Convergence of linear and nonlinear Neumann–Neumann method for the Cahn–Hilliard equation

In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of great importance to develop a robust numerical method for investigating the solution behaviour of the CH equation. We present the formulation of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Japan journal of industrial and applied mathematics Ročník 41; číslo 1; s. 211 - 232
Hlavní autor: Garai, Gobinda
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.01.2024
Springer Nature B.V
Témata:
ISSN:0916-7005, 1868-937X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of great importance to develop a robust numerical method for investigating the solution behaviour of the CH equation. We present the formulation of the Neumann–Neumann method applied to the CH equation and study its convergence behaviour in one and two spatial dimension for two subdomains and also extend the method for logarithmic nonlinearity. We also present the nonlinear NN method for the CH equation. We illustrate the theoretical results by providing numerical examples.
AbstractList In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of great importance to develop a robust numerical method for investigating the solution behaviour of the CH equation. We present the formulation of the Neumann–Neumann method applied to the CH equation and study its convergence behaviour in one and two spatial dimension for two subdomains and also extend the method for logarithmic nonlinearity. We also present the nonlinear NN method for the CH equation. We illustrate the theoretical results by providing numerical examples.
Author Garai, Gobinda
Author_xml – sequence: 1
  givenname: Gobinda
  orcidid: 0000-0002-0406-0989
  surname: Garai
  fullname: Garai, Gobinda
  email: gg14@iitbbs.ac.in
  organization: School of Basic Sciences, IIT Bhubaneswar
BookMark eNp9kMFKw0AQhhepYFt9AU8LnqOz2SS7OUpQKxS9KHiRZZPMtinpbrtJhN58B9_QJzFtCoIHTzPD_N_8wz8hI-ssEnLJ4JoBiJuGcZZAACEPABKAYHdCxkwmMki5eBuRMaQsCQRAfEYmTbMCiBLJ2Ji8Z85-oF-gLZA6Q-vKovZU25L2FsfpCbu1tvb78-vY0TW2S1dS4zxtl0gzvdxvZ1VdV9qXFLedbitnz8mp0XWDF8c6Ja_3dy_ZLJg_Pzxmt_Og4DJuA2445jGkpRDIjS5TZDIXhZEouIFcpNKIiIu8TBmECStTI6EXRVJiCIiGT8nVcHfj3bbDplUr13nbWyoexlEaCxEmvUoOqsK7pvFoVFG1hz9br6taMVD7MNUQpurDVIcw1a5Hwz_oxldr7Xf_Q3yAml5sF-h_v_qH-gGoIYzP
CitedBy_id crossref_primary_10_1016_j_cnsns_2024_108014
crossref_primary_10_1002_mma_10113
Cites_doi 10.1137/20M1316317
10.1016/0362-546X(94)00205-V
10.1016/0167-2789(84)90180-5
10.1007/978-1-4612-4248-2_9
10.1109/TIP.2006.887728
10.1063/1.1744102
10.1016/j.cnsns.2023.107175
10.1016/0001-6160(61)90182-1
10.1016/j.commatsci.2013.08.027
10.1557/PROC-529-39
10.1007/978-3-319-52389-7_11
10.1007/s10013-018-0316-9
10.1007/978-1-4419-7288-0
10.1002/cpa.10020
10.1007/b137868
10.1007/978-3-030-56750-7_8
10.1137/0723075
10.1016/0377-0427(91)90150-I
10.1090/S0025-5718-96-00757-0
10.1080/03605308908820597
ContentType Journal Article
Copyright The JJIAM Publishing Committee and Springer Nature Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The JJIAM Publishing Committee and Springer Nature Japan KK, part of Springer Nature 2023.
Copyright_xml – notice: The JJIAM Publishing Committee and Springer Nature Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The JJIAM Publishing Committee and Springer Nature Japan KK, part of Springer Nature 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s13160-023-00600-y
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1868-937X
EndPage 232
ExternalDocumentID 10_1007_s13160_023_00600_y
GrantInformation_xml – fundername: CSIR India
GroupedDBID -EM
06D
0R~
0VY
1N0
2.D
203
2JN
2JY
2KG
2LR
2VQ
30V
4.4
406
408
40D
5GY
67Z
70C
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOJF
AARHV
AARKR
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACJDT
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEGL
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESBA
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFFOW
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGFPJ
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHIZY
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BBWZM
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PT4
PT5
PUASD
Q2X
R89
R9I
RBF
RHV
RNI
ROL
RPE
RSV
RZK
S1Z
S26
S27
S28
S3B
SCLPG
SDD
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
WS9
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
RBV
7XB
8FE
8FG
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-3f3eb509d77e3fad9e18b7cf8e73f0b798f7437bd910261d9f80d9e488e20eef3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001020182400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0916-7005
IngestDate Sun Sep 28 03:48:29 EDT 2025
Tue Nov 18 20:47:31 EST 2025
Sat Nov 29 03:29:41 EST 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 65M15
Neumann–Neumann
Parallel computing
65M55
Domain decomposition
65Y05
Cahn–Hilliard equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-3f3eb509d77e3fad9e18b7cf8e73f0b798f7437bd910261d9f80d9e488e20eef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0406-0989
PQID 3254957726
PQPubID 326301
PageCount 22
ParticipantIDs proquest_journals_3254957726
crossref_citationtrail_10_1007_s13160_023_00600_y
crossref_primary_10_1007_s13160_023_00600_y
springer_journals_10_1007_s13160_023_00600_y
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Heidelberg
PublicationTitle Japan journal of industrial and applied mathematics
PublicationTitleAbbrev Japan J. Indust. Appl. Math
PublicationYear 2024
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References BertozziALEsedoḡluSGilletteAInpainting of binary images using the Cahn–Hilliard equationIEEE Trans. Image Process.200716285291246016710.1109/TIP.2006.887728
Chaouqui, F., Gander, M. J., Santugini-Repiquet, K.: On nilpotent subdomain iterations. In: Domain Decomposition Methods in Science and Engineering XXIII. Springer, Berlin, pp. 125–133 (2017)
BjørstadPEWidlundOBIterative methods for the solution of elliptic problems on regions partitioned into substructuresSIAM J. Numer. Anal.1986231097112086594510.1137/0723075
Novick-CohenASegelLANonlinear aspects of the Cahn–Hilliard equationPhys. D19841027729876347310.1016/0167-2789(84)90180-5
ToselliAWidlundOBDomain Decomposition Methods, Algorithms and Theory2005BerlinSpringer10.1007/b137868
MandelJBrezinaMBalancing domain decomposition for problems with large jumps in coefficientsMath. Comput.19966513871401135120410.1090/S0025-5718-96-00757-0
Le TallecPDe RoeckY-HVidrascuMDomain decomposition methods for large linearly elliptic three-dimensional problemsJ. Comput. Appl. Math.19913493117109519810.1016/0377-0427(91)90150-I
PavarinoLFWidlundOBBalancing Neumann–Neumann methods for incompressible stokes equationsCommun. Pure Appl. Math. J. Iss. Courant Inst. Math. Sci.200255302335186636610.1002/cpa.10020
GaraiGMandalBCConvergence of substructuring methods for the Cahn–Hilliard equationCommun. Nonlinear Sci. Numer. Simul.2023120455230010.1016/j.cnsns.2023.107175
NicolaenkoBScheurerBTemamRSome global dynamical properties of a class of pattern formation equationsComm. Partial Differ. Equ.19891424529797697310.1080/03605308908820597
CahnJWHilliardWFree energy of a nonuniform system. i. interfacial free energyJ. Chem. Phys.19582825826710.1063/1.1744102
BakJNewmanDJNewmanDJComplex Analysis2010BerlinSpringer10.1007/978-1-4419-7288-0
CarlenzoliCQuarteroniAAdaptive domain decomposition methods for advection-diffusion problemsModeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations1995BerlinSpringer16518610.1007/978-1-4612-4248-2_9
Eyre, D.J., Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA,: vol. 529 of Mater. Res. Soc. Sympos. Proc. MRS, Warrendale, PA vol. 1998, pp. 39–46 (1998)
DebusscheADettoriLOn the Cahn–Hilliard equation with a logarithmic free energyNonlinear Anal. Theory Methods Appl.19952414911514132793010.1016/0362-546X(94)00205-V
LionsP-LOn the Schwarz alternating method IDomain Decomposition Methods for Partial Differential Equations (Paris, 1987)1988PhiladelphiaSIAM142
LeeSLeeCLeeHGKimJComparison of different numerical schemes for the Cahn–Hilliard equationJ. KSIAM2013171972073105844
ChaouquiFGanderMJSantugini-RepiquetKA continuous analysis of Neumann–Neumann methods: scalability and new coarse spacesSIAM J. Sci. Comput.202042A3785A3811418109910.1137/20M1316317
Chaouqui, F., Gander, M. J., Santugini-Repiquet, K.: A local coarse space correction leading to a well-posed continuous Neumann–Neumann method in the presence of cross points. In: International Conference on Domain Decomposition Methods. Springer, Berlin, pp. 83–91 (2018)
NicolaenkoBScheurerBLow-dimensional behavior of the pattern formation Cahn–Hilliard equationNorth-Holland Mathematics Studies1985OxfordElsevier323336
CahnJWOn spinodal decompositionActa Metall.1961979580110.1016/0001-6160(61)90182-1
Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems, Unpublished article, (1998)
ChaouquiFCiaramellaGGanderMJVanzanTOn the scalability of classical one-level domain-decomposition methodsVietnam J. Math.20184610531088387879310.1007/s10013-018-0316-9
BourgatJ-FGlowinskiRLe TallecPVidrascuMVariational Formulation and Algorithm for Trace Operation in Domain Decomposition Calculations, Domain Decomposition Methods for Partial Differential Equations1989PhiladelphiaSIAM316
LeeDHuhJ-YJeongDShinJYunAKimJPhysical, mathematical, and numerical derivations of the Cahn–Hilliard equationComput. Mater. Sci.20148121622510.1016/j.commatsci.2013.08.027
J-F Bourgat (600_CR4) 1989
P Le Tallec (600_CR16) 1991; 34
B Nicolaenko (600_CR21) 1985
J Mandel (600_CR20) 1996; 65
B Nicolaenko (600_CR22) 1989; 14
C Carlenzoli (600_CR7) 1995
PE Bjørstad (600_CR3) 1986; 23
S Lee (600_CR17) 2013; 17
JW Cahn (600_CR6) 1958; 28
600_CR14
600_CR13
AL Bertozzi (600_CR2) 2007; 16
JW Cahn (600_CR5) 1961; 9
600_CR9
600_CR8
A Novick-Cohen (600_CR23) 1984; 10
LF Pavarino (600_CR24) 2002; 55
A Debussche (600_CR12) 1995; 24
J Bak (600_CR1) 2010
F Chaouqui (600_CR11) 2020; 42
P-L Lions (600_CR19) 1988
F Chaouqui (600_CR10) 2018; 46
G Garai (600_CR15) 2023; 120
D Lee (600_CR18) 2014; 81
A Toselli (600_CR25) 2005
References_xml – reference: BourgatJ-FGlowinskiRLe TallecPVidrascuMVariational Formulation and Algorithm for Trace Operation in Domain Decomposition Calculations, Domain Decomposition Methods for Partial Differential Equations1989PhiladelphiaSIAM316
– reference: NicolaenkoBScheurerBTemamRSome global dynamical properties of a class of pattern formation equationsComm. Partial Differ. Equ.19891424529797697310.1080/03605308908820597
– reference: MandelJBrezinaMBalancing domain decomposition for problems with large jumps in coefficientsMath. Comput.19966513871401135120410.1090/S0025-5718-96-00757-0
– reference: BertozziALEsedoḡluSGilletteAInpainting of binary images using the Cahn–Hilliard equationIEEE Trans. Image Process.200716285291246016710.1109/TIP.2006.887728
– reference: ChaouquiFCiaramellaGGanderMJVanzanTOn the scalability of classical one-level domain-decomposition methodsVietnam J. Math.20184610531088387879310.1007/s10013-018-0316-9
– reference: ToselliAWidlundOBDomain Decomposition Methods, Algorithms and Theory2005BerlinSpringer10.1007/b137868
– reference: Le TallecPDe RoeckY-HVidrascuMDomain decomposition methods for large linearly elliptic three-dimensional problemsJ. Comput. Appl. Math.19913493117109519810.1016/0377-0427(91)90150-I
– reference: BakJNewmanDJNewmanDJComplex Analysis2010BerlinSpringer10.1007/978-1-4419-7288-0
– reference: ChaouquiFGanderMJSantugini-RepiquetKA continuous analysis of Neumann–Neumann methods: scalability and new coarse spacesSIAM J. Sci. Comput.202042A3785A3811418109910.1137/20M1316317
– reference: PavarinoLFWidlundOBBalancing Neumann–Neumann methods for incompressible stokes equationsCommun. Pure Appl. Math. J. Iss. Courant Inst. Math. Sci.200255302335186636610.1002/cpa.10020
– reference: Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems, Unpublished article, (1998)
– reference: Chaouqui, F., Gander, M. J., Santugini-Repiquet, K.: A local coarse space correction leading to a well-posed continuous Neumann–Neumann method in the presence of cross points. In: International Conference on Domain Decomposition Methods. Springer, Berlin, pp. 83–91 (2018)
– reference: DebusscheADettoriLOn the Cahn–Hilliard equation with a logarithmic free energyNonlinear Anal. Theory Methods Appl.19952414911514132793010.1016/0362-546X(94)00205-V
– reference: Eyre, D.J., Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA,: vol. 529 of Mater. Res. Soc. Sympos. Proc. MRS, Warrendale, PA vol. 1998, pp. 39–46 (1998)
– reference: Novick-CohenASegelLANonlinear aspects of the Cahn–Hilliard equationPhys. D19841027729876347310.1016/0167-2789(84)90180-5
– reference: LeeDHuhJ-YJeongDShinJYunAKimJPhysical, mathematical, and numerical derivations of the Cahn–Hilliard equationComput. Mater. Sci.20148121622510.1016/j.commatsci.2013.08.027
– reference: BjørstadPEWidlundOBIterative methods for the solution of elliptic problems on regions partitioned into substructuresSIAM J. Numer. Anal.1986231097112086594510.1137/0723075
– reference: NicolaenkoBScheurerBLow-dimensional behavior of the pattern formation Cahn–Hilliard equationNorth-Holland Mathematics Studies1985OxfordElsevier323336
– reference: Chaouqui, F., Gander, M. J., Santugini-Repiquet, K.: On nilpotent subdomain iterations. In: Domain Decomposition Methods in Science and Engineering XXIII. Springer, Berlin, pp. 125–133 (2017)
– reference: GaraiGMandalBCConvergence of substructuring methods for the Cahn–Hilliard equationCommun. Nonlinear Sci. Numer. Simul.2023120455230010.1016/j.cnsns.2023.107175
– reference: CahnJWOn spinodal decompositionActa Metall.1961979580110.1016/0001-6160(61)90182-1
– reference: CarlenzoliCQuarteroniAAdaptive domain decomposition methods for advection-diffusion problemsModeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations1995BerlinSpringer16518610.1007/978-1-4612-4248-2_9
– reference: CahnJWHilliardWFree energy of a nonuniform system. i. interfacial free energyJ. Chem. Phys.19582825826710.1063/1.1744102
– reference: LeeSLeeCLeeHGKimJComparison of different numerical schemes for the Cahn–Hilliard equationJ. KSIAM2013171972073105844
– reference: LionsP-LOn the Schwarz alternating method IDomain Decomposition Methods for Partial Differential Equations (Paris, 1987)1988PhiladelphiaSIAM142
– volume: 42
  start-page: A3785
  year: 2020
  ident: 600_CR11
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1316317
– volume: 24
  start-page: 1491
  year: 1995
  ident: 600_CR12
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/0362-546X(94)00205-V
– volume: 10
  start-page: 277
  year: 1984
  ident: 600_CR23
  publication-title: Phys. D
  doi: 10.1016/0167-2789(84)90180-5
– start-page: 3
  volume-title: Variational Formulation and Algorithm for Trace Operation in Domain Decomposition Calculations, Domain Decomposition Methods for Partial Differential Equations
  year: 1989
  ident: 600_CR4
– start-page: 165
  volume-title: Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations
  year: 1995
  ident: 600_CR7
  doi: 10.1007/978-1-4612-4248-2_9
– volume: 16
  start-page: 285
  year: 2007
  ident: 600_CR2
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.887728
– volume: 28
  start-page: 258
  year: 1958
  ident: 600_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 120
  year: 2023
  ident: 600_CR15
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2023.107175
– volume: 17
  start-page: 197
  year: 2013
  ident: 600_CR17
  publication-title: J. KSIAM
– volume: 9
  start-page: 795
  year: 1961
  ident: 600_CR5
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(61)90182-1
– start-page: 323
  volume-title: North-Holland Mathematics Studies
  year: 1985
  ident: 600_CR21
– volume: 81
  start-page: 216
  year: 2014
  ident: 600_CR18
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.08.027
– ident: 600_CR13
  doi: 10.1557/PROC-529-39
– ident: 600_CR9
  doi: 10.1007/978-3-319-52389-7_11
– start-page: 1
  volume-title: Domain Decomposition Methods for Partial Differential Equations (Paris, 1987)
  year: 1988
  ident: 600_CR19
– volume: 46
  start-page: 1053
  year: 2018
  ident: 600_CR10
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-018-0316-9
– volume-title: Complex Analysis
  year: 2010
  ident: 600_CR1
  doi: 10.1007/978-1-4419-7288-0
– volume: 55
  start-page: 302
  year: 2002
  ident: 600_CR24
  publication-title: Commun. Pure Appl. Math. J. Iss. Courant Inst. Math. Sci.
  doi: 10.1002/cpa.10020
– volume-title: Domain Decomposition Methods, Algorithms and Theory
  year: 2005
  ident: 600_CR25
  doi: 10.1007/b137868
– ident: 600_CR8
  doi: 10.1007/978-3-030-56750-7_8
– volume: 23
  start-page: 1097
  year: 1986
  ident: 600_CR3
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0723075
– volume: 34
  start-page: 93
  year: 1991
  ident: 600_CR16
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(91)90150-I
– volume: 65
  start-page: 1387
  year: 1996
  ident: 600_CR20
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-96-00757-0
– volume: 14
  start-page: 245
  year: 1989
  ident: 600_CR22
  publication-title: Comm. Partial Differ. Equ.
  doi: 10.1080/03605308908820597
– ident: 600_CR14
SSID ssj0046811
Score 2.317879
Snippet In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms Algorithms
Applications of Mathematics
Approximation
Boundary conditions
Computational Mathematics and Numerical Analysis
Convergence
Decomposition
Energy
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinearity
Numerical methods
Original Paper
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI5gcIAD_4jBQDlwg4i2WZv0hNDEtMumHUDaBVVp4wgktJ9uIO3GO_CGPAlOm24CiV24tUpqRbVjf3Zim5BLLSLhqVAyqYHblJwQ9xxIBlEaBHGKIiVV0WxC9HpyMIj7LuA2ddcqK51YKGo9ymyM_IZbTyZELBjdjifMdo2yp6uuhcY62UBk49srXd2gX2niZiSL_rtoEiMmUNxc0kyZOsf9yGNosZgtSeKx-U_DtESbvw5IC7vT3v3vivfIjkOc9K4UkX2yBsMDst1dlGudHpKnlr17XqRhAh0ZaqGnyqkaajosS2ngWw9svH_49fHpnmjZfZoi7KVIjLbUsx3tFBGcXFOYlGXEj8hj-_6h1WGu7wLLuAxnjBsOKQIJLQRwo3QMvkxFZiQIbrxUxNIg7hCpRqiBDpiOjfRwEqoCCDwAw49JDVcHJ4SiQ6mUEkEzRe9XafTcfZwISgYmBaRbJ37105PMFSW3vTFek2U5ZcuoBBmVFIxK5nVytfhmXJbkWDm7UXEncdtzmixZUyfXFX-Xw39TO11N7YxsBQh6yhBNg9Rm-Ruck83sffYyzS8K4fwGzj7sUQ
  priority: 102
  providerName: ProQuest
Title Convergence of linear and nonlinear Neumann–Neumann method for the Cahn–Hilliard equation
URI https://link.springer.com/article/10.1007/s13160-023-00600-y
https://www.proquest.com/docview/3254957726
Volume 41
WOSCitedRecordID wos001020182400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1868-937X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0046811
  issn: 0916-7005
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1868-937X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0046811
  issn: 0916-7005
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1868-937X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0046811
  issn: 0916-7005
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (Proquest)
  customDbUrl:
  eissn: 1868-937X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0046811
  issn: 0916-7005
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-937X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046811
  issn: 0916-7005
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HfTgW6yPkoM3DWw33U32qKXFi6W0KiLIkm0mKEjVbRW8-R_8h_4SJ_twUVTQy7JLZocwmWS-STIzAHtGhtLTgeLKoHAhOQHNOVQcw8T3o4RUSums2ITsdtXFRdQrgsLG5W338kgyW6mrYDfRCD1ONoa7JCIef56GWTJ3yhVs6A_Oy_W3Gaqs6i4ZwpBLUrIiVOZ7Hp_NUYUxvxyLZtams_S_fi7DYoEu2WGuDiswhaNVWDj5SM06XoOrlrtnnoVcIruzzMFMnTI9MmyUp82gry66vf3R28tr8cbyStOMIC4jZqylr13rcbZbkxqGD3nK8HU467RPW8e8qLHAh0IFEy6swISkaKREYbWJsKESObQKpbBeIiNlCWPIxBCsIGfLRFZ5RETTHn0P0YoNmKHe4SYwch611tJvJuTpakNeeoMIUSvfJkh8a9AoRR0PiwTkrg7GbVylTnaii0l0cSa6-LkG-x__3OfpN36l3ilHMC6m4jgWzgUOyIkIa3BQjljV_DO3rb-Rb8O8T4An357ZgZlJ-oi7MDd8mtyM0zrMHrW7vX4dpk_8nnvKAT17wWU9U953TbXnVA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61Balw4NGHCJTiA5yK1Y2drL0HhFCgSpSHeihSLmhrr8cCqcobUG78h_6P_qj-ko730Qik5tYDt13ZO9pdf56H7fkG4K1TsYpMU3PtUIaUnCbNOdQcYytEYglS2uTFJtRgoIfD5HQDrqpcmHCsstKJuaJ24yyskR_LEMk0yReMP06mPFSNCrurVQmNAhZdXP6mkG3-ofOZxvedECdfzlptXlYV4JnUzQWXXqIlM-mUQumNS7Curcq8RiV9ZFWiPVlVZR0ZUgovXOJ1RJ0I6CgiRC9J7iY8aARmsXBUUJxWmr8R67zeL5ngmCuCd5mkU6TqyXoccbKQPFCgRHz5tyFcebf_bMjmdu7k6f_2h57Bk9KjZp-KKfAcNnC0A4_7t3S081341gpn6_M0U2Rjz4JrbWbMjBwbFVQhdDfAsJ8xuv5zWV6xoro2I7eekTDWMt9DaztfoZo5htOCJn0Pvt7L9-3DFr0dvgBGAbMxRomGpejeOLSk0bCBRgtvkeTWoF4NcpqVpOuh9sdFuqKLDsBICRhpDox0WYOj22cmBeXI2t4HFRrSUv3M0xUUavC-wtOq-W5pL9dLewPb7bN-L-11Bt1X8EiQg1csRx3A1mL2E1_Dw-zX4sd8dphPDAbn942zG551Sq0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBt1ifOXjT4HbTbrJHqZaKWgQf9CJLtpmgIGttq-DN_-A_9Jc42YdVUUG87bKzQ5hMkm-SzDcAW0YG0tM1xZVB4VJyajTmUHEMYt8PY3IppdNiE7LVUu12ePohiz-97V4cSWY5DY6lKRnsdo3dHSa-iUrgcVpvuCMU8fjTKIxV3UV6F6-fXRZzcTVQaQVeWhQDLsnh8rSZ73V8XpqGePPLEWm68jRm_t_mWZjOUSfby9xkDkYwmYepk3fK1v4CXNXd_fM0FRPZnWUOfuoe04lhSUanQW8tdHv-yevzS_7EsgrUjKAvI2Wsrq_d12a6i9MzDO8zKvFFuGgcnNebPK-9wDtC1QZcWIExgQkjJQqrTYgVFcuOVSiF9WIZKkvYQ8aG4AYFYSa0yiMhmg7Q9xCtWIIStQ6XgVFQqbWWfjWmCFgbit4rJIha-TZG0luGSmH2qJMTk7v6GLfRkFLZmS4i00Wp6aKnMmy__9PNaDl-lV4rejPKh2g_Ei40rlFwEZRhp-i94eefta38TXwTJk73G9HxYetoFSZ9wkTZDs4alAa9B1yH8c7j4Kbf20g99w1b6O6a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+linear+and+nonlinear+Neumann%E2%80%93Neumann+method+for+the+Cahn%E2%80%93Hilliard+equation&rft.jtitle=Japan+journal+of+industrial+and+applied+mathematics&rft.au=Garai%2C+Gobinda&rft.date=2024-01-01&rft.pub=Springer+Japan&rft.issn=0916-7005&rft.eissn=1868-937X&rft.volume=41&rft.issue=1&rft.spage=211&rft.epage=232&rft_id=info:doi/10.1007%2Fs13160-023-00600-y&rft.externalDocID=10_1007_s13160_023_00600_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7005&client=summon