A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning
Nowadays, deep learning is a current and a stimulating field of machine learning. Deep learning is the most effective, supervised, time and cost efficient machine learning approach. Deep learning is not a restricted learning approach, but it abides various procedures and topographies which can be ap...
Uložené v:
| Vydané v: | Archives of computational methods in engineering Ročník 27; číslo 4; s. 1071 - 1092 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.09.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1134-3060, 1886-1784 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, deep learning is a current and a stimulating field of machine learning. Deep learning is the most effective, supervised, time and cost efficient machine learning approach. Deep learning is not a restricted learning approach, but it abides various procedures and topographies which can be applied to an immense speculum of complicated problems. The technique learns the illustrative and differential features in a very stratified way. Deep learning methods have made a significant breakthrough with appreciable performance in a wide variety of applications with useful security tools. It is considered to be the best choice for discovering complex architecture in high-dimensional data by employing back propagation algorithm. As deep learning has made significant advancements and tremendous performance in numerous applications, the widely used domains of deep learning are business, science and government which further includes adaptive testing, biological image classification, computer vision, cancer detection, natural language processing, object detection, face recognition, handwriting recognition, speech recognition, stock market analysis, smart city and many more. This paper focuses on the concepts of deep learning, its basic and advanced architectures, techniques, motivational aspects, characteristics and the limitations. The paper also presents the major differences between the deep learning, classical machine learning and conventional learning approaches and the major challenges ahead. The main intention of this paper is to explore and present chronologically, a comprehensive survey of the major applications of deep learning covering variety of areas, study of the techniques and architectures used and further the contribution of that respective application in the real world. Finally, the paper ends with the conclusion and future aspects. |
|---|---|
| AbstractList | Nowadays, deep learning is a current and a stimulating field of machine learning. Deep learning is the most effective, supervised, time and cost efficient machine learning approach. Deep learning is not a restricted learning approach, but it abides various procedures and topographies which can be applied to an immense speculum of complicated problems. The technique learns the illustrative and differential features in a very stratified way. Deep learning methods have made a significant breakthrough with appreciable performance in a wide variety of applications with useful security tools. It is considered to be the best choice for discovering complex architecture in high-dimensional data by employing back propagation algorithm. As deep learning has made significant advancements and tremendous performance in numerous applications, the widely used domains of deep learning are business, science and government which further includes adaptive testing, biological image classification, computer vision, cancer detection, natural language processing, object detection, face recognition, handwriting recognition, speech recognition, stock market analysis, smart city and many more. This paper focuses on the concepts of deep learning, its basic and advanced architectures, techniques, motivational aspects, characteristics and the limitations. The paper also presents the major differences between the deep learning, classical machine learning and conventional learning approaches and the major challenges ahead. The main intention of this paper is to explore and present chronologically, a comprehensive survey of the major applications of deep learning covering variety of areas, study of the techniques and architectures used and further the contribution of that respective application in the real world. Finally, the paper ends with the conclusion and future aspects. |
| Author | Ayyagari, Maruthi Rohit Dargan, Shaveta Kumar, Munish Kumar, Gulshan |
| Author_xml | – sequence: 1 givenname: Shaveta surname: Dargan fullname: Dargan, Shaveta organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University – sequence: 2 givenname: Munish orcidid: 0000-0003-0115-1620 surname: Kumar fullname: Kumar, Munish email: munishcse@gmail.com organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University – sequence: 3 givenname: Maruthi Rohit surname: Ayyagari fullname: Ayyagari, Maruthi Rohit organization: College of Business, University of Dallas – sequence: 4 givenname: Gulshan surname: Kumar fullname: Kumar, Gulshan organization: Department of Computer Applications, Shaheed Bhagat Singh State Technical Campus |
| BookMark | eNp9kMlOwzAURS1UJNrCD7CyxNpgx05is4vKVKkMYlhbjmMXV60T7JSqf09oEEgsunpvcc8bzggMfO0NAKcEnxOM84tICKcEYSIQFpQxtDkAQ8J5hkjO2aDrCWWI4gwfgVGMC4xTJkQyBM8FfFmHT7OFtYVXxjRwZlTwzs-h8hWcthEWTbN0WrWu9vESFvDBbOCTCqpy8xVsa3iv9Lvz5hc8BodWLaM5-alj8HZz_Tq5Q7PH2-mkmCFNedqilDGRiIqbqqyUslxbZo1VmtGcMJtTS7DgNLWpxlzhMi9FycrU6pQrga2idAzO-rlNqD_WJrZyUa-D71bKhNGMpBnPWZfifUqHOsZgrNSu3T3TBuWWkmD5bVD2BmVnUO4Myk2HJv_QJriVCtv9EO2h2IX93IS_q_ZQX-0bhY8 |
| CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_3390_agronomy14051034 crossref_primary_10_1007_s43684_022_00041_3 crossref_primary_10_3390_electronics11213533 crossref_primary_10_1111_exsy_13415 crossref_primary_10_1007_s44206_022_00032_0 crossref_primary_10_1007_s11227_024_06136_3 crossref_primary_10_1016_j_pnucene_2025_105745 crossref_primary_10_3390_bioengineering12050517 crossref_primary_10_1016_j_jpba_2023_115623 crossref_primary_10_1007_s13369_022_07412_1 crossref_primary_10_1016_j_jretconser_2023_103299 crossref_primary_10_1007_s11831_022_09763_2 crossref_primary_10_1002_ett_4458 crossref_primary_10_1007_s11042_024_18592_3 crossref_primary_10_1016_j_neucom_2025_130854 crossref_primary_10_1109_JRFID_2024_3387996 crossref_primary_10_1088_1742_6596_2129_1_012023 crossref_primary_10_1002_ps_8473 crossref_primary_10_3389_fpls_2023_1271320 crossref_primary_10_3390_rs14092086 crossref_primary_10_1080_17499518_2022_2138918 crossref_primary_10_1016_j_artmed_2024_102902 crossref_primary_10_1007_s11517_021_02447_2 crossref_primary_10_1007_s12293_025_00463_5 crossref_primary_10_1038_s41598_023_41171_9 crossref_primary_10_1109_TIFS_2025_3560690 crossref_primary_10_1109_TVCG_2022_3209384 crossref_primary_10_1007_s11042_022_12102_z crossref_primary_10_1109_ACCESS_2025_3548167 crossref_primary_10_1016_j_imu_2021_100564 crossref_primary_10_1109_ACCESS_2021_3136898 crossref_primary_10_1016_j_eswa_2023_120754 crossref_primary_10_1080_1206212X_2024_2414042 crossref_primary_10_1109_ACCESS_2021_3124200 crossref_primary_10_1016_j_asr_2024_03_033 crossref_primary_10_1109_ACCESS_2023_3244599 crossref_primary_10_3390_app14010313 crossref_primary_10_3390_ai5040144 crossref_primary_10_2166_hydro_2022_134 crossref_primary_10_1007_s11277_022_09500_9 crossref_primary_10_3390_plants13182556 crossref_primary_10_1051_e3sconf_202560100015 crossref_primary_10_1002_cam4_6363 crossref_primary_10_1109_JSAC_2021_3078501 crossref_primary_10_32604_cmc_2024_047875 crossref_primary_10_1061_JCEMD4_COENG_12367 crossref_primary_10_3390_math11133008 crossref_primary_10_1007_s11042_023_15933_6 crossref_primary_10_1016_j_vibspec_2023_103522 crossref_primary_10_3389_fphys_2022_952709 crossref_primary_10_3390_plants11070970 crossref_primary_10_1007_s11042_022_12551_6 crossref_primary_10_1007_s13369_022_07096_7 crossref_primary_10_1007_s13246_022_01139_x crossref_primary_10_3390_s23010062 crossref_primary_10_1089_big_2022_0050 crossref_primary_10_1145_3700821 crossref_primary_10_1007_s11042_022_12245_z crossref_primary_10_1145_3469722 crossref_primary_10_1007_s11042_020_10103_4 crossref_primary_10_1016_j_aei_2020_101097 crossref_primary_10_1186_s13007_024_01275_3 crossref_primary_10_1109_ACCESS_2023_3282309 crossref_primary_10_1007_s11760_024_03719_8 crossref_primary_10_1007_s10278_021_00564_w crossref_primary_10_1109_ACCESS_2024_3491655 crossref_primary_10_1007_s11042_022_12100_1 crossref_primary_10_1016_j_iswa_2025_200532 crossref_primary_10_1155_2022_6173463 crossref_primary_10_3390_e24020196 crossref_primary_10_1109_ACCESS_2020_2990765 crossref_primary_10_1038_s41598_025_97793_8 crossref_primary_10_1016_j_aiia_2025_01_003 crossref_primary_10_3390_diagnostics13172804 crossref_primary_10_1057_s41599_022_01090_y crossref_primary_10_1016_j_eswa_2021_115742 crossref_primary_10_3390_jmmp8060244 crossref_primary_10_1016_j_trd_2024_104389 crossref_primary_10_1016_j_chemosphere_2023_140802 crossref_primary_10_1007_s13201_024_02301_4 crossref_primary_10_1016_j_ecoenv_2025_118176 crossref_primary_10_1016_j_heliyon_2024_e32189 crossref_primary_10_1177_09544070241244858 crossref_primary_10_1007_s11227_024_06663_z crossref_primary_10_1016_j_future_2022_12_014 crossref_primary_10_1016_j_jclepro_2023_136771 crossref_primary_10_1007_s00500_021_06691_4 crossref_primary_10_1016_j_artmed_2025_103135 crossref_primary_10_3390_app13116386 crossref_primary_10_1016_j_est_2023_106904 crossref_primary_10_1016_j_bspc_2025_108383 crossref_primary_10_1007_s12145_025_01736_w crossref_primary_10_3390_bioengineering9110683 crossref_primary_10_1007_s00354_024_00245_6 crossref_primary_10_1007_s11042_022_12586_9 crossref_primary_10_1016_j_cpb_2024_100382 crossref_primary_10_1007_s12161_024_02701_x crossref_primary_10_1155_2022_7622392 crossref_primary_10_1109_ACCESS_2022_3146397 crossref_primary_10_1007_s11042_022_13957_y crossref_primary_10_3390_rs17162908 crossref_primary_10_1016_j_apenergy_2025_125349 crossref_primary_10_1016_j_iot_2024_101153 crossref_primary_10_3390_toxics13050349 crossref_primary_10_1002_jcu_23558 crossref_primary_10_1016_j_ijleo_2024_172155 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_3390_technologies11040087 crossref_primary_10_1007_s11042_023_14664_y crossref_primary_10_1016_j_aei_2024_103070 crossref_primary_10_3390_aerospace11120961 crossref_primary_10_1007_s00170_025_15671_z crossref_primary_10_1007_s10489_024_05936_7 crossref_primary_10_1186_s40537_022_00625_z crossref_primary_10_32604_cmc_2023_038446 crossref_primary_10_1109_JSTARS_2023_3262679 crossref_primary_10_1155_2022_6872045 crossref_primary_10_3390_info14090513 crossref_primary_10_1007_s42107_023_00739_6 crossref_primary_10_1007_s11069_022_05336_5 crossref_primary_10_3390_catal15090842 crossref_primary_10_1007_s11036_022_02021_6 crossref_primary_10_1051_shsconf_202419703002 crossref_primary_10_1016_j_heliyon_2024_e34103 crossref_primary_10_1016_j_inffus_2024_102922 crossref_primary_10_1049_cmu2_12447 crossref_primary_10_3390_su17177602 crossref_primary_10_1007_s10845_024_02521_0 crossref_primary_10_1109_JSTQE_2023_3296385 crossref_primary_10_1371_journal_pone_0268007 crossref_primary_10_1038_s41598_024_73334_7 crossref_primary_10_4108_eetpht_10_5541 crossref_primary_10_1109_JIOT_2023_3237361 crossref_primary_10_1007_s11356_023_29064_w crossref_primary_10_1093_bib_bbab462 crossref_primary_10_1016_j_neucom_2023_126609 crossref_primary_10_2298_JSC230201049K crossref_primary_10_1007_s11042_023_16407_5 crossref_primary_10_1007_s42979_021_00772_9 crossref_primary_10_1108_JIC_07_2024_0201 crossref_primary_10_1007_s11053_025_10491_0 crossref_primary_10_1016_j_bspc_2022_104138 crossref_primary_10_3389_fpls_2022_808380 crossref_primary_10_1016_j_nexres_2025_100424 crossref_primary_10_1016_j_compag_2024_109344 crossref_primary_10_1016_j_datak_2024_102402 crossref_primary_10_1016_j_mtcomm_2025_111625 crossref_primary_10_3390_bios14040160 crossref_primary_10_1016_j_asoc_2023_110703 crossref_primary_10_1007_s12652_020_02787_1 crossref_primary_10_1007_s44244_023_00008_0 crossref_primary_10_3389_fcomm_2023_1075654 crossref_primary_10_1080_02533839_2021_1919561 crossref_primary_10_1016_j_measurement_2025_116885 crossref_primary_10_1007_s00521_024_09435_1 crossref_primary_10_1007_s10462_021_10025_z crossref_primary_10_1007_s11042_022_14313_w crossref_primary_10_1007_s11831_023_09989_8 crossref_primary_10_1016_j_eswa_2023_119594 crossref_primary_10_3390_rs14246371 crossref_primary_10_1016_j_compbiomed_2021_105146 crossref_primary_10_2106_JBJS_RVW_22_00225 crossref_primary_10_1016_j_nantod_2022_101665 crossref_primary_10_3390_s21206910 crossref_primary_10_1007_s12559_022_10084_6 crossref_primary_10_3233_JIFS_235940 crossref_primary_10_1109_ACCESS_2024_3506853 crossref_primary_10_1515_commun_2023_0133 crossref_primary_10_3390_app11030999 crossref_primary_10_3390_bdcc8110151 crossref_primary_10_1016_j_ipm_2023_103367 crossref_primary_10_1109_ACCESS_2024_3462825 crossref_primary_10_1007_s12652_023_04670_1 crossref_primary_10_1016_j_cie_2023_109714 crossref_primary_10_1109_ACCESS_2025_3530242 crossref_primary_10_1016_j_ces_2025_121452 crossref_primary_10_3390_electronics12061421 crossref_primary_10_1016_j_sca_2024_100076 crossref_primary_10_3390_bdcc8120195 crossref_primary_10_1038_s43856_024_00688_4 crossref_primary_10_23887_jstundiksha_v13i2_84743 crossref_primary_10_3390_molecules26247548 crossref_primary_10_3390_app112411807 crossref_primary_10_3390_app12157701 crossref_primary_10_3390_s24175473 crossref_primary_10_1007_s00432_023_04956_z crossref_primary_10_3390_rs15112833 crossref_primary_10_1007_s42979_022_01022_2 crossref_primary_10_1007_s11276_021_02670_7 crossref_primary_10_1016_j_jpowsour_2025_236607 crossref_primary_10_1007_s11042_024_19395_2 crossref_primary_10_3390_make7030061 crossref_primary_10_1109_JSYST_2023_3238678 crossref_primary_10_7717_peerj_cs_773 crossref_primary_10_1016_j_dsp_2025_105036 crossref_primary_10_1007_s11274_025_04385_9 crossref_primary_10_1109_ACCESS_2025_3553139 crossref_primary_10_3390_app12115714 crossref_primary_10_1007_s00521_023_08957_4 crossref_primary_10_1007_s10845_023_02251_9 crossref_primary_10_1089_3dp_2023_0208 crossref_primary_10_1007_s11265_022_01816_w crossref_primary_10_3390_agriculture14122282 crossref_primary_10_1016_j_eswa_2023_121777 crossref_primary_10_1016_j_iot_2024_101120 crossref_primary_10_1016_j_fbio_2025_106238 crossref_primary_10_3390_rs13214467 crossref_primary_10_1038_s41598_022_13153_w crossref_primary_10_3390_s25082599 crossref_primary_10_63995_FXPC8243 crossref_primary_10_3390_math12152376 crossref_primary_10_1007_s11042_021_11788_x crossref_primary_10_1016_j_cities_2024_105151 crossref_primary_10_1007_s11042_023_15503_w crossref_primary_10_3390_s22124614 crossref_primary_10_1007_s00704_022_04068_7 crossref_primary_10_1016_j_measurement_2025_116762 crossref_primary_10_3390_agriculture13030540 crossref_primary_10_1016_j_eswa_2025_129740 crossref_primary_10_1016_j_jksuci_2023_101611 crossref_primary_10_1080_09715010_2023_2214107 crossref_primary_10_1007_s11831_024_10063_0 crossref_primary_10_3389_fenrg_2024_1363895 crossref_primary_10_3390_sym17081344 crossref_primary_10_1080_00207543_2019_1662133 crossref_primary_10_1007_s11042_022_13636_y crossref_primary_10_1007_s41315_022_00231_5 crossref_primary_10_1007_s11277_022_09693_z crossref_primary_10_3390_math12010168 crossref_primary_10_1088_1361_6501_ac57ec crossref_primary_10_3233_JIFS_231145 crossref_primary_10_3390_sym13081497 crossref_primary_10_1016_j_artmed_2025_103095 crossref_primary_10_1016_j_procs_2025_04_334 crossref_primary_10_1109_TVT_2021_3068119 crossref_primary_10_1155_2022_3088043 crossref_primary_10_3390_app13137811 crossref_primary_10_1007_s00500_023_08419_y crossref_primary_10_3390_computers13090229 crossref_primary_10_1016_j_csbj_2025_06_038 crossref_primary_10_1049_itr2_12529 crossref_primary_10_3390_rs14030638 crossref_primary_10_1039_D4FO00591K crossref_primary_10_3390_biomedicines13010208 crossref_primary_10_1016_j_jhydrol_2024_131345 crossref_primary_10_3390_ai1040029 crossref_primary_10_3390_app14188125 crossref_primary_10_1016_j_inffus_2023_101847 crossref_primary_10_1016_j_optcom_2022_128741 crossref_primary_10_1016_j_jnca_2022_103464 crossref_primary_10_1007_s41060_024_00526_9 crossref_primary_10_29024_jsim_216 crossref_primary_10_1016_j_eswa_2023_121365 crossref_primary_10_3390_app14219932 crossref_primary_10_1016_j_compag_2021_106359 crossref_primary_10_1109_TKDE_2020_3014246 crossref_primary_10_1177_01655515211047423 crossref_primary_10_1016_j_nanoen_2025_110897 crossref_primary_10_1109_COMST_2022_3208196 crossref_primary_10_3390_app13063439 crossref_primary_10_3390_rs16101778 crossref_primary_10_1016_j_compag_2021_106483 crossref_primary_10_1016_j_artmed_2024_102811 crossref_primary_10_1016_j_eswa_2025_129538 crossref_primary_10_1016_j_istruc_2025_108695 crossref_primary_10_1007_s42243_023_00956_y crossref_primary_10_1109_JSEN_2020_3036465 crossref_primary_10_48084_etasr_10499 crossref_primary_10_3390_electronics10111350 crossref_primary_10_1155_2023_5507814 crossref_primary_10_1016_j_mtcomm_2024_109767 crossref_primary_10_1155_2022_9580991 crossref_primary_10_3390_app14156648 crossref_primary_10_1109_TII_2023_3342886 crossref_primary_10_3390_app14188470 crossref_primary_10_1016_j_eswa_2023_120246 crossref_primary_10_1016_j_swevo_2025_101930 crossref_primary_10_1016_j_eswa_2025_127357 crossref_primary_10_3233_JIFS_230150 crossref_primary_10_1007_s00500_022_07118_4 crossref_primary_10_1007_s11042_023_15996_5 crossref_primary_10_32604_cmc_2024_054007 crossref_primary_10_1007_s11276_024_03724_2 crossref_primary_10_1007_s11831_025_10348_y crossref_primary_10_1007_s10278_021_00432_7 crossref_primary_10_1002_bkcs_12445 crossref_primary_10_1007_s11042_022_13009_5 crossref_primary_10_1007_s12559_025_10484_4 crossref_primary_10_1016_j_jmgm_2023_108673 crossref_primary_10_1016_j_watres_2023_120518 crossref_primary_10_1007_s10462_021_10000_8 crossref_primary_10_1155_2022_4806763 crossref_primary_10_1016_j_apor_2023_103511 crossref_primary_10_1109_ACCESS_2025_3573277 crossref_primary_10_1007_s10796_024_10540_8 crossref_primary_10_1007_s11042_022_12277_5 crossref_primary_10_3390_agronomy14020294 crossref_primary_10_1007_s11042_023_14859_3 crossref_primary_10_1016_j_ecolind_2025_113557 crossref_primary_10_1007_s11042_022_12403_3 crossref_primary_10_1108_IJSI_08_2023_0082 crossref_primary_10_1016_j_indcrop_2024_119671 crossref_primary_10_1007_s11042_024_20258_z crossref_primary_10_1016_j_knosys_2023_111107 crossref_primary_10_32604_csse_2023_037124 crossref_primary_10_1016_j_asoc_2025_113152 crossref_primary_10_3389_fagro_2024_1425425 crossref_primary_10_1080_10589759_2024_2324378 crossref_primary_10_3390_info16060424 crossref_primary_10_3390_agriculture12060813 crossref_primary_10_1016_j_talanta_2025_128652 crossref_primary_10_3389_fpubh_2022_894920 crossref_primary_10_1155_2021_5549111 crossref_primary_10_1007_s11042_022_13894_w crossref_primary_10_1016_j_asoc_2023_110555 crossref_primary_10_1007_s11042_022_13927_4 crossref_primary_10_1007_s10462_021_09985_z crossref_primary_10_1016_j_micron_2023_103581 crossref_primary_10_1007_s00521_023_08565_2 crossref_primary_10_1007_s12652_020_02674_9 crossref_primary_10_1007_s10915_022_01939_z crossref_primary_10_1155_2022_2965638 crossref_primary_10_1016_j_pmpp_2025_102940 crossref_primary_10_1371_journal_pone_0276427 crossref_primary_10_3390_agronomy14071571 crossref_primary_10_1016_j_rsase_2024_101384 crossref_primary_10_3390_act13100387 crossref_primary_10_1364_AO_453929 crossref_primary_10_1007_s11356_024_32807_y crossref_primary_10_1371_journal_pone_0287439 crossref_primary_10_1109_JSEN_2022_3160762 crossref_primary_10_4018_IJITSA_321133 crossref_primary_10_1155_2022_4202181 crossref_primary_10_3390_rs13163166 crossref_primary_10_3390_electronics11162545 crossref_primary_10_7717_peerj_cs_2232 crossref_primary_10_1007_s11831_021_09541_6 crossref_primary_10_15407_kvt206_04_005 crossref_primary_10_1155_2022_5667264 crossref_primary_10_3390_technologies9040077 crossref_primary_10_1016_j_foodcont_2025_111522 crossref_primary_10_1061__ASCE_CP_1943_5487_0001064 crossref_primary_10_1016_j_neucom_2022_02_083 crossref_primary_10_1016_j_procs_2022_12_023 crossref_primary_10_3390_rs15040883 crossref_primary_10_1007_s11042_022_13510_x crossref_primary_10_1016_j_scs_2022_104277 crossref_primary_10_3390_app131910994 crossref_primary_10_1109_JBHI_2023_3318419 crossref_primary_10_1007_s11042_024_20574_4 crossref_primary_10_1109_TBME_2021_3102466 crossref_primary_10_1016_j_sasc_2025_200281 crossref_primary_10_3390_app12125919 crossref_primary_10_1002_jrs_6365 crossref_primary_10_1016_j_scitotenv_2025_179797 crossref_primary_10_1186_s13321_024_00941_x crossref_primary_10_1016_j_rse_2024_114214 crossref_primary_10_1109_ACCESS_2023_3294093 crossref_primary_10_1016_j_eswa_2023_122220 crossref_primary_10_1145_3506699 crossref_primary_10_1016_j_eswa_2024_123860 crossref_primary_10_1016_j_chemolab_2025_105333 crossref_primary_10_1007_s10207_023_00689_9 crossref_primary_10_1016_j_jechem_2022_12_055 crossref_primary_10_2464_jilm_75_166 crossref_primary_10_3389_fpls_2023_1178902 crossref_primary_10_1007_s11042_022_13215_1 crossref_primary_10_1111_srt_13414 crossref_primary_10_1007_s00784_025_06485_0 crossref_primary_10_3390_app132011408 crossref_primary_10_3390_rs14133157 crossref_primary_10_1007_s00521_021_06401_z crossref_primary_10_1016_j_meafoo_2022_100038 crossref_primary_10_1016_j_ijleo_2023_171262 crossref_primary_10_1002_adfm_202508438 crossref_primary_10_1109_ACCESS_2022_3203568 crossref_primary_10_1145_3648609 crossref_primary_10_3390_f14071325 crossref_primary_10_1007_s12652_023_04514_y crossref_primary_10_1002_srin_202200284 crossref_primary_10_1109_TAP_2024_3372772 crossref_primary_10_3390_jmse10111699 crossref_primary_10_1016_j_aquatox_2024_107137 crossref_primary_10_1002_er_7713 crossref_primary_10_1155_2022_8123671 crossref_primary_10_1007_s00500_021_06521_7 crossref_primary_10_1016_j_eswa_2025_129594 crossref_primary_10_1080_00207543_2022_2162618 crossref_primary_10_1016_j_jobe_2023_107155 crossref_primary_10_3390_w16233398 crossref_primary_10_1007_s00170_024_13670_0 crossref_primary_10_46810_tdfd_1529139 crossref_primary_10_1108_IMDS_08_2022_0468 crossref_primary_10_1007_s43681_022_00135_x crossref_primary_10_1007_s11042_023_16445_z crossref_primary_10_3390_app13074601 crossref_primary_10_1007_s11042_023_15796_x crossref_primary_10_3390_agriculture11121216 crossref_primary_10_1080_15252019_2022_2126337 crossref_primary_10_1186_s13007_022_00838_6 crossref_primary_10_3390_data9050069 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_3390_s24010266 crossref_primary_10_1016_j_cosrev_2024_100662 crossref_primary_10_3390_data5020044 crossref_primary_10_3390_diagnostics13091652 crossref_primary_10_1016_j_asoc_2025_113453 crossref_primary_10_2478_johh_2023_0036 crossref_primary_10_3390_wevj15090381 crossref_primary_10_1007_s11042_022_12833_z crossref_primary_10_1007_s11269_025_04142_5 crossref_primary_10_3390_math13081263 crossref_primary_10_1080_01431161_2025_2549533 crossref_primary_10_7717_peerj_cs_2024 crossref_primary_10_1080_10408398_2022_2131725 crossref_primary_10_22399_ijcesen_3855 crossref_primary_10_3390_app12189188 crossref_primary_10_1016_j_jag_2023_103611 crossref_primary_10_1016_j_autcon_2023_104780 crossref_primary_10_1109_JSEN_2024_3419806 crossref_primary_10_1093_jas_skac132 crossref_primary_10_3390_math10224283 crossref_primary_10_1007_s41748_024_00457_2 crossref_primary_10_1007_s00607_025_01485_0 crossref_primary_10_3390_drones7030214 crossref_primary_10_1016_j_microc_2024_111344 crossref_primary_10_3389_fenvs_2022_876707 crossref_primary_10_1007_s10462_023_10530_3 crossref_primary_10_23947_2334_8496_2025_13_1_1_13 crossref_primary_10_1016_j_eswa_2024_123697 crossref_primary_10_3390_agronomy13122866 crossref_primary_10_4018_IJCINI_380619 crossref_primary_10_1007_s42044_025_00277_1 crossref_primary_10_3390_bioengineering10010047 crossref_primary_10_1155_2022_5945117 crossref_primary_10_3390_iot6020029 crossref_primary_10_3390_make4040053 crossref_primary_10_1016_j_engappai_2024_108550 crossref_primary_10_1088_1361_6501_acabdb crossref_primary_10_1038_s41598_021_86432_7 crossref_primary_10_1039_D5PM00089K crossref_primary_10_1145_3577925 crossref_primary_10_1016_j_jad_2025_119718 crossref_primary_10_3390_ma16051894 crossref_primary_10_1007_s00521_021_06319_6 crossref_primary_10_3390_jcdd10120485 crossref_primary_10_1109_JIOT_2024_3520426 crossref_primary_10_1371_journal_pone_0283121 crossref_primary_10_1002_ima_23214 crossref_primary_10_1007_s10772_025_10194_0 crossref_primary_10_1007_s10462_020_09924_4 crossref_primary_10_1007_s11042_023_17368_5 crossref_primary_10_1016_j_neucom_2023_127047 crossref_primary_10_1109_ACCESS_2021_3094675 crossref_primary_10_1007_s10462_023_10444_0 crossref_primary_10_1109_TII_2023_3281835 crossref_primary_10_47164_ijngc_v13i5_901 crossref_primary_10_1016_j_ijpx_2024_100287 crossref_primary_10_1016_j_inffus_2023_102217 crossref_primary_10_1088_2399_6528_abebcf crossref_primary_10_1007_s00521_021_06153_w crossref_primary_10_3389_fmicb_2021_712886 crossref_primary_10_1007_s00521_025_11145_1 crossref_primary_10_1146_annurev_soc_090523_050708 crossref_primary_10_1007_s11042_021_10952_7 crossref_primary_10_3390_rs14040830 crossref_primary_10_1016_j_vacuum_2025_114258 crossref_primary_10_1007_s11280_023_01153_3 crossref_primary_10_1007_s42979_023_01774_5 crossref_primary_10_1016_j_techfore_2024_123966 crossref_primary_10_3390_foods12152879 crossref_primary_10_1111_ppa_13322 crossref_primary_10_1177_01423312211027027 crossref_primary_10_3390_pr13041143 crossref_primary_10_1142_S0218001425400051 crossref_primary_10_1080_13467581_2024_2328634 crossref_primary_10_1016_j_bspc_2023_105339 crossref_primary_10_1016_j_ces_2023_119244 crossref_primary_10_3390_electronics12010074 crossref_primary_10_1007_s11042_022_13738_7 crossref_primary_10_1016_j_engappai_2025_110924 crossref_primary_10_1007_s11042_022_13102_9 crossref_primary_10_1016_j_nanoen_2022_108041 crossref_primary_10_3390_fi15100332 crossref_primary_10_1108_MD_05_2024_1112 crossref_primary_10_1088_1361_6463_accbcc crossref_primary_10_1016_j_kjs_2024_100337 crossref_primary_10_1016_j_ress_2021_108191 crossref_primary_10_1002_adom_202203104 crossref_primary_10_32604_csse_2023_037992 crossref_primary_10_1002_sam_11701 crossref_primary_10_3390_electronics11233998 crossref_primary_10_1016_j_cmpb_2021_106121 crossref_primary_10_3390_machines10050333 crossref_primary_10_1016_j_infrared_2024_105168 crossref_primary_10_1038_s41598_020_70159_y crossref_primary_10_1007_s43621_025_01709_5 crossref_primary_10_1088_1361_6439_ad3a72 crossref_primary_10_1016_j_snb_2024_137194 crossref_primary_10_1080_12460125_2024_2428999 crossref_primary_10_1002_ieam_4552 crossref_primary_10_1016_j_imu_2023_101351 crossref_primary_10_1088_1361_6501_ad457d crossref_primary_10_1016_j_oceaneng_2022_112839 crossref_primary_10_1007_s40140_022_00539_9 crossref_primary_10_1007_s11042_023_15980_z crossref_primary_10_3390_jsan13050055 crossref_primary_10_1007_s11042_022_12007_x crossref_primary_10_1016_j_jclepro_2023_139771 crossref_primary_10_1038_s41598_025_11445_5 crossref_primary_10_1016_j_jece_2023_110593 crossref_primary_10_1007_s11042_022_11934_z crossref_primary_10_1007_s11831_025_10375_9 crossref_primary_10_1109_JSEN_2025_3532781 crossref_primary_10_1007_s11042_023_16438_y crossref_primary_10_1007_s11760_025_04349_4 crossref_primary_10_1016_j_jmsy_2024_04_005 crossref_primary_10_1109_TITS_2023_3294519 crossref_primary_10_1016_j_autcon_2025_105983 crossref_primary_10_1080_21680566_2024_2358211 crossref_primary_10_1109_JSTARS_2025_3529293 crossref_primary_10_1109_TMC_2024_3398801 crossref_primary_10_1111_jerd_13079 crossref_primary_10_1007_s11831_022_09720_z crossref_primary_10_1109_TGRS_2024_3478249 crossref_primary_10_1109_LCA_2021_3101505 crossref_primary_10_3390_s21020463 crossref_primary_10_1007_s11063_022_10927_1 crossref_primary_10_1007_s12046_023_02126_y crossref_primary_10_1016_j_comcom_2025_108055 crossref_primary_10_1109_ACCESS_2021_3085855 crossref_primary_10_1016_j_eswa_2022_117123 crossref_primary_10_3389_fnhum_2023_1174104 crossref_primary_10_32604_cmc_2023_039236 crossref_primary_10_1016_j_mechmachtheory_2022_105107 crossref_primary_10_1016_j_sasc_2025_200317 crossref_primary_10_1145_3643563 crossref_primary_10_1007_s13369_025_10169_y crossref_primary_10_1186_s13102_025_01294_0 crossref_primary_10_1007_s11042_022_14074_6 crossref_primary_10_1145_3688569 crossref_primary_10_1002_jrs_70028 crossref_primary_10_1186_s13007_023_01101_2 crossref_primary_10_1093_bib_bbae103 crossref_primary_10_3390_urbansci9040132 crossref_primary_10_1002_for_3201 crossref_primary_10_1007_s10772_022_09984_7 crossref_primary_10_1007_s11042_021_11377_y crossref_primary_10_32604_cmc_2023_037087 crossref_primary_10_1007_s42979_024_03552_3 crossref_primary_10_1016_j_conbuildmat_2025_140753 crossref_primary_10_1109_TITS_2023_3279024 crossref_primary_10_1016_j_scitotenv_2024_172822 crossref_primary_10_1088_1752_7163_acb283 crossref_primary_10_1109_ACCESS_2023_3303961 crossref_primary_10_1088_1755_1315_1501_1_012007 crossref_primary_10_1145_3727643 crossref_primary_10_1016_j_biortech_2022_128418 crossref_primary_10_1109_ACCESS_2021_3049325 crossref_primary_10_1142_S1793984425300067 crossref_primary_10_1109_ACCESS_2021_3103903 crossref_primary_10_1109_JPHOT_2022_3221726 crossref_primary_10_1007_s00264_022_05628_2 crossref_primary_10_1007_s11042_021_11059_9 crossref_primary_10_1051_e3sconf_202341201083 crossref_primary_10_1109_ACCESS_2021_3106171 crossref_primary_10_1007_s00500_019_04525_y crossref_primary_10_1007_s11042_022_14075_5 crossref_primary_10_1109_ACCESS_2021_3071479 crossref_primary_10_3390_s22103691 |
| Cites_doi | 10.1109/CSE-EUC.2017.215 10.1109/JSTSP.2017.2784181 10.1007/978-3-319-01931-4_3 10.1109/TPAMI.2017.2699184 10.1109/TASLP.2014.2346313 10.1109/MGRS.2017.2762307 10.1109/MS.2017.79 10.1109/CCDC.2017.7979332 10.1007/s11831-015-9157-9 10.1109/ICIS.2017.7960069 10.1016/j.asoc.2017.09.027 10.1007/s10032-018-0295-0 10.1007/s10489-014-0629-7 10.1109/CC.2017.8233654 10.1016/j.eswa.2017.02.002 10.1016/j.strusafe.2015.05.001 10.1016/j.patrec.2018.02.009 10.1109/MSP.2014.2359987 10.1002/stc.2012 10.21037/mhealth.2017.09.01 10.1007/s10462-018-9633-3 10.1145/2683483.2683514 10.1109/icpr.2016.7900165 10.1109/IJCNN.2016.7727426 10.21437/Interspeech.2015-270 10.1016/j.eswa.2015.05.034 10.1016/j.eswa.2018.05.016 10.1007/s10044-014-0433-3 10.1016/j.asoc.2018.05.023 10.1007/978-3-319-71746-3_5 10.1109/ICIVPR.2017.7890866 10.1016/j.asoc.2016.08.013 10.1016/j.patcog.2018.05.007 10.1016/j.eswa.2017.04.030 10.1177/0037549717709932 10.1016/j.patrec.2018.04.029 10.1007/978-3-319-42297-8_40 10.1016/j.eswa.2016.10.055 10.1109/ChiCC.2016.7554408 10.1016/j.patcog.2016.04.012 10.1016/j.engstruct.2016.04.012 10.1142/S0219467817500164 10.1109/DAS.2018.35 10.1109/CVPR.2012.6248110 10.1109/MGRS.2016.2540798 10.1109/TLA.2018.8358674 10.1109/IPACT.2017.8245200 10.1016/j.eswa.2017.05.039 10.1016/j.eswa.2016.10.017 10.1038/nature14539 10.1080/15481603.2017.1323377 10.1109/das.2018.70 10.1016/j.patrec.2017.11.005 10.1109/ACCESS.2014.2325029 10.1109/ACPR.2015.7486478 10.1109/ICFHR.2016.0112 10.1016/j.eswa.2018.03.056 10.1016/j.patcog.2017.12.017 10.1109/SYSOSE.2017.7994976 10.1109/ASPDAC.2016.7428100 10.1016/j.patcog.2017.05.015 10.1007/978-3-319-51969-22 10.1016/j.patcog.2018.01.036 10.1109/wci.2015.7495514 10.1109/ICCSS.2015.7281139 |
| ContentType | Journal Article |
| Copyright | CIMNE, Barcelona, Spain 2019 CIMNE, Barcelona, Spain 2019. |
| Copyright_xml | – notice: CIMNE, Barcelona, Spain 2019 – notice: CIMNE, Barcelona, Spain 2019. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11831-019-09344-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 1092 |
| ExternalDocumentID | 10_1007_s11831_019_09344_w |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c385t-544929d8edbdaaf8cf4fefac43714f73f109835f5c08a0b7b9b4b5fc58a90fa33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 735 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565732400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1134-3060 |
| IngestDate | Thu Sep 18 00:04:37 EDT 2025 Tue Nov 18 22:18:50 EST 2025 Sat Nov 29 06:21:45 EST 2025 Fri Feb 21 02:32:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-544929d8edbdaaf8cf4fefac43714f73f109835f5c08a0b7b9b4b5fc58a90fa33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0115-1620 |
| PQID | 2436156874 |
| PQPubID | 1486352 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2436156874 crossref_citationtrail_10_1007_s11831_019_09344_w crossref_primary_10_1007_s11831_019_09344_w springer_journals_10_1007_s11831_019_09344_w |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | FalciniFLamiGCostanzaAMDeep learning in automotive softwareIEEE Softw2017343566310.1109/MS.2017.79 Nweke HF, Teh YW, Al-garadi MA, Alo UR (2018) Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst Appl: 1–87 RipollVJRWojdelARomeroARamosPBrugadaJECG assessment based on neural networks with pertainingAppl Soft Comput20164939940610.1016/j.asoc.2016.08.013 Gurjar N, Sudholt S, Fink GA (2018) Learning deep representations for word spotting under weak supervision. In: Proceedings of the 13th IAPR international workshop on document analysis systems (DAS), pp 7s–12s Wicht B, Fischer A, Hennebert J (2016) Deep learning features for handwritten keyword spotting. In: Proceedings of the 23rd international conference on pattern recognition (ICPR). https://doi.org/10.1109/icpr.2016.7900165 Mohsen AM, El-Makky NM, Ghanem N (2017) Author identification using deep learning. In: Proceedings of the 15th IEEE international conference on machine learning and applications, pp 898–903 SanakoyeuABautistaMAOmmerBDeep unsupervised learning of visual similaritiesPattern Recogn20187833134310.1016/j.patcog.2018.01.036 Kannan RJ, Subramanian S (2015) An adaptive approach of tamil character recognition using deep learning with big data-a survey. Adv Intell Syst Comput: 557–567 Gheisari M, Wang G, Bhuiyan MZA (2017) A survey on deep learning in big data. In: Proceedings of the IEEE international conference on embedded and ubiquitous computing (EUC), pp 1–8 Krishnan P, Dutta K, Jawahar CV (2018) Word spotting and recognition using deep embedding. In: Proceedings of 13th IAPR international workshop on document analysis systems (DAS). https://doi.org/10.1109/das.2018.70 Zhou X, Gong W, Fu W, Du F (2017) Application of deep learning in object detection. In: Proceedings of the IEEE/ACIS 16th international conference on computer and information science (ICIS), pp 631–634 ChenXWLinXBig data deep learning: challenges and perspectivesIEEE2014251452510.1109/ACCESS.2014.2325029 SalazarFMoranRToledoMAOñateEData-based models for the prediction of dam behaviour: a review and some methodological considerationsArch Comput Methods Eng20172411211360.7401710.1007/s11831-015-9157-9 Zulkarneev M, Grigoryan R, Shamraev N (2013) Acoustic modeling with deep belief networks for Russian speech recognition. In: Proceedings of the international conference on speech and computer, pp 17–24 Lopez D, Rivas E, Gualdron O (2017) Primary user characterization for cognitive radio wireless networks using a neural system based on deep learning. Artif Intell Rev: 1–27 Zhong SH, Li Y, Le B (2015) Query oriented unsupervised multi document summarization via deep learning. Expert Syst Appl, pp 1–10 AmatoGCarraraFFalchiFGennaroCMeghiniCVairoCDeep learning for decentralized parking lot occupancy detectionExpert Syst Appl20177232733410.1016/j.eswa.2016.10.055 ZhangLZhangLDuBDeep learning for remote sensing data: a technical tutorial on the state of the artIEEE Geosci Remote Sens Mag201642224010.1109/MGRS.2016.2540798 Chu J, Srihari S (2014) Writer identification using a deep neural network. In: Proceedings of the 2014 Indian conference on computer vision graphics and image processing, pp 1–7 ChongEHanCParkFCDeep learning network for stock market analysis and prediction: methodology, data representations and case studiesExpert Syst Appl20178318720510.1016/j.eswa.2017.04.030 Xiao B, Xiong J, Shi Y (2016) Novel applications of deep learning hidden features for adaptive testing. In: Proceedings of the 21st Asia and South Pacific design automation conference, pp 743–748 XueSHamidOAJiangHDaiLLiuQFast adaptation of deep neural network based on discriminant codes for speech recognitionIEEE/ACM Trans Audio Speech Lang Process201422121713172510.1109/TASLP.2014.2346313 Poznanski A, Wolf L (2016) CNN-N-gram for handwriting word recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2305–2314 RudinFLiGJWangKAn algorithm for power system fault analysis based on convolutional deep learning neural networksInt J Res Educ Sci Methods2017591118 PapakostasMGiannakopoulosTSpeech-music discrimination using deep visual feature extractorsExpert Syst Appl201811433434410.1016/j.eswa.2018.05.016 SerizelRGDDeep-neural network approaches for speech recognition with heterogeneous groups of speakers including childrenNat Lang Eng201613126 Mohamed A, Dahl G, Geoffrey H (2009) Deep belief networks for phone recognition. In: Proceedings of the nips workshop on deep learning for speech recognition and related applications, pp 1–9 SalazarFToledoMAMoránROñateEAn empirical comparison of machine learning techniques for dam behaviour modelling structural safetyStruct Saf20155691710.1016/j.strusafe.2015.05.001 NodaKYamaguchiYNakadaiKOkunoHGOgataTAudio-visual speech recognition using deep learningAppl Intell201542472273710.1007/s10489-014-0629-7 ThomasSChatelainCHeutteLPaquetTKessentiniYA deep HMM model for multiple keywords spotting in handwritten documentsPattern Anal Appl201518410031015339705910.1007/s10044-014-0433-3 MarkovnikovNKipyatkovaIKarpovAFilchenkovADeep neural networks in russian speech recognitionArtif Intell Nat Lang Commun Comput Inf Sci2018789546710.1007/978-3-319-71746-3_5 Zhang XL, Wu J (2013) Denoising deep neural networks based voice activity detection. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing, pp 853–857 Chen CH, Lee CR, Lu WCH (2016) A mobile cloud framework for deep learning and its application to smart car camera. In: Proceedings of the international conference on internet of vehicles, pp 14–25. https://doi.org/10.1007/978-3-319-51969-22 IgnatovAReal-time human activity recognition from accelerometer data using convolutional neural networksAppl Soft Comput20186291592210.1016/j.asoc.2017.09.027 Makhmudov AZ, Abdukarimov SS (2016) Speech recognition using deep learning algorithms. In: Proceedings of the international conference on informatics: problems, methodology, technologies, pp 10–15 Jia X (2017) image recognition method based on deep learning. In: Proceedings of the 29th IEEE, Chinese control and decision conference (CCDC), pp 4730–4735 PrabhanjanSDineshRdeep learning approach for devanagari script recognitionProc Int J Image Graph2017173175001610.1142/S0219467817500164 ChenLCPapandreouGKokkinosIMurphyKYuilleALDeeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFsIEEE Trans Pattern Anal Mach Intell201840483484810.1109/TPAMI.2017.2699184 ZhaoCChenKWeiZChenYMiaoDWangWMultilevel triplet deep learning model for person reidentificationPattern Recogn Lett201810.1016/j.patrec.2018.04.029 DaiYWangGA deep inference learning framework for healthcarePattern Recogn Lett201810.1016/j.patrec.2018.02.009 Nguyen HD, Le AD, Nakagawa M (2015) Deep neural networks for recognizing online handwritten mathematical symbols. In: Proceedings of the 3rd IAPR IEEE Asian conference on pattern recognition (ACPR), pp 121–125 AbbasQIbrahimMEAJaffarMAA comprehensive review of recent advances on deep vision systemsArtif Intell Rev201810.1007/s10462-018-9633-3 Puthussery AR, Haradi KP, Erol BA, Benavidez P, Rad P, Jamshidi M (2017) A deep vision landmark framework for robot navigation. In: Proceedings of the system of systems engineering conference, pp 1–6 WangTWenCKWangHJiangFJinSDeep learning for wireless physical layer: opportunities and challengesChina Commun201714119211110.1109/CC.2017.8233654 Alwzwazy HA, Albehadili HA, Alwan YS, Islam NE (2016) Handwritten digit recognition using convolutional neural networks. In: Proceedings of international journal of innovative research in computer and communication engineering, vol 4(2), pp 1101–1106 AzarMYHameyLText summarization using unsupervised deep learningExpert Syst Appl2017689310510.1016/j.eswa.2016.10.017 Soniya, Paul S, Singh L (2015) A review on advances in deep learning. In: Proceedings of IEEE workshop on computational intelligence: theories, applications and future directions (WCI), pp 1–6. https://doi.org/10.1109/wci.2015.7495514 SudholtSFinkGAAttribute CNNs for word spotting in handwritten documentsInt J Doc Anal Recognit (IJDAR)201710.1007/s10032-018-0295-0 SantanaLMQDSantosRMMatosLNMacedoHTDeep neural networks for acoustic modeling in the presence of noiseIEEE Latin Am Trans201816391892510.1109/TLA.2018.8358674 ZhuXXTuiaDMouLXiaGSZhangLXuFFraundorferFDeep learning in remote sensing: a comprehensive review and list of resourcesIEEE Geosci Remote Sens Mag20175483610.1109/MGRS.2017.2762307 LohBCSThenPHHDeep learning for cardiaccomputer-aided diagnosis: benefits, issues & solutionsM Health201710.21037/mhealth.2017.09.01 Looks M, Herreshoff M, Hutchins D, Norvig P (2017) Deep learning with dynamic computation graphs. In: Proceedings of the international conference on learning representation, pp 1–12 Salazar F, Oñate E, Toledo MA (2017a) A machine learning based methodology for anomaly detection in dam behaviour, CIMNE, monograph no M170, 250 pp, Barcelona Wu Z, Swietojanski P, Veaux C, Renals S, King S (2015) A study of speaker adaptation for DNN-based speech synthesis. In: Proceedings of the sixteenth annual conference of the international speech communication association, pp 879–883 LingZHKangSYZenHSeniorASchusterMQianXJMengHMDengLDeep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trendsIEEE Signal Process Mag2015323355210.1109/MSP.2014.2359987 Luckow A, Cook M, Ashcraft N, Weill E, Djerekarov E, Vorster B (2017) Deep learning in the automotive industry: applications and tools. In: Proceedings of the IEEE international conference on big data, pp 3759–3768 RoyPBhuniaAKDasADeyPHMM-based indic handwritten word recognition using zone segmentationPattern Recognit2016601057107510.1016/j.patcog.2016.04.012 AffonsoCRossiALDVieriaFHACarvalhoACPDLFDDeep learning for biological image classificationExpert Syst Appl2 9344_CR21 9344_CR65 X Yuan (9344_CR70) 2018; 77 9344_CR20 9344_CR64 LMQD Santana (9344_CR54) 2018; 16 9344_CR63 S Thomas (9344_CR58) 2015; 18 9344_CR69 D Cheng (9344_CR12) 2018; 82 9344_CR24 9344_CR23 9344_CR67 9344_CR26 F Rudin (9344_CR47) 2017; 5 A Sanakoyeu (9344_CR53) 2018; 78 M Papakostas (9344_CR85) 2018; 114 N Markovnikov (9344_CR36) 2018; 789 XX Zhu (9344_CR75) 2017; 5 F Salazar (9344_CR49) 2015; 56 F Salazar (9344_CR52) 2017; 24 9344_CR61 Y Dai (9344_CR15) 2018 9344_CR10 F Salazar (9344_CR50) 2016; 119 9344_CR51 E Chong (9344_CR13) 2017; 83 9344_CR14 9344_CR56 9344_CR18 9344_CR16 A Ignatov (9344_CR22) 2018; 62 B Chandra (9344_CR77) 2016; 63 9344_CR19 K Ota (9344_CR83) 2017; 13 B Yonel (9344_CR68) 2017; 12 9344_CR1 Q Abbas (9344_CR2) 2018 XW Chen (9344_CR9) 2014; 2 9344_CR87 9344_CR42 9344_CR86 9344_CR41 CN Vasconcelos (9344_CR60) 2017 9344_CR84 T Wang (9344_CR62) 2017; 14 9344_CR4 9344_CR7 9344_CR44 Y Ling (9344_CR30) 2018; 6 VJR Ripoll (9344_CR46) 2016; 49 S Prabhanjan (9344_CR43) 2017; 17 A Ucar (9344_CR59) 2017; 93 M Kaushal (9344_CR25) 2018; 70 F Salazar (9344_CR48) 2012; 24 K Noda (9344_CR40) 2015; 42 C Affonso (9344_CR3) 2017; 85 MI Razzak (9344_CR45) 2018; 26 C Zhao (9344_CR72) 2018 S Xue (9344_CR66) 2014; 22 9344_CR82 9344_CR32 9344_CR76 9344_CR31 9344_CR74 9344_CR73 9344_CR35 9344_CR79 9344_CR34 9344_CR78 9344_CR33 9344_CR39 Y LeCun (9344_CR27) 2015; 521 9344_CR38 MY Azar (9344_CR8) 2017; 68 F Falcini (9344_CR17) 2017; 34 9344_CR37 G Amato (9344_CR5) 2017; 72 SH Lee (9344_CR28) 2017; 71 LC Chen (9344_CR11) 2018; 40 O Araque (9344_CR6) 2017; 77 ZH Ling (9344_CR29) 2015; 32 RGD Serizel (9344_CR55) 2016; 1 S Sudholt (9344_CR57) 2017 P Roy (9344_CR80) 2016; 60 L Zhang (9344_CR71) 2016; 4 BCS Loh (9344_CR81) 2017 |
| References_xml | – reference: Hamid OA, Jiang H (2013) Rapid and effective speaker adaptation of convolutional neural network based models for speech recognition. In: INTERSPEECH, pp 1248–1252 – reference: FalciniFLamiGCostanzaAMDeep learning in automotive softwareIEEE Softw2017343566310.1109/MS.2017.79 – reference: YonelBMasonEYaziciBDeep learning for passive synthetic aperture radarIEEE J Sel Top Signal Process20171219010310.1109/JSTSP.2017.2784181 – reference: Alwzwazy HA, Albehadili HA, Alwan YS, Islam NE (2016) Handwritten digit recognition using convolutional neural networks. In: Proceedings of international journal of innovative research in computer and communication engineering, vol 4(2), pp 1101–1106 – reference: Kannan RJ, Subramanian S (2015) An adaptive approach of tamil character recognition using deep learning with big data-a survey. Adv Intell Syst Comput: 557–567 – reference: Mohamed A, Dahl G, Geoffrey H (2009) Deep belief networks for phone recognition. In: Proceedings of the nips workshop on deep learning for speech recognition and related applications, pp 1–9 – reference: SanakoyeuABautistaMAOmmerBDeep unsupervised learning of visual similaritiesPattern Recogn20187833134310.1016/j.patcog.2018.01.036 – reference: VasconcelosCNVasconcwlosBNExperiment using deep learning for dermoscopy image analysisPattern Recognit Lett201710.1016/j.patrec.2017.11.005 – reference: Lopez D, Rivas E, Gualdron O (2017) Primary user characterization for cognitive radio wireless networks using a neural system based on deep learning. Artif Intell Rev: 1–27 – reference: ChenLCPapandreouGKokkinosIMurphyKYuilleALDeeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFsIEEE Trans Pattern Anal Mach Intell201840483484810.1109/TPAMI.2017.2699184 – reference: PapakostasMGiannakopoulosTSpeech-music discrimination using deep visual feature extractorsExpert Syst Appl201811433434410.1016/j.eswa.2018.05.016 – reference: Zhang XL, Wu J (2013) Denoising deep neural networks based voice activity detection. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing, pp 853–857 – reference: Mohsen AM, El-Makky NM, Ghanem N (2017) Author identification using deep learning. In: Proceedings of the 15th IEEE international conference on machine learning and applications, pp 898–903 – reference: ZhaoCChenKWeiZChenYMiaoDWangWMultilevel triplet deep learning model for person reidentificationPattern Recogn Lett201810.1016/j.patrec.2018.04.029 – reference: Poznanski A, Wolf L (2016) CNN-N-gram for handwriting word recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2305–2314 – reference: RipollVJRWojdelARomeroARamosPBrugadaJECG assessment based on neural networks with pertainingAppl Soft Comput20164939940610.1016/j.asoc.2016.08.013 – reference: ThomasSChatelainCHeutteLPaquetTKessentiniYA deep HMM model for multiple keywords spotting in handwritten documentsPattern Anal Appl201518410031015339705910.1007/s10044-014-0433-3 – reference: SalazarFToledoMAMoránROñateEAn empirical comparison of machine learning techniques for dam behaviour modelling structural safetyStruct Saf20155691710.1016/j.strusafe.2015.05.001 – reference: UcarADemirYGuzelisCObject recognition and detection with deep learning for autonomous driving applicationsInt Trans Soc Model Simul201793975976910.1177/0037549717709932 – reference: Soniya, Paul S, Singh L (2015) A review on advances in deep learning. In: Proceedings of IEEE workshop on computational intelligence: theories, applications and future directions (WCI), pp 1–6. https://doi.org/10.1109/wci.2015.7495514 – reference: DaiYWangGA deep inference learning framework for healthcarePattern Recogn Lett201810.1016/j.patrec.2018.02.009 – reference: Wu Z, Swietozanski P, Veaux C, Renals S (2015) A study of speaker adaptation for DNN-based speech synthesis. In: Proceedings of the interspeech conference, pp 1–5 – reference: Gurjar N, Sudholt S, Fink GA (2018) Learning deep representations for word spotting under weak supervision. In: Proceedings of the 13th IAPR international workshop on document analysis systems (DAS), pp 7s–12s – reference: SantanaLMQDSantosRMMatosLNMacedoHTDeep neural networks for acoustic modeling in the presence of noiseIEEE Latin Am Trans201816391892510.1109/TLA.2018.8358674 – reference: Luckow A, Cook M, Ashcraft N, Weill E, Djerekarov E, Vorster B (2017) Deep learning in the automotive industry: applications and tools. In: Proceedings of the IEEE international conference on big data, pp 3759–3768 – reference: PrabhanjanSDineshRdeep learning approach for devanagari script recognitionProc Int J Image Graph2017173175001610.1142/S0219467817500164 – reference: Wang L, Sng D (2015) Deep learning algorithms with applications to video analytics for a smart city: a survey. arXiv, preprint arXiv: 1512.03131 – reference: Wang Y, Liu M, Bao Z (2016) Deep learning neural network for power system fault diagnosis. In: Proceedings of the 35th Chinese control conference, 1–6 – reference: Wu Z, Swietojanski P, Veaux C, Renals S, King S (2015) A study of speaker adaptation for DNN-based speech synthesis. In: Proceedings of the sixteenth annual conference of the international speech communication association, pp 879–883 – reference: Ashiquzzaman A, Tushar AK (2017) Handwritten arabic numeral recognition using deep learning neural networks. In: Proceedings of IEEE international conference on imaging, vision & pattern recognition, pp 1–4. https://doi.org/10.1109/ICIVPR.2017.7890866 – reference: ChengDGongYChangbXShiaWHauptmannbAZhengaNDeep feature learning via structured graph Laplacian embedding for person re-identificationPattern Recogn2018829410410.1016/j.patcog.2018.05.007 – reference: NodaKYamaguchiYNakadaiKOkunoHGOgataTAudio-visual speech recognition using deep learningAppl Intell201542472273710.1007/s10489-014-0629-7 – reference: AraqueOCorcuera-PlatasISánchez-RadaJFIglesiasCAEnhancing deep learning sentiment analysis with ensemble techniques in social applicationsExpert Syst Appl20177723624610.1016/j.eswa.2017.02.002 – reference: ChongEHanCParkFCDeep learning network for stock market analysis and prediction: methodology, data representations and case studiesExpert Syst Appl20178318720510.1016/j.eswa.2017.04.030 – reference: ChenXWLinXBig data deep learning: challenges and perspectivesIEEE2014251452510.1109/ACCESS.2014.2325029 – reference: LeeSHChanCSMayoSJRemagninoPHow deep learning extracts and learns leaf features for plant classificationPattern Recogn20177111310.1016/j.patcog.2017.05.015 – reference: XueSHamidOAJiangHDaiLLiuQFast adaptation of deep neural network based on discriminant codes for speech recognitionIEEE/ACM Trans Audio Speech Lang Process201422121713172510.1109/TASLP.2014.2346313 – reference: Xiao B, Xiong J, Shi Y (2016) Novel applications of deep learning hidden features for adaptive testing. In: Proceedings of the 21st Asia and South Pacific design automation conference, pp 743–748 – reference: MarkovnikovNKipyatkovaIKarpovAFilchenkovADeep neural networks in russian speech recognitionArtif Intell Nat Lang Commun Comput Inf Sci2018789546710.1007/978-3-319-71746-3_5 – reference: WangTWenCKWangHJiangFJinSDeep learning for wireless physical layer: opportunities and challengesChina Commun201714119211110.1109/CC.2017.8233654 – reference: ZhuXXTuiaDMouLXiaGSZhangLXuFFraundorferFDeep learning in remote sensing: a comprehensive review and list of resourcesIEEE Geosci Remote Sens Mag20175483610.1109/MGRS.2017.2762307 – reference: AzarMYHameyLText summarization using unsupervised deep learningExpert Syst Appl2017689310510.1016/j.eswa.2016.10.017 – reference: Nguyen HD, Le AD, Nakagawa M (2015) Deep neural networks for recognizing online handwritten mathematical symbols. In: Proceedings of the 3rd IAPR IEEE Asian conference on pattern recognition (ACPR), pp 121–125 – reference: Zhou X, Gong W, Fu W, Du F (2017) Application of deep learning in object detection. In: Proceedings of the IEEE/ACIS 16th international conference on computer and information science (ICIS), pp 631–634 – reference: Xing L, Qiao Y (2016) DeepWriter: a multi-stream deep CNN for text-independent writer identification. Comput Vis Pattern Recognit. arXiv:1606.06472 – reference: Krishnan P, Dutta K, Jawahar CV (2018) Word spotting and recognition using deep embedding. In: Proceedings of 13th IAPR international workshop on document analysis systems (DAS). https://doi.org/10.1109/das.2018.70 – reference: Looks M, Herreshoff M, Hutchins D, Norvig P (2017) Deep learning with dynamic computation graphs. In: Proceedings of the international conference on learning representation, pp 1–12 – reference: AmatoGCarraraFFalchiFGennaroCMeghiniCVairoCDeep learning for decentralized parking lot occupancy detectionExpert Syst Appl20177232733410.1016/j.eswa.2016.10.055 – reference: Makhmudov AZ, Abdukarimov SS (2016) Speech recognition using deep learning algorithms. In: Proceedings of the international conference on informatics: problems, methodology, technologies, pp 10–15 – reference: Zulkarneev M, Grigoryan R, Shamraev N (2013) Acoustic modeling with deep belief networks for Russian speech recognition. In: Proceedings of the international conference on speech and computer, pp 17–24 – reference: Dhieb T, Ouarda W, Boubaker H, Alilmi AM (2016) Deep neural network for online writer identification using Beta-elliptic model. In: Proceedings of the international joint conference on neural networks, pp 1863–1870 – reference: ZhangLZhangLDuBDeep learning for remote sensing data: a technical tutorial on the state of the artIEEE Geosci Remote Sens Mag201642224010.1109/MGRS.2016.2540798 – reference: SudholtSFinkGAAttribute CNNs for word spotting in handwritten documentsInt J Doc Anal Recognit (IJDAR)201710.1007/s10032-018-0295-0 – reference: SalazarFToledoMAGonzálezJMOñateEEarly detection of anomalies in dam performance: a methodology based on boosted regression treesStruct Control Health Monit201224112012201710.1002/stc.2012 – reference: LeCunYBengioYHintonGDeep learningNature2015521110334274110.1038/nature14539 – reference: IgnatovAReal-time human activity recognition from accelerometer data using convolutional neural networksAppl Soft Comput20186291592210.1016/j.asoc.2017.09.027 – reference: Wicht B, Fischer A, Hennebert J (2016) Deep learning features for handwritten keyword spotting. In: Proceedings of the 23rd international conference on pattern recognition (ICPR). https://doi.org/10.1109/icpr.2016.7900165 – reference: Ghosh MMA, Maghari AY (2017) A comparative study on handwriting digit recognition using neural networks. In: Proceedings of the promising electronic technologies (ICPET), pp 77–81 – reference: SerizelRGDDeep-neural network approaches for speech recognition with heterogeneous groups of speakers including childrenNat Lang Eng201613126 – reference: AbbasQIbrahimMEAJaffarMAA comprehensive review of recent advances on deep vision systemsArtif Intell Rev201810.1007/s10462-018-9633-3 – reference: Arevalo A, Niño J, Hernández G, Sandoval J (2016) High-frequency trading strategy based on deep neural networks. In: Proceedings of the international conference on intelligent computing, pp 424–436 – reference: RoyPBhuniaAKDasADeyPHMM-based indic handwritten word recognition using zone segmentationPattern Recognit2016601057107510.1016/j.patcog.2016.04.012 – reference: RazzakMINazSZaibADeep learning for medical image processing: overview, challenges and the futureClassif BioApps Lect Notes Comput Vis Biomech201826323350 – reference: SalazarFMoranRToledoMAOñateEData-based models for the prediction of dam behaviour: a review and some methodological considerationsArch Comput Methods Eng20172411211360.7401710.1007/s11831-015-9157-9 – reference: RudinFLiGJWangKAn algorithm for power system fault analysis based on convolutional deep learning neural networksInt J Res Educ Sci Methods2017591118 – reference: Liu PH, Su SF, Chen MC, Hsiao CC (2015) Deep learning and its application to general image classification. In: Proceedings of the international conference on informatics and cybernetics for computational social systems, pp 1–4 – reference: LingYJinCGuoruDYaTJianYJiachenSSpectrum prediction based on Taguchi method in deep learning with long short-term memoryIEEE Access2018614592345933 – reference: AffonsoCRossiALDVieriaFHACarvalhoACPDLFDDeep learning for biological image classificationExpert Syst Appl20178511412210.1016/j.eswa.2017.05.039 – reference: OtaKDaoMSMezarisVNataleFGBDDeep learning for mobile multimedia: a surveyACM Trans Multimed Comput Commun Appl (TOMM)2017133s34 – reference: Jia X (2017) image recognition method based on deep learning. In: Proceedings of the 29th IEEE, Chinese control and decision conference (CCDC), pp 4730–4735 – reference: YuanXXieLAbouelenienMA regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training dataPattern Recogn20187716017210.1016/j.patcog.2017.12.017 – reference: Chen CH, Lee CR, Lu WCH (2016) A mobile cloud framework for deep learning and its application to smart car camera. In: Proceedings of the international conference on internet of vehicles, pp 14–25. https://doi.org/10.1007/978-3-319-51969-22 – reference: Abadi M, Paul B, Jianmin C, Zhifeng C, Andy D, Jeffrey D, Matthieu D (2016) Tensorflow: a system for large-scale machine learning. In: The proceedings of the 12th USENIX symposium on operating systems design and implementation (OSDI’16), vol 16, pp 265–283 – reference: LingZHKangSYZenHSeniorASchusterMQianXJMengHMDengLDeep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trendsIEEE Signal Process Mag2015323355210.1109/MSP.2014.2359987 – reference: Chu J, Srihari S (2014) Writer identification using a deep neural network. In: Proceedings of the 2014 Indian conference on computer vision graphics and image processing, pp 1–7 – reference: Puthussery AR, Haradi KP, Erol BA, Benavidez P, Rad P, Jamshidi M (2017) A deep vision landmark framework for robot navigation. In: Proceedings of the system of systems engineering conference, pp 1–6 – reference: ChandraBSharmaRKDeep learning withadaptive learning rate using Laplacian score, expert systems with applicationsInt J201663C17 – reference: Cireşan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3642–3649 – reference: Yadav U, Verma S, Xaxa DK, Mahobiya C (2017) A deep learning based character recognition system from multimedia document. In: Proceedings of the international conference on innovations in power and advanced computing technologies, pp 1–7 – reference: Yu X, Wu X, Luo C, Ren P (2017) Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience & Remote Sens: 1–19 – reference: LohBCSThenPHHDeep learning for cardiaccomputer-aided diagnosis: benefits, issues & solutionsM Health201710.21037/mhealth.2017.09.01 – reference: KaushalMKhehraBSharmaASoft computing based object detection and tracking approaches: state-of-the-art surveyAppl Soft Comput20187042346410.1016/j.asoc.2018.05.023 – reference: Gheisari M, Wang G, Bhuiyan MZA (2017) A survey on deep learning in big data. In: Proceedings of the IEEE international conference on embedded and ubiquitous computing (EUC), pp 1–8 – reference: Zhong SH, Li Y, Le B (2015) Query oriented unsupervised multi document summarization via deep learning. Expert Syst Appl, pp 1–10 – reference: Nweke HF, Teh YW, Al-garadi MA, Alo UR (2018) Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst Appl: 1–87 – reference: SalazarFToledoMAOñateESuárezBInterpretation of dam deformation and leakage with boosted regression treesEng Struct201611923025110.1016/j.engstruct.2016.04.012 – reference: Salazar F, Oñate E, Toledo MA (2017a) A machine learning based methodology for anomaly detection in dam behaviour, CIMNE, monograph no M170, 250 pp, Barcelona – volume: 1 start-page: 1 issue: 3 year: 2016 ident: 9344_CR55 publication-title: Nat Lang Eng – ident: 9344_CR87 – ident: 9344_CR18 doi: 10.1109/CSE-EUC.2017.215 – volume: 12 start-page: 90 issue: 1 year: 2017 ident: 9344_CR68 publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2017.2784181 – ident: 9344_CR35 – ident: 9344_CR76 doi: 10.1007/978-3-319-01931-4_3 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 9344_CR11 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – volume: 22 start-page: 1713 issue: 12 year: 2014 ident: 9344_CR66 publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2014.2346313 – volume: 5 start-page: 8 issue: 4 year: 2017 ident: 9344_CR75 publication-title: IEEE Geosci Remote Sens Mag doi: 10.1109/MGRS.2017.2762307 – volume: 34 start-page: 56 issue: 3 year: 2017 ident: 9344_CR17 publication-title: IEEE Softw doi: 10.1109/MS.2017.79 – ident: 9344_CR23 doi: 10.1109/CCDC.2017.7979332 – volume: 24 start-page: 1 issue: 1 year: 2017 ident: 9344_CR52 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-015-9157-9 – ident: 9344_CR74 doi: 10.1109/ICIS.2017.7960069 – volume: 63 start-page: 1 issue: C year: 2016 ident: 9344_CR77 publication-title: Int J – volume: 62 start-page: 915 year: 2018 ident: 9344_CR22 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.09.027 – ident: 9344_CR51 – year: 2017 ident: 9344_CR57 publication-title: Int J Doc Anal Recognit (IJDAR) doi: 10.1007/s10032-018-0295-0 – volume: 42 start-page: 722 issue: 4 year: 2015 ident: 9344_CR40 publication-title: Appl Intell doi: 10.1007/s10489-014-0629-7 – ident: 9344_CR32 – volume: 14 start-page: 92 issue: 11 year: 2017 ident: 9344_CR62 publication-title: China Commun doi: 10.1109/CC.2017.8233654 – ident: 9344_CR84 – volume: 77 start-page: 236 year: 2017 ident: 9344_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.02.002 – volume: 56 start-page: 9 year: 2015 ident: 9344_CR49 publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.05.001 – year: 2018 ident: 9344_CR15 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.02.009 – volume: 32 start-page: 35 issue: 3 year: 2015 ident: 9344_CR29 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2014.2359987 – volume: 24 start-page: 2012 issue: 11 year: 2012 ident: 9344_CR48 publication-title: Struct Control Health Monit doi: 10.1002/stc.2012 – year: 2017 ident: 9344_CR81 publication-title: M Health doi: 10.21037/mhealth.2017.09.01 – year: 2018 ident: 9344_CR2 publication-title: Artif Intell Rev doi: 10.1007/s10462-018-9633-3 – ident: 9344_CR14 doi: 10.1145/2683483.2683514 – ident: 9344_CR63 doi: 10.1109/icpr.2016.7900165 – ident: 9344_CR16 doi: 10.1109/IJCNN.2016.7727426 – ident: 9344_CR42 – ident: 9344_CR38 – volume: 13 start-page: 34 issue: 3s year: 2017 ident: 9344_CR83 publication-title: ACM Trans Multimed Comput Commun Appl (TOMM) – ident: 9344_CR21 – ident: 9344_CR78 doi: 10.21437/Interspeech.2015-270 – ident: 9344_CR73 doi: 10.1016/j.eswa.2015.05.034 – ident: 9344_CR24 – ident: 9344_CR64 doi: 10.21437/Interspeech.2015-270 – volume: 5 start-page: 11 issue: 9 year: 2017 ident: 9344_CR47 publication-title: Int J Res Educ Sci Methods – volume: 114 start-page: 334 year: 2018 ident: 9344_CR85 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.05.016 – volume: 26 start-page: 323 year: 2018 ident: 9344_CR45 publication-title: Classif BioApps Lect Notes Comput Vis Biomech – volume: 18 start-page: 1003 issue: 4 year: 2015 ident: 9344_CR58 publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0433-3 – volume: 70 start-page: 423 year: 2018 ident: 9344_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.023 – volume: 789 start-page: 54 year: 2018 ident: 9344_CR36 publication-title: Artif Intell Nat Lang Commun Comput Inf Sci doi: 10.1007/978-3-319-71746-3_5 – ident: 9344_CR7 doi: 10.1109/ICIVPR.2017.7890866 – volume: 49 start-page: 399 year: 2016 ident: 9344_CR46 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.08.013 – volume: 6 start-page: 45923 issue: 1 year: 2018 ident: 9344_CR30 publication-title: IEEE Access – volume: 82 start-page: 94 year: 2018 ident: 9344_CR12 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.05.007 – ident: 9344_CR37 – volume: 83 start-page: 187 year: 2017 ident: 9344_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.030 – ident: 9344_CR1 – volume: 93 start-page: 759 issue: 9 year: 2017 ident: 9344_CR59 publication-title: Int Trans Soc Model Simul doi: 10.1177/0037549717709932 – year: 2018 ident: 9344_CR72 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.04.029 – ident: 9344_CR86 doi: 10.1007/978-3-319-42297-8_40 – volume: 72 start-page: 327 year: 2017 ident: 9344_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.055 – ident: 9344_CR61 doi: 10.1109/ChiCC.2016.7554408 – volume: 60 start-page: 1057 year: 2016 ident: 9344_CR80 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.04.012 – volume: 119 start-page: 230 year: 2016 ident: 9344_CR50 publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.04.012 – ident: 9344_CR34 – volume: 17 start-page: 1750016 issue: 3 year: 2017 ident: 9344_CR43 publication-title: Proc Int J Image Graph doi: 10.1142/S0219467817500164 – ident: 9344_CR20 doi: 10.1109/DAS.2018.35 – ident: 9344_CR82 doi: 10.1109/CVPR.2012.6248110 – volume: 4 start-page: 22 issue: 2 year: 2016 ident: 9344_CR71 publication-title: IEEE Geosci Remote Sens Mag doi: 10.1109/MGRS.2016.2540798 – volume: 16 start-page: 918 issue: 3 year: 2018 ident: 9344_CR54 publication-title: IEEE Latin Am Trans doi: 10.1109/TLA.2018.8358674 – ident: 9344_CR67 doi: 10.1109/IPACT.2017.8245200 – volume: 85 start-page: 114 year: 2017 ident: 9344_CR3 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.039 – volume: 68 start-page: 93 year: 2017 ident: 9344_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.017 – volume: 521 start-page: 1 year: 2015 ident: 9344_CR27 publication-title: Nature doi: 10.1038/nature14539 – ident: 9344_CR69 doi: 10.1080/15481603.2017.1323377 – ident: 9344_CR19 – ident: 9344_CR26 doi: 10.1109/das.2018.70 – year: 2017 ident: 9344_CR60 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.11.005 – volume: 2 start-page: 514 year: 2014 ident: 9344_CR9 publication-title: IEEE doi: 10.1109/ACCESS.2014.2325029 – ident: 9344_CR39 doi: 10.1109/ACPR.2015.7486478 – ident: 9344_CR79 doi: 10.1109/ICFHR.2016.0112 – ident: 9344_CR41 doi: 10.1016/j.eswa.2018.03.056 – volume: 77 start-page: 160 year: 2018 ident: 9344_CR70 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.017 – ident: 9344_CR44 doi: 10.1109/SYSOSE.2017.7994976 – ident: 9344_CR65 doi: 10.1109/ASPDAC.2016.7428100 – volume: 71 start-page: 1 year: 2017 ident: 9344_CR28 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.05.015 – ident: 9344_CR4 – ident: 9344_CR10 doi: 10.1007/978-3-319-51969-22 – volume: 78 start-page: 331 year: 2018 ident: 9344_CR53 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.01.036 – ident: 9344_CR56 doi: 10.1109/wci.2015.7495514 – ident: 9344_CR33 – ident: 9344_CR31 doi: 10.1109/ICCSS.2015.7281139 |
| SSID | ssj0054992 |
| Score | 2.6917987 |
| Snippet | Nowadays, deep learning is a current and a stimulating field of machine learning. Deep learning is the most effective, supervised, time and cost efficient... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1071 |
| SubjectTerms | Algorithms Computer vision Deep learning Engineering Face recognition Handwriting recognition Image classification Machine learning Mathematical and Computational Engineering Natural language processing Object recognition Original Paper Speech recognition |
| Title | A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning |
| URI | https://link.springer.com/article/10.1007/s11831-019-09344-w https://www.proquest.com/docview/2436156874 |
| Volume | 27 |
| WOSCitedRecordID | wos000565732400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSsNA9OF20INLVawbc_CmgSQzSSbeilr0YBE3eguziqCtNGnFv3dmnLRVVNBjyMwjvP3lbQAHecixzpSt00lkQDKeBxyTMIgF4xHNmHmQbtlE1unQbje_8k1hZV3tXqcknaaeNLsZ7rOhry3xwYQEr7Mwb8wdteJ4fXNf618b8LgcZ4TtP_809K0y38P4bI4mPuaXtKizNu2V_33nKix77xK1PthhDWZUrwEr3tNEXo7LBixNjSFch-sWuhkORuoN9TU6VeoF-amrD4j1JLqoStSaynMfoxYyuhFdsQGTjw_PqOqjS1eTqcYXN-CufXZ7ch74XQuBwDSpgoQQ4yhJqiSXjGkqNNFKM0HsRD-dYR0ZTONEJyKkLOSGppzwRIuEsjzUDONNmOv1e2oLEGeaMCxTzUNJZBpzZnxGzgSPYwOPR02IapQXwg8it_swnorJCGWLwsKgsHAoLF6bcDi-8_IxhuPX07s1JQsvkmURE2y8t5RmpAlHNeUmr3-Gtv234zuwGNuY3NWh7cJcNRiqPVgQo-qxHOw7Vn0HaX_jGg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58gXrwURWrVffgTQNJdtMk3opaFNtS6oPewj5LQdvSxBb_vbtxY1VU0GPI7hBmZme-zbwAjmOXYRVKk6cTCIeELHYYJq7jc8q8KKT6QeTDJsJWK-p247YtCkuLbPciJJlb6lmxm9Y-c_U1KT6YEGc6D4tEeyyTyNe5fSjsr7nw5DFOD5t__lXXlsp8T-OzO5phzC9h0dzb1Nf_950bsGbRJaq9qcMmzMlBCdYt0kT2HKclWP3QhnALOjV0-zyeyBc0VOhCyhGyXVd7iA4Eus5SVPsQ5z5DNaRtI2rTMRX93hPKhqiZ52TK943bcF-_vDu_cuysBYfjKMicgBANlEQkBROUqogroqSinJiOfirEynNjDdZUwN2IukzLlBEWKB5ENHYVxXgHFgbDgdwFxKgiFIuqYq4gouozqjEjo5z5vqbHvDJ4BcsTbhuRm3kYj8mshbJhYaJZmOQsTKZlOHnfM3prw_Hr6kohycQeyTTxCdborRqFpAynheRmr3-mtve35UewfHXXbCSN69bNPqz45n6e56RVYCEbP8sDWOKTrJ-OD3O1fQUXJ-X- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBR1WsVt2DNw0m2U2TeCvWYlFL8YW3sM9S0LS0aYv_3t00aauoIB5DdpcwM7v7TWbmG4CT0GZY-dLk6XjCIj4LLYaJbbmcMifwqX4QabMJv9kMXl7C1lwVf5rtnockJzUNhqUpTs57Qp3PCt-0JRo32KT7YEKs8SIsEdM0yPjrD8_5WWycnzTe6WDz_79iZ2Uz36_x-Wqa4c0vIdL05qlv_P-bN2E9Q52oOjGTLViQcRE2MgSKsv09KMLaHD3hNtxX0cOwP5LvqKtQTcoeythY24jGAjWSAarOxb8vUBXpMxO1aJ-KTvsNJV10l-ZqyunEHXiqXz1eXltZDwaL48BLLI8QDaBEIAUTlKqAK6KkopwYpj_lY-XYoQZxyuN2QG2mdc0I8xT3AhraimK8C4W4G8s9QIwqQrGoKGYLIiouoxpLMsqZ6-r1mFMCJxd_xDOCctMn4zWaUSsbEUZahFEqwmhcgtPpnN6EnuPX0eVcq1G2VQeRS7BGdZXAJyU4y7U4e_3zavt_G34MK61aPbptNG8OYNU1bnuaqlaGQtIfykNY5qOkM-gfpRb8ARSB7uI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Deep+Learning+and+Its+Applications%3A+A+New+Paradigm+to+Machine+Learning&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Dargan%2C+Shaveta&rft.au=Kumar%2C+Munish&rft.au=Ayyagari%2C+Maruthi+Rohit&rft.au=Kumar%2C+Gulshan&rft.date=2020-09-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=27&rft.issue=4&rft.spage=1071&rft.epage=1092&rft_id=info:doi/10.1007%2Fs11831-019-09344-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_019_09344_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |