) 2008; 86
Poling, Prausnitz, O'Connell (bib16) 2001
Yu, Eason, Biegler, Feng (bib8) 2017; 107
Huang, Lu, Luo, Chen, Yang, Liang, Wang, Chen (bib21) 2020; 195
Yee, Grossmann (bib13) 1990; 14
Desai, Bandyopadhyay (bib5) 2009; 34
Yu, Gundersen, Feng (bib3) 2018; 160
Floudas, Ciric, Grossmann (bib20) 1986; 32
Yu (10.1016/j.energy.2022.124985_bib3) 2018; 160
Desai (10.1016/j.energy.2022.124985_bib5) 2009; 34
Floudas (10.1016/j.energy.2022.124985_bib20) 1986; 32
Duran (10.1016/j.energy.2022.124985_bib9) 1986; 32
Linnhoff (10.1016/j.energy.2022.124985_bib25) 1978; 24
Poling (10.1016/j.energy.2022.124985_bib16) 2001
Yu (10.1016/j.energy.2022.124985_bib8) 2017; 107
Martelli (10.1016/j.energy.2022.124985_bib14) 2017; 106
Yu (10.1016/j.energy.2022.124985_bib18) 2015; 90
Yee (10.1016/j.energy.2022.124985_bib13) 1990; 14
Yu (10.1016/j.energy.2022.124985_bib2) 2017; 119
Chen (10.1016/j.energy.2022.124985_bib7) 2014; 53
Chen (10.1016/j.energy.2022.124985_bib24) 1987; 42
Hipólito-Valencia (10.1016/j.energy.2022.124985_bib6) 2013; 73
Kyle (10.1016/j.energy.2022.124985_bib15) 1992
Stijepovic (10.1016/j.energy.2022.124985_bib4) 2017; 142
Aly (10.1016/j.energy.2022.124985_bib19) 1981; 6
Isafiade (10.1016/j.energy.2022.124985_bib1) 2008; 86
Huang (10.1016/j.energy.2022.124985_bib21) 2020; 195
Zhu (10.1016/j.energy.2022.124985_bib23) 1997; 21
Papoulias (10.1016/j.energy.2022.124985_bib10) 1983; 7
Sahinidis (10.1016/j.energy.2022.124985_bib17) 1996; 8
Kermani (10.1016/j.energy.2022.124985_bib11) 2018; 212
Dong (10.1016/j.energy.2022.124985_bib12) 2020; 59
References_xml – volume: 32
  start-page: 276
  year: 1986
  ident: bib20
  article-title: Automatic synthesis of optimum heat exchanger network configurations
  publication-title: AIChE J
– year: 2001
  ident: bib16
  article-title: T
– volume: 90
  start-page: 36
  year: 2015
  end-page: 46
  ident: bib18
  article-title: A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat
  publication-title: Energy
– volume: 53
  start-page: 16924
  year: 2014
  end-page: 16936
  ident: bib7
  article-title: Heat-exchanger network synthesis involving organic rankine cycle for waste heat recovery
  publication-title: Ind Eng Chem Res
– volume: 142
  start-page: 1950
  year: 2017
  end-page: 1970
  ident: bib4
  article-title: Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection
  publication-title: J Clean Prod
– volume: 119
  start-page: 322
  year: 2017
  end-page: 333
  ident: bib2
  article-title: Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery
  publication-title: Energy
– volume: 7
  start-page: 15
  year: 1983
  ident: bib10
  article-title: A structural optimization approach in process synthesisdII: heat recovery networks
  publication-title: Comput Chem Eng
– volume: 24
  start-page: 633
  year: 1978
  end-page: 642
  ident: bib25
  article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks
  publication-title: AIChE J.
– volume: 86
  start-page: 245
  year: 2008
  end-page: 257
  ident: bib1
  article-title: Interval-based MINLP superstructure synthesis of heat exchange networks
  publication-title: Chem Eng Res Des
– volume: 160
  start-page: 330
  year: 2018
  end-page: 340
  ident: bib3
  article-title: Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery
  publication-title: Energy
– volume: 21
  start-page: 1095
  year: 1997
  end-page: 1104
  ident: bib23
  article-title: Automated design method for heat exchanger network using block decomposition and heuristic rules
  publication-title: Comput Chem Eng
– volume: 107
  start-page: 257
  year: 2017
  end-page: 270
  ident: bib8
  article-title: Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis
  publication-title: Comput Chem Eng
– volume: 32
  start-page: 123
  year: 1986
  end-page: 138
  ident: bib9
  article-title: Simultaneous optimization and heat integration of chemical processes
  publication-title: AIChE J
– volume: 212
  start-page: 1203
  year: 2018
  end-page: 1225
  ident: bib11
  article-title: Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes
  publication-title: Appl Energy
– volume: 34
  start-page: 1674
  year: 2009
  end-page: 1686
  ident: bib5
  article-title: Process integration of organic Rankine cycle
  publication-title: Energy
– volume: 73
  start-page: 285
  year: 2013
  end-page: 302
  ident: bib6
  article-title: Optimal integration of organic Rankine cycles with industrial processes
  publication-title: Energy Convers Manag
– volume: 195
  year: 2020
  ident: bib21
  article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle
  publication-title: Energy
– volume: 8
  start-page: 201e205
  year: 1996
  ident: bib17
  article-title: BARON: a general purpose global optimization software package
  publication-title: J Global Optim
– volume: 42
  start-page: 2488
  year: 1987
  end-page: 2489
  ident: bib24
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
– volume: 106
  start-page: 663
  year: 2017
  end-page: 689
  ident: bib14
  article-title: MINLP model and two-stage algorithm for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery cycles
  publication-title: Comput Chem Eng
– year: 1992
  ident: bib15
  article-title: Chemical and process thermodynamics
– volume: 6
  start-page: 169
  year: 1981
  end-page: 179
  ident: bib19
  article-title: Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy
  publication-title: Fluid Phase Equil
– volume: 14
  start-page: 1165
  year: 1990
  end-page: 1184
  ident: bib13
  article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis
  publication-title: Comput Chem Eng
– volume: 59
  start-page: 20455
  year: 2020
  end-page: 20471
  ident: bib12
  article-title: Simultaneous optimization for organic rankine cycle design and heat integration
  publication-title: Ind Eng Chem Res
– volume: 195
  year: 2020
  ident: 10.1016/j.energy.2022.124985_bib21
  article-title: Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2020.116922
– volume: 14
  start-page: 1165
  issue: 10
  year: 1990
  ident: 10.1016/j.energy.2022.124985_bib13
  article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(90)85010-8
– volume: 106
  start-page: 663
  year: 2017
  ident: 10.1016/j.energy.2022.124985_bib14
  article-title: MINLP model and two-stage algorithm for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery cycles
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2017.01.043
– volume: 73
  start-page: 285
  year: 2013
  ident: 10.1016/j.energy.2022.124985_bib6
  article-title: Optimal integration of organic Rankine cycles with industrial processes
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.04.036
– year: 1992
  ident: 10.1016/j.energy.2022.124985_bib15
– volume: 32
  start-page: 123
  year: 1986
  ident: 10.1016/j.energy.2022.124985_bib9
  article-title: Simultaneous optimization and heat integration of chemical processes
  publication-title: AIChE J
  doi: 10.1002/aic.690320114
– volume: 8
  start-page: 201e205
  issue: 2
  year: 1996
  ident: 10.1016/j.energy.2022.124985_bib17
  article-title: BARON: a general purpose global optimization software package
  publication-title: J Global Optim
  doi: 10.1007/BF00138693
– volume: 90
  start-page: 36
  year: 2015
  ident: 10.1016/j.energy.2022.124985_bib18
  article-title: A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.059
– volume: 24
  start-page: 633
  issue: 4
  year: 1978
  ident: 10.1016/j.energy.2022.124985_bib25
  article-title: Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690240411
– volume: 42
  start-page: 2488
  issue: 10
  year: 1987
  ident: 10.1016/j.energy.2022.124985_bib24
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(87)80128-8
– year: 2001
  ident: 10.1016/j.energy.2022.124985_bib16
– volume: 212
  start-page: 1203
  year: 2018
  ident: 10.1016/j.energy.2022.124985_bib11
  article-title: Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.094
– volume: 160
  start-page: 330
  year: 2018
  ident: 10.1016/j.energy.2022.124985_bib3
  article-title: Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.028
– volume: 53
  start-page: 16924
  issue: 44
  year: 2014
  ident: 10.1016/j.energy.2022.124985_bib7
  article-title: Heat-exchanger network synthesis involving organic rankine cycle for waste heat recovery
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie500301s
– volume: 32
  start-page: 276
  issue: 2
  year: 1986
  ident: 10.1016/j.energy.2022.124985_bib20
  article-title: Automatic synthesis of optimum heat exchanger network configurations
  publication-title: AIChE J
  doi: 10.1002/aic.690320215
– volume: 34
  start-page: 1674
  issue: 10
  year: 2009
  ident: 10.1016/j.energy.2022.124985_bib5
  article-title: Process integration of organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2009.04.037
– volume: 59
  start-page: 20455
  issue: 46
  year: 2020
  ident: 10.1016/j.energy.2022.124985_bib12
  article-title: Simultaneous optimization for organic rankine cycle design and heat integration
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.0c04598
– volume: 6
  start-page: 169
  issue: 3–4
  year: 1981
  ident: 10.1016/j.energy.2022.124985_bib19
  article-title: Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy
  publication-title: Fluid Phase Equil
  doi: 10.1016/0378-3812(81)85002-9
– volume: 21
  start-page: 1095
  issue: 10
  year: 1997
  ident: 10.1016/j.energy.2022.124985_bib23
  article-title: Automated design method for heat exchanger network using block decomposition and heuristic rules
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(96)00320-1
– volume: 142
  start-page: 1950
  year: 2017
  ident: 10.1016/j.energy.2022.124985_bib4
  article-title: Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.11.088
– volume: 86
  start-page: 245
  issue: 3
  year: 2008
  ident: 10.1016/j.energy.2022.124985_bib1
  article-title: Interval-based MINLP superstructure synthesis of heat exchange networks
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2007.11.001
– volume: 7
  start-page: 15
  issue: 6
  year: 1983
  ident: 10.1016/j.energy.2022.124985_bib10
  article-title: A structural optimization approach in process synthesisdII: heat recovery networks
  publication-title: Comput Chem Eng
– volume: 119
  start-page: 322
  year: 2017
  ident: 10.1016/j.energy.2022.124985_bib2
  article-title: Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.061
– volume: 107
  start-page: 257
  year: 2017
  ident: 10.1016/j.energy.2022.124985_bib8
  article-title: Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2017.05.013
SSID ssj0005899
Score 2.4083707
Snippet Organic Rankine Cycle (ORC) is a promising technology for exploiting the industrial low-grade waste heat. When trying to implement ORCs, proper integration...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124985
SubjectTerms computer software
energy
equations
heat
power generation
Title Modelling and integration of multi-parallel organic Rankine Cycles into total site
URI https://dx.doi.org/10.1016/j.energy.2022.124985
https://www.proquest.com/docview/2718341061
Volume 260
WOSCitedRecordID wos000848560200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQ4IXBIOJjQ8ZCfFSuUrzaT9OVSdAVUFTQH2zEsfWNlVJWVrU_ffcxU7S8qGNB16iKrLT5O4X5-58dz9C3gWBSYxWPvMiw1kYmYRlnMdMJQW4z_D6hU3bxW-zZD7ni4X44jjb64ZOIClLvt2K1X9VNZwDZWPp7D-ou7sonIDfoHQ4gtrheCfFI7uZbbRtGyvZdhDOLmzyBxn2-14u9dJxOqnheYYMCno4ucEkOZwEFmmFdZK4ubwXvbe1gtikdGvz4rtIwuRi02x1XGj3NdyNR897FHbBnKb2bDfs4Ps7KRxtuZXHojDcW0rBORquRshnzSP2xwXaxgquRrq52xFe2Y3vP0jtJvz8szz7OpvJdLpI36--M6QKw6d2vCn3yYGfRIIPyMHpx-niU5_Zwxva0O4O24rJJq3v9z_-m0Xyy7e5MTjSJ-Sx8xToqdXwU3JPl4fkYVtIXh-So2lfpAgD3SpdPyPnHQQoQIDuQIBWhu5DgDoIUAcBaiGAkyraQICiMJ6T9GyaTj4wx53BVMCjNYsT4cW50V6m8iA0fpiYsUHjLeZjnee5KCKhYhNmsYmUGYPXKlQhMswzLUyogiMyKKtSvyBUFKLQhQpz7aHvHWXgjuVx5PPCFzzOw2MStOKTyvWVR3qTpWwTCK-kFbpEoUsr9GPCulkr21fllvFJqxnpbENr80lA1i0z37aKlLB04n5YVupqU0sf7DIw4kAoJ3cY85I86t-DV2Swvt7o1-SB-rG-rK_fOAz-BJEKkI0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+and+integration+of+multi-parallel+organic+Rankine+Cycles+into+total+site&rft.jtitle=Energy+%28Oxford%29&rft.au=Chu%2C+Zheng&rft.au=Zhang%2C+Nan&rft.au=Smith%2C+Robin&rft.date=2022-12-01&rft.issn=0360-5442&rft.volume=260+p.124985-&rft_id=info:doi/10.1016%2Fj.energy.2022.124985&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon