Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code

This paper provides further elaborations on discrete variable topology optimization via sequential integer programming and Canonical relaxation algorithm. Firstly, discrete variable topology optimization problem for minimum compliance subject to a material volume constraint is formulated and approxi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Structural and multidisciplinary optimization Ročník 61; číslo 1; s. 411 - 431
Hlavní autoři: Liang, Yuan, Cheng, Gengdong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2020
Springer Nature B.V
Témata:
ISSN:1615-147X, 1615-1488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper provides further elaborations on discrete variable topology optimization via sequential integer programming and Canonical relaxation algorithm. Firstly, discrete variable topology optimization problem for minimum compliance subject to a material volume constraint is formulated and approximated by a sequence of discrete variable sub-programming with the discrete variable sensitivity. The differences between continuous variable sensitivity and discrete variable sensitivity are discussed. Secondly, the Canonical relaxation algorithm designed to solve this sub-programming is presented with a discussion on the move limit strategy. Based on the discussion above, a compact 128-line MATLAB code to implement the new method is included in Appendix 1 . As shown by numerical experiments, the 128-line code can maintain black-white solutions during the optimization process. The code can be treated as the foundation for other problems with multiple constraints.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-019-02396-3