Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme

Higher-order tensors are used in many application fields, such as statistics, signal processing, and scientific computing. Efficient and reliable algorithms for manipulating these multi-way arrays are thus required. In this paper, we focus on the best rank-(R1, R2, R3) approximation of third-order t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications Jg. 32; H. 1; S. 115 - 135
Hauptverfasser: Ishteva, Mariya, Absil, P.-A., Van Huffel, Sabine, De Lathauwer, Lieven
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Schlagworte:
ISSN:0895-4798, 1095-7162
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher-order tensors are used in many application fields, such as statistics, signal processing, and scientific computing. Efficient and reliable algorithms for manipulating these multi-way arrays are thus required. In this paper, we focus on the best rank-(R1, R2, R3) approximation of third-order tensors. We propose a new iterative algorithm based on the trust-region scheme. The tensor approximation problem is expressed as a minimization of a cost function on a product of three Grassmann manifolds. We apply the Riemannian trust-region scheme, using the truncated conjugate-gradient method for solving the trust-region subproblem. Making use of second order information of the cost function, superlinear convergence is achieved. If the stopping criterion of the subproblem is chosen adequately, the local convergence rate is quadratic. We compare this new method with the well-known higher-order orthogonal iteration method and discuss the advantages over Newton-type methods. [PUBLICATION ABSTRACT]
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0895-4798
1095-7162
DOI:10.1137/090764827