A multi-genre model for music emotion recognition using linear regressors

Making the link between human emotion and music is challenging. Our aim was to produce an efficient system that emotionally rates songs from multiple genres. To achieve this, we employed a series of online self-report studies, utilising Russell's circumplex model. The first study (n = 44) ident...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of new music research Ročník 50; číslo 4; s. 355 - 372
Hlavní autoři: Griffiths, Darryl, Cunningham, Stuart, Weinel, Jonathan, Picking, Richard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Routledge 08.08.2021
Taylor & Francis Ltd
Témata:
ISSN:0929-8215, 1744-5027
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Making the link between human emotion and music is challenging. Our aim was to produce an efficient system that emotionally rates songs from multiple genres. To achieve this, we employed a series of online self-report studies, utilising Russell's circumplex model. The first study (n = 44) identified audio features that map to arousal and valence for 20 songs. From this, we constructed a set of linear regressors. The second study (n = 158) measured the efficacy of our system, utilising 40 new songs to create a ground truth. Results show our approach may be effective at emotionally rating music, particularly in the prediction of valence.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0929-8215
1744-5027
DOI:10.1080/09298215.2021.1977336