Inner approximation algorithm for solving linear multiobjective optimization problems

Benson's outer approximation algorithm and its variants are the most frequently used methods for solving linear multiobjective optimization problems. These algorithms have two intertwined parts: single-objective linear optimization on one hand, and a combinatorial part closely related to vertex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 70; číslo 7; s. 1487 - 1511
Hlavný autor: Csirmaz, Laszlo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.07.2021
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Benson's outer approximation algorithm and its variants are the most frequently used methods for solving linear multiobjective optimization problems. These algorithms have two intertwined parts: single-objective linear optimization on one hand, and a combinatorial part closely related to vertex enumeration on the other. Their separation provides a deeper insight into Benson's algorithm, and points toward a dual approach. Two skeletal algorithms are defined which focus on the combinatorial part. Using different single-objective optimization problems yields different algorithms, such as a sequential convex hull algorithm, another version of Benson's algorithm with the theoretically best possible iteration count, and the dual algorithm of Ehrgott et al. [A dual variant of Benson's 'outer approximation algorithm' for multiple objective linear programming. J Glob Optim. 2012;52:757-778]. The implemented version is well suited to handle highly degenerate problems where there are many linear dependencies among the constraints. On problems with 10 or more objectives, it shows a significant increase in efficiency compared to Bensolve - due to the reduced number of iterations and the improved combinatorial handling.
AbstractList Benson's outer approximation algorithm and its variants are the most frequently used methods for solving linear multiobjective optimization problems. These algorithms have two intertwined parts: single-objective linear optimization on one hand, and a combinatorial part closely related to vertex enumeration on the other. Their separation provides a deeper insight into Benson's algorithm, and points toward a dual approach. Two skeletal algorithms are defined which focus on the combinatorial part. Using different single-objective optimization problems yields different algorithms, such as a sequential convex hull algorithm, another version of Benson's algorithm with the theoretically best possible iteration count, and the dual algorithm of Ehrgott et al. [A dual variant of Benson's ‘outer approximation algorithm’ for multiple objective linear programming. J Glob Optim. 2012;52:757–778]. The implemented version is well suited to handle highly degenerate problems where there are many linear dependencies among the constraints. On problems with 10 or more objectives, it shows a significant increase in efficiency compared to Bensolve – due to the reduced number of iterations and the improved combinatorial handling.
Benson's outer approximation algorithm and its variants are the most frequently used methods for solving linear multiobjective optimization problems. These algorithms have two intertwined parts: single-objective linear optimization on one hand, and a combinatorial part closely related to vertex enumeration on the other. Their separation provides a deeper insight into Benson's algorithm, and points toward a dual approach. Two skeletal algorithms are defined which focus on the combinatorial part. Using different single-objective optimization problems yields different algorithms, such as a sequential convex hull algorithm, another version of Benson's algorithm with the theoretically best possible iteration count, and the dual algorithm of Ehrgott et al. [A dual variant of Benson's 'outer approximation algorithm' for multiple objective linear programming. J Glob Optim. 2012;52:757-778]. The implemented version is well suited to handle highly degenerate problems where there are many linear dependencies among the constraints. On problems with 10 or more objectives, it shows a significant increase in efficiency compared to Bensolve - due to the reduced number of iterations and the improved combinatorial handling.
Author Csirmaz, Laszlo
Author_xml – sequence: 1
  givenname: Laszlo
  surname: Csirmaz
  fullname: Csirmaz, Laszlo
  email: csirmaz@renyi.hu
  organization: Central European University
BookMark eNqFkE1LxDAQhoMouLv6E4SC52o-mrbBi7L4BYIXPYdsOtEsabImWXX99bauXjzoaWB4nneYd4p2ffCA0BHBJwS3-BRTxohg1QnFdFg1rKkF3UETgqkoK1HxXTQZmXKE9tE0pSXGlNS0mqDHW-8hFmq1iuHd9irb4AvlnkK0-bkvTIhFCu7V-qfCWQ8qFv3aDdBiCTrbVyjCKtvefmzFIWThoE8HaM8ol-Dwe87Q49Xlw_ymvLu_vp1f3JWatTyXVSc0iJpTMKQTnHcNdJgY2jbG1PVCU9CqwcJoZniHoWpBENbW2AC0dbVo2Qwdb3OHwy9rSFkuwzr64aSkvKpbwjgdKb6ldAwpRTByFYdX40YSLMcG5U-DcmxQfjc4eGe_PG3z16M5Kuv-tc-3tvVDi716C9F1MquNC9FE5bVNkv0d8Qlf7o3a
CitedBy_id crossref_primary_10_1016_j_ejco_2021_100014
crossref_primary_10_1007_s10898_025_01512_6
crossref_primary_10_1016_j_mineng_2024_108793
crossref_primary_10_1007_s00186_023_00847_8
crossref_primary_10_1007_s00170_021_07943_1
Cites_doi 10.1007/BFb0009478
10.1007/s10898-013-0098-2
10.1007/978-1-4613-8431-1
10.1007/s10898-011-9709-y
10.1007/3-540-61576-8_77
10.1007/978-3-319-95165-2_46
10.1007/BF02293050
10.1016/S0925-7721(96)00023-5
10.1134/S0965542512010162
10.1007/s10898-013-0136-0
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2020.1737692
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1511
ExternalDocumentID 10_1080_02331934_2020_1737692
1737692
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
0YH
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-4d9ce9652ef1d955d7ed01f287ff66bc2eca709fc3f5d0e48e913860fee864b83
IEDL.DBID 0YH
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519363200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 07:04:15 EDT 2025
Sat Nov 29 06:01:41 EST 2025
Tue Nov 18 20:48:59 EST 2025
Mon Oct 20 23:48:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.: http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-4d9ce9652ef1d955d7ed01f287ff66bc2eca709fc3f5d0e48e913860fee864b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/02331934.2020.1737692
PQID 2546813528
PQPubID 27961
PageCount 25
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2020_1737692
crossref_primary_10_1080_02331934_2020_1737692
proquest_journals_2546813528
crossref_citationtrail_10_1080_02331934_2020_1737692
PublicationCentury 2000
PublicationDate 2021-07-03
PublicationDateYYYYMMDD 2021-07-03
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0001
CIT0012
Löhne A (CIT0010) 2016; 206
CIT0011
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0006
CIT0017
CIT0009
CIT0008
References_xml – ident: CIT0016
– volume: 206
  start-page: 807
  year: 2016
  ident: CIT0010
  publication-title: Eur J Oper Res
– ident: CIT0014
  doi: 10.1007/BFb0009478
– ident: CIT0005
  doi: 10.1007/s10898-013-0098-2
– ident: CIT0003
  doi: 10.1007/978-1-4613-8431-1
– ident: CIT0012
– ident: CIT0008
– ident: CIT0009
– ident: CIT0001
  doi: 10.1007/s10898-011-9709-y
– ident: CIT0015
  doi: 10.1007/3-540-61576-8_77
– ident: CIT0017
  doi: 10.1007/978-3-319-95165-2_46
– ident: CIT0002
– ident: CIT0007
– ident: CIT0004
  doi: 10.1007/BF02293050
– ident: CIT0011
  doi: 10.1016/S0925-7721(96)00023-5
– ident: CIT0013
  doi: 10.1134/S0965542512010162
– ident: CIT0006
  doi: 10.1007/s10898-013-0136-0
SSID ssj0021624
Score 2.2873557
Snippet Benson's outer approximation algorithm and its variants are the most frequently used methods for solving linear multiobjective optimization problems. These...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1487
SubjectTerms Algorithms
Approximation
Combinatorial analysis
Computational geometry
Convexity
double description
duality
Enumeration
Linear programming
Mathematical analysis
Multiobjective optimization
Multiple objective analysis
objective space
Optimization
vertex enumeration
Title Inner approximation algorithm for solving linear multiobjective optimization problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2020.1737692
https://www.proquest.com/docview/2546813528
Volume 70
WOSCitedRecordID wos000519363200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQYYCBb0ShIA-sgTh2nGREiKpIqGJooUxR4thQ1DYoCYifj89xqlYIdYAlQ6RzrPP5nDvfvYfQBVdUsiDxnSwwLTmcODqy9RxBWBBSKTJl2sce74N-PxyNogdbTVjaskqIoVUNFGF8NWzuJC2birgrfcxow6GQEfH0q0DvkUh74XVPhyYQf7nPvXnMRbjhtQURB2SaJp7fhlk6npbAS384a3MCdXf-Ye67aNv-fuLr2l720Jqc7aOtBVDCAzS8AzYubMDGv8Z1ZyNOJi95Ma5ep1hPFWt7hTwEhu8nBTZFiXn6VvtOnGsvNLXtndgS1pSHaNi9Hdz0HEu-4Aga-pXDskjIiPueVCSLfD8LZOYSpQMspThPhSdFEriRElT5mStZKCNCQ-4qKUPO0pAeodYsn8ljhOEqlHvAh5OkzKV-yrkkiqcyYYJlrttGrNF5LCwyORBkTGLSAJharcWgtdhqrY0u52LvNTTHKoFocUHjyuREVE1gEtMVsp1m9WO7y8sYuARCAvg4J38Y-hRtelAoAzlj2kGtqviQZ2hDfFbjsjg35qyfg-7TN6mD8XM
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQAIOvBGDATlwLTRNmrZHhJg2MXbaYLeoTRMY2gN1BfHzidN22oTQDnCt5ChyHDt27e9D6IprqlgQ-04a2JEcThyT2XqOJCwIqZKptuNjT52g2w0Hg2hxFgbaKiGH1gVQhPXVcLmhGF21xN2YOGMsh0JJxDOfAnNJIuOG130TawE_v9d8niddhFtiWxBxQKaa4vltmaX4tIRe-sNb2xDU3P2Pze-hnfIBim8Li9lHa2pygLYXYAkPUb8NfFzYwo1_DYvZRhyPXqbZMH8dY7NXbCwWKhEYNhBn2LYlTpO3wnviqfFD43LAE5eUNbMj1G_e9-5aTkm_4Ega-rnD0kiqiPue0iSNfD8NVOoSbVIsrTlPpKdkHLiRllT7qatYqCJCQ-5qpULOkpAeo9pkOlEnCMPPUO4BI06cMJf6CeeKaJ6omEmWum4dsUrpQpbY5ECRMRKkgjAttSZAa6LUWh1dz8XeC3COVQLR4omK3FZFdEFhIugK2UZ1_KK85zMBbAIhAYSc0z8sfYk2W73Hjui0uw9naMuDthmoINMGquXZhzpHG_IzH86yC2vb38vu9Is
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQAgOvBFvcuBaaJo0bY8ImJiYJg4MdovaPGAINrQVxM8nTlO0CaEd4FrJSeQ4Tuza34fQCTdUsySPA5W4lhxOAhvZRoEkLEmplsq49rH7dtLppL1eduurCce-rBJiaFMBRThfDYf7TZm6Iu7MXjPWcChkRCL7KbFnJLNeeN4-nTkY-V3z4TvmItzx2oJIADJ1E89vw0xdT1PgpT-ctbuBmqv_sPY1tOKfn_i8spd1NKcHG2h5ApRwE3VbwMaFHdj4Z7_qbMT5y-Nw1C-fXrFdKrb2CnkIDPPnI-yKEofFc-U78dB6oVff3ok9Yc14C3WbV3cX14EnXwgkTeMyYCqTOuNxpA1RWRyrRKuQGBtgGcN5ISMt8yTMjKQmVqFmqc4ITXlotE45K1K6jRqD4UDvIAy_QnkEfDh5wUIaF5xrYnihcyaZCsNdxGqdC-mRyYEg40WQGsDUa02A1oTX2i46_RZ7q6A5ZglkkxsqSpcTMRWBiaAzZA_q3Rf-lI8FcAmkBPBx9v4w9DFavL1sinarc7OPliKomYH0MT1AjXL0rg_Rgvwo--PRkbPsL-3r8z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inner+approximation+algorithm+for+solving+linear+multiobjective+optimization+problems&rft.jtitle=Optimization&rft.au=Csirmaz%2C+Laszlo&rft.date=2021-07-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=70&rft.issue=7&rft.spage=1487&rft.epage=1511&rft_id=info:doi/10.1080%2F02331934.2020.1737692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2020_1737692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon