Conditional Variational Autoencoder for Learned Image Reconstruction

Learned image reconstruction techniques using deep neural networks have recently gained popularity and have delivered promising empirical results. However, most approaches focus on one single recovery for each observation, and thus neglect information uncertainty. In this work, we develop a novel co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computation Ročník 9; číslo 11; s. 114
Hlavní autoři: Zhang, Chen, Barbano, Riccardo, Jin, Bangti
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2021
Témata:
ISSN:2079-3197, 2079-3197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learned image reconstruction techniques using deep neural networks have recently gained popularity and have delivered promising empirical results. However, most approaches focus on one single recovery for each observation, and thus neglect information uncertainty. In this work, we develop a novel computational framework that approximates the posterior distribution of the unknown image at each query observation. The proposed framework is very flexible: it handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets. Once the network is trained using the conditional variational autoencoder loss, it provides a computationally efficient sampler for the approximate posterior distribution via feed-forward propagation, and the summarizing statistics of the generated samples are used for both point-estimation and uncertainty quantification. We illustrate the proposed framework with extensive numerical experiments on positron emission tomography (with both moderate and low-count levels) showing that the framework generates high-quality samples when compared with state-of-the-art methods.
AbstractList Learned image reconstruction techniques using deep neural networks have recently gained popularity and have delivered promising empirical results. However, most approaches focus on one single recovery for each observation, and thus neglect information uncertainty. In this work, we develop a novel computational framework that approximates the posterior distribution of the unknown image at each query observation. The proposed framework is very flexible: it handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets. Once the network is trained using the conditional variational autoencoder loss, it provides a computationally efficient sampler for the approximate posterior distribution via feed-forward propagation, and the summarizing statistics of the generated samples are used for both point-estimation and uncertainty quantification. We illustrate the proposed framework with extensive numerical experiments on positron emission tomography (with both moderate and low-count levels) showing that the framework generates high-quality samples when compared with state-of-the-art methods.
Author Zhang, Chen
Jin, Bangti
Barbano, Riccardo
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
– sequence: 2
  givenname: Riccardo
  surname: Barbano
  fullname: Barbano, Riccardo
– sequence: 3
  givenname: Bangti
  orcidid: 0000-0002-3775-9155
  surname: Jin
  fullname: Jin, Bangti
BookMark eNp9kE1Lw0AQhhepYK39A54Cnqv7vdljqV-FgiDqdZnsbkpKmq2bzcF_b2KKiIJzmWF43neY9xxNmtB4hC4JvmZM4xsb9ocuQapCownBhPATNKVY6QUjWk1-zGdo3rY73JcmLKd4im5XoXHVIIU6e4NYwXFedin4xgbnY1aGmG08xMa7bL2Hrc-evQ1Nm2JnB_wCnZZQt35-7DP0en_3snpcbJ4e1qvlZmFZLtJC8AIoWAeMSi6o5k5iKxQuixJcwQmIQjitqFdM5poVDFiZS5BK2dwR6dgMrUdfF2BnDrHaQ_wwASrztQhxayCmytbeYC21KCnR1HpOiQDgQmnBuOPMF3rwuhq9DjG8d75NZhe62H_eGioxxVQrlfcUHSkbQ9tGX35fJdgM4Zu_4fei_JfIViORIlT1f9JPVVePeg
CitedBy_id crossref_primary_10_1109_TGRS_2025_3585865
crossref_primary_10_1088_1361_6560_ace49a
crossref_primary_10_1016_j_neunet_2025_107740
crossref_primary_10_1109_ACCESS_2025_3594875
crossref_primary_10_1109_TIM_2025_3554283
crossref_primary_10_1109_RBME_2024_3485022
crossref_primary_10_1051_swsc_2025016
crossref_primary_10_1016_j_trc_2024_104618
Cites_doi 10.1088/1361-6420/ab15a3
10.1088/1361-6560/aac71a
10.1109/ICCV.2019.00335
10.1088/0266-5611/18/6/201
10.1109/MSP.2020.3016905
10.1561/2200000001
10.1109/ICPR48806.2021.9412521
10.1109/TMI.1982.4307558
10.1109/ISBI48211.2021.9433837
10.1007/s00466-019-01739-7
10.1016/0167-2789(92)90242-F
10.1142/9120
10.1088/1361-6420/aa9581
10.1109/ICNN.1994.374138
10.1109/TMI.2018.2805692
10.1007/978-3-319-46478-7_51
10.1007/978-3-319-10593-2_13
10.1109/TMI.2018.2886050
10.1023/A:1007665907178
10.1088/1361-6420/aaa0ab
10.1017/S0962492910000061
10.1137/19M1248352
10.1561/9781680836233
10.1162/neco.2008.08-07-592
10.1088/0031-9155/51/15/R01
10.1088/0266-5611/25/12/123010
10.1002/mp.12344
10.1109/JSAIT.2020.2991563
10.1016/B978-0-12-824349-7.00008-6
10.1016/j.inffus.2021.05.008
10.1214/aoms/1177729694
10.1109/TIP.2017.2662206
10.1007/b138659
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/computation9110114
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 2079-3197
ExternalDocumentID oai_doaj_org_article_09695f2192ce4215aa4579534d43eb9d
10_3390_computation9110114
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-54ba2acda32645294d60c570fbfadb41a5b5d972e736893b3a3f86a677c8d16d3
IEDL.DBID K7-
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725463100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-3197
IngestDate Fri Oct 03 12:53:21 EDT 2025
Sat Nov 01 15:16:17 EDT 2025
Sat Nov 29 07:14:53 EST 2025
Tue Nov 18 20:58:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-54ba2acda32645294d60c570fbfadb41a5b5d972e736893b3a3f86a677c8d16d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3775-9155
OpenAccessLink https://www.proquest.com/docview/2602029778?pq-origsite=%requestingapplication%
PQID 2602029778
PQPubID 2032414
ParticipantIDs doaj_primary_oai_doaj_org_article_09695f2192ce4215aa4579534d43eb9d
proquest_journals_2602029778
crossref_primary_10_3390_computation9110114
crossref_citationtrail_10_3390_computation9110114
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computation
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hyun (ref_6) 2018; 63
ref_57
ref_12
ref_56
ref_11
Opper (ref_36) 2009; 21
ref_55
Zhang (ref_1) 2017; 26
ref_51
Shepp (ref_52) 1982; 1
ref_19
ref_16
Cocosco (ref_49) 1997; 5
Stuart (ref_10) 2010; 19
ref_15
Kullback (ref_41) 1951; 22
Qi (ref_28) 2006; 51
Ongie (ref_32) 2020; 1
Kang (ref_4) 2017; 44
Jordan (ref_35) 1999; 37
ref_25
ref_24
ref_23
ref_22
ref_20
Zhou (ref_31) 2020; 13
ref_27
ref_26
Hou (ref_40) 2019; 64
Adler (ref_54) 2017; 33
Borcea (ref_13) 2002; 18
ref_34
Abdar (ref_21) 2021; 76
ref_33
Monga (ref_17) 2021; 38
Chen (ref_5) 2018; 37
ref_39
Wainwright (ref_18) 2008; 1
ref_38
Zhang (ref_29) 2019; 35
Arridge (ref_37) 2018; 34
Barat (ref_30) 2019; 38
ref_47
Rudin (ref_53) 1992; 60
ref_46
ref_45
ref_44
ref_43
ref_42
Arridge (ref_14) 2009; 25
ref_3
ref_2
ref_48
ref_9
ref_8
ref_7
References_xml – volume: 35
  start-page: 085006
  year: 2019
  ident: ref_29
  article-title: Expectation Propagation for Poisson Data
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/ab15a3
– ident: ref_55
– ident: ref_26
– ident: ref_51
– ident: ref_16
– volume: 63
  start-page: 135007
  year: 2018
  ident: ref_6
  article-title: Deep learning for undersampled MRI reconstruction
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aac71a
– ident: ref_57
  doi: 10.1109/ICCV.2019.00335
– ident: ref_42
– ident: ref_23
– volume: 18
  start-page: R99
  year: 2002
  ident: ref_13
  article-title: Electrical impedance tomography
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/18/6/201
– volume: 38
  start-page: 18
  year: 2021
  ident: ref_17
  article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2020.3016905
– volume: 1
  start-page: 1
  year: 2008
  ident: ref_18
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000001
– ident: ref_24
  doi: 10.1109/ICPR48806.2021.9412521
– volume: 1
  start-page: 113
  year: 1982
  ident: ref_52
  article-title: Maximum likelihood reconstruction for emission tomography
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.1982.4307558
– ident: ref_27
– ident: ref_39
  doi: 10.1109/ISBI48211.2021.9433837
– volume: 64
  start-page: 395
  year: 2019
  ident: ref_40
  article-title: Solving Bayesian inverse problems from the perspective of deep generative networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01739-7
– ident: ref_48
– volume: 60
  start-page: 259
  year: 1992
  ident: ref_53
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys. D. Nonlinear Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref_47
  doi: 10.1142/9120
– volume: 33
  start-page: 124007
  year: 2017
  ident: ref_54
  article-title: Solving ill-posed inverse problems using iterative deep neural networks
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa9581
– ident: ref_38
– ident: ref_20
– ident: ref_56
  doi: 10.1109/ICNN.1994.374138
– volume: 37
  start-page: 1333
  year: 2018
  ident: ref_5
  article-title: LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2018.2805692
– ident: ref_7
– ident: ref_45
  doi: 10.1007/978-3-319-46478-7_51
– ident: ref_3
  doi: 10.1007/978-3-319-10593-2_13
– volume: 38
  start-page: 1643
  year: 2019
  ident: ref_30
  article-title: PET reconstruction of the posterior image probability, including multimodal images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2018.2886050
– ident: ref_34
– volume: 37
  start-page: 183
  year: 1999
  ident: ref_35
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 34
  start-page: 025005
  year: 2018
  ident: ref_37
  article-title: Variational Gaussian approximation for Poisson data
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aaa0ab
– volume: 19
  start-page: 451
  year: 2010
  ident: ref_10
  article-title: Inverse problems: A Bayesian perspective
  publication-title: Acta Numer.
  doi: 10.1017/S0962492910000061
– ident: ref_11
– volume: 13
  start-page: 29
  year: 2020
  ident: ref_31
  article-title: Bayesian inference and uncertainty quantification for medical image reconstruction with Poisson data
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/19M1248352
– ident: ref_43
  doi: 10.1561/9781680836233
– volume: 21
  start-page: 786
  year: 2009
  ident: ref_36
  article-title: The variational Gaussian approximation revisited
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.08-07-592
– volume: 51
  start-page: R541
  year: 2006
  ident: ref_28
  article-title: Iterative reconstruction techniques in emission computed tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/15/R01
– ident: ref_44
– volume: 25
  start-page: 123010
  year: 2009
  ident: ref_14
  article-title: Optical tomography: Forward and inverse problems
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/12/123010
– volume: 5
  start-page: S425
  year: 1997
  ident: ref_49
  article-title: Brainweb: Online interface to a 3D MRI simulated brain database
  publication-title: NeuroImage
– volume: 44
  start-page: e360
  year: 2017
  ident: ref_4
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Med. Phys.
  doi: 10.1002/mp.12344
– ident: ref_25
– ident: ref_50
– ident: ref_33
– volume: 1
  start-page: 39
  year: 2020
  ident: ref_32
  article-title: Deep learning techniques for inverse problems in imaging
  publication-title: IEEE J. Sel. Areas Inform. Theory
  doi: 10.1109/JSAIT.2020.2991563
– ident: ref_2
– ident: ref_46
– ident: ref_12
– ident: ref_8
  doi: 10.1016/B978-0-12-824349-7.00008-6
– ident: ref_15
– volume: 76
  start-page: 243
  year: 2021
  ident: ref_21
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.008
– volume: 22
  start-page: 79
  year: 1951
  ident: ref_41
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 26
  start-page: 3142
  year: 2017
  ident: ref_1
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Imag. Proc.
  doi: 10.1109/TIP.2017.2662206
– ident: ref_19
– ident: ref_22
– ident: ref_9
  doi: 10.1007/b138659
SSID ssj0000913820
Score 2.344547
Snippet Learned image reconstruction techniques using deep neural networks have recently gained popularity and have delivered promising empirical results. However,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 114
SubjectTerms Artificial neural networks
conditional variational autoencoder
deep learning
Epistemology
Image reconstruction
Inverse problems
Machine learning
Mathematical analysis
Medical imaging
Neural networks
Positron emission
Random variables
Statistical methods
Uncertainty
uncertainty quantification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBbFWsVsnBgyJLdzfvY60WPVg8qPS2ZPMAQVtpq7_fSXZbKwW9eF2yr8nM5Pvy-AahM6YsNxmQHA_ek1DifKI1BJ5PYSyWkmjubCw2IYZDORqph5VSX2FPWCUPXBmuCxBbMQ9xlRtHYXzSmjKhGKEWHlwqG7IvoJ4VMhVzsAraeml1SoYAr--aWCQh_i3Ed6ABP0aiKNi_lo_jIDPYRTs1OsS96quaaMONW2j7fimtOmuhZh2NM3xeS0Zf7KHr_iQsPcdpPfwM9Lee4sO9j_kkSFVaN8UAT3GUU3UW371BHsGBe34ryO6jp8HNY_82qesjJIZINk8YLXWujdUAwcL6KbU8NUykvvTaljTTrGRWidwJwgGWlEQTL7nmQhhpM27JAWqMJ2N3iLAH5CalyZjjjhoCuIwEYle6lKuSctdG2cJWhanFw0MNi9cCSESwb7Fu3za6XN7zXkln_Nr6KnTBsmWQvY4XwBmK2hmKv5yhjTqLDizqWJwVwNjyUKJLyKP_eMcx2srDvpZ4HrGDGtBJ7gRtms_5y2x6Gt3wCygU4hw
  priority: 102
  providerName: Directory of Open Access Journals
Title Conditional Variational Autoencoder for Learned Image Reconstruction
URI https://www.proquest.com/docview/2602029778
https://doaj.org/article/09695f2192ce4215aa4579534d43eb9d
Volume 9
WOSCitedRecordID wos000725463100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: P5Z
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlgMc6AMQC-3KBw4gFHUTP3NCfWxFhXYVVQUVLpFjOwgJNmWzcOS3M-P1boUq9dKLD4mjJJ6H5xvb3wC8lqVXLkeQ06L2ZIKHNrMWDa8d4VxsDLcq-FhsQk-n5uqqrFLCrU_bKlc-MTpq3znKkR9i3F1QoSVt3l__yqhqFK2uphIaD2AL35eTnn_U2TrHQpyXOMMtz8pwRPeHLpZKiP-MVk5g4L_5KNL23_LKcao5277vR-7AkxRksqOlVuzCRpjtwePJmqG134PdZNQ9e5OYp98-hdOTjlawY3aQfUYUnTKF7Oj3oiPGSx_mDKNcFllZg2fnP9EdMYKwN0S0z-DT2fjy5EOWyixkjhu5yKRobGGdtxjJ0TKs8GrkpB61TWt9I3IrG-lLXQTNFUY3Dbe8NcoqrZ3xufL8OWzOull4AazFANAYl8uggnAcwztO-LAJI1U2QoUB5KvBrl3iIKdSGD9qxCIkoPq2gAbwbv3M9ZKB487exyTDdU9iz44Xuvm3OhljjbCtlC366sIFgTGPtULqUnLhUVmb0g9gfyXeOpl0X9_I9uXdt1_Bo4I2vsQDi_uwicMfDuCh-7P43s-HsHU8nlYXwwj-h1FfsZ38HWNbya94vzqfVF_-AXjR91M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9RAGH6DaKIeVFDjKuocNNGYhrbz2QMhCBI2CxsPaLiV6czUkMAWt6vGP8Vv5H1n2yWGhBsHr-1Mk848837NzPMAvJOFVy7DJKdG9CSChzqxFhdenaIvNoZbFXwUm9DjsTk6Kr4uwUV_F4aOVfY2MRpq3ziqka9j3J2T0JI2m-c_E1KNot3VXkJjDotR-PsHU7Z2Y7iD8_s-z3e_HG7vJZ2qQOK4kbNEisrm1nmLgQvtOgqvUid1Wle19ZXIrKykL3QeNFfozCtueW2UVVo74zPlOX73DtwV3Gji6h_pZFHTIY5N9KjzuzmcF-m6i9IMcYzRqlDy8Y__izIB17xAdG27j_-3QXkCj7ogmm3NUb8CS2GyCg8PFgy07SqsdEarZR86Zu2PT2Fnu6Ed-lj9ZN_t9KSrhLKtX7OGGD19mDKM4llknQ2eDc_Q3DJK0a-Idp_Bt1v5t-ewPGkm4QWwGgNcY1wmgwrCcQxfOeW_VUhVUQkVBpD1k1u6jmOdpD5OS8y1CBDldUAM4NOiz_mcYeTG1p8JM4uWxA4eHzTTH2VnbEpMSwtZoy_KXRAY01krpC4kFx4XY1X4Aaz1cCo7k9WWV1h6efPrt3B_7_Bgv9wfjkev4EFOh3zi5cw1WMapCK_hnvs9O2mnb-LqYHB828i7BGRFTjY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Na9RAGH6pVUQPaqvFtVXnoKBI2CTzmYNI7bq4rC49qPQWJ_NRCrqpm1Xxr_nr-s7sZIsUeuvBazIJJPO8nzPzPADPeGWFKbDI8YiejFHnM63R8HyOsVgpqoWzUWxCzmbq6Kg63IC__VmYsK2y94nRUdvWhB75EPPuMggtSTX0aVvE4Wj85vRHFhSkwkprL6exgsjU_fmN5Vv3ejLCuX5eluN3nw7eZ0lhIDNU8WXGWaNLbazGJCasQDIrcsNl7huvbcMKzRtuK1k6SQUG9oZq6pXQQkqjbCEsxfdeg-sYhXmwsanM1v2dwLeJ0XV1TofSKh-aKNMQ_zd6mFCI_BMLo2TAhYgQw9z47v_8g-7BnZRck_2VNWzBhptvw-2Pa2babhu2kjPryIvEuP3yPowO2rByH7ui5ItenKQOKdn_uWwD06d1C4LZPYlstM6SyXd0wySU7ucEvA_g85V82w5sztu5ewjEY-KrlCm4E44ZimktDXVx43JRNUy4ART9RNcmca8HCZBvNdZgARz1RXAM4NX6mdMV88ilo98G_KxHBtbweKFdHNfJCdVYrlbcY4wqjWOY62nNuKw4ZRaNtKnsAPZ6aNXJlXX1Oa4eXX77KdxEwNUfJrPpLtwqw96feGZzDzZxJtxjuGF-LU-6xZNoKAS-XjXwzgC-T1bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Variational+Autoencoder+for+Learned+Image+Reconstruction&rft.jtitle=Computation&rft.au=Zhang%2C+Chen&rft.au=Barbano%2C+Riccardo&rft.au=Jin%2C+Bangti&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2079-3197&rft.volume=9&rft.issue=11&rft.spage=114&rft_id=info:doi/10.3390%2Fcomputation9110114&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon