Multi-input CNN-GRU based human activity recognition using wearable sensors

Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive to understand human behaviour and inherently anticipate human intentions. Human activity data obtained via wearable sensors like gyroscope an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computing Ročník 103; číslo 7; s. 1461 - 1478
Hlavní autori: Dua, Nidhi, Singh, Shiva Nand, Semwal, Vijay Bhaskar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 01.07.2021
Springer Nature B.V
Predmet:
ISSN:0010-485X, 1436-5057
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive to understand human behaviour and inherently anticipate human intentions. Human activity data obtained via wearable sensors like gyroscope and accelerometer is in the form of time series data, as each reading has a timestamp associated with it. For HAR, it is important to extract the relevant temporal features from raw sensor data. Most of the approaches for HAR involves a good amount of feature engineering and data pre-processing, which in turn requires domain expertise. Such approaches are time-consuming and are application-specific. In this work, a Deep Neural Network based model, which uses Convolutional Neural Network, and Gated Recurrent Unit is proposed as an end-to-end model performing automatic feature extraction and classification of the activities as well. The experiments in this work were carried out using the raw data obtained from wearable sensors with nominal pre-processing and don’t involve any handcrafted feature extraction techniques. The accuracies obtained on UCI-HAR, WISDM, and PAMAP2 datasets are 96.20%, 97.21%, and 95.27% respectively. The results of the experiments establish that the proposed model achieved superior classification performance than other similar architectures.
AbstractList Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive to understand human behaviour and inherently anticipate human intentions. Human activity data obtained via wearable sensors like gyroscope and accelerometer is in the form of time series data, as each reading has a timestamp associated with it. For HAR, it is important to extract the relevant temporal features from raw sensor data. Most of the approaches for HAR involves a good amount of feature engineering and data pre-processing, which in turn requires domain expertise. Such approaches are time-consuming and are application-specific. In this work, a Deep Neural Network based model, which uses Convolutional Neural Network, and Gated Recurrent Unit is proposed as an end-to-end model performing automatic feature extraction and classification of the activities as well. The experiments in this work were carried out using the raw data obtained from wearable sensors with nominal pre-processing and don’t involve any handcrafted feature extraction techniques. The accuracies obtained on UCI-HAR, WISDM, and PAMAP2 datasets are 96.20%, 97.21%, and 95.27% respectively. The results of the experiments establish that the proposed model achieved superior classification performance than other similar architectures.
Author Semwal, Vijay Bhaskar
Dua, Nidhi
Singh, Shiva Nand
Author_xml – sequence: 1
  givenname: Nidhi
  orcidid: 0000-0001-9812-9141
  surname: Dua
  fullname: Dua, Nidhi
  email: 2016rsec001@nitjsr.ac.in
  organization: Department of ECE, NIT Jamshedpur
– sequence: 2
  givenname: Shiva Nand
  surname: Singh
  fullname: Singh, Shiva Nand
  organization: Department of ECE, NIT Jamshedpur
– sequence: 3
  givenname: Vijay Bhaskar
  surname: Semwal
  fullname: Semwal, Vijay Bhaskar
  organization: Department of CSE, MANIT Bhopal
BookMark eNp9kEFLwzAUx4MouE2_gKeC5-hLk7TpUYZOcU4QB95C0qYzo0tnkir79nZWEDzs9C7_33v_9xujY9c6g9AFgSsCkF8HgAxyDCnBAEUqsDhCI8Johjnw_BiNAAhgJvjbKRqHsAaAlIpihB6fuiZabN22i8l0scCzl2WiVTBV8t5tlEtUGe2njbvEm7JdORtt65IuWLdKvozySjcmCcaF1oczdFKrJpjz3zlBy7vb1-k9nj_PHqY3c1xSwSOmmdaUsIrUJRFFppihOSieGV1pApoJYqgqua4oK0H370BhDMsEz2tNDACdoMth79a3H50JUa7bzrv-pEw5yxjwFESfEkOq9G0I3tSytFHt60evbCMJyL06OaiTvTr5o07u0fQfuvV2o_zuMEQHKPRhtzL-r9UB6huC4oKz
CitedBy_id crossref_primary_10_1038_s41598_025_90764_z
crossref_primary_10_1109_JSEN_2023_3292380
crossref_primary_10_32604_cmc_2024_052771
crossref_primary_10_1109_JSEN_2022_3144157
crossref_primary_10_1016_j_eswa_2024_125912
crossref_primary_10_1109_ACCESS_2022_3204739
crossref_primary_10_1109_ACCESS_2023_3316509
crossref_primary_10_1109_TTE_2024_3502466
crossref_primary_10_1007_s11042_023_17400_8
crossref_primary_10_1109_JSEN_2024_3450499
crossref_primary_10_1016_j_engappai_2024_109126
crossref_primary_10_1061_JCEMD4_COENG_14645
crossref_primary_10_3390_make5020028
crossref_primary_10_1007_s11042_024_20475_6
crossref_primary_10_1109_TIM_2023_3276004
crossref_primary_10_1016_j_optlastec_2023_109227
crossref_primary_10_1109_JSEN_2021_3130913
crossref_primary_10_3390_app13084961
crossref_primary_10_3390_electronics12071622
crossref_primary_10_1093_ijlct_ctae060
crossref_primary_10_3389_fcomp_2022_924954
crossref_primary_10_1002_cpe_7571
crossref_primary_10_3390_s25072299
crossref_primary_10_1016_j_asoc_2024_111599
crossref_primary_10_1155_2022_5422428
crossref_primary_10_1109_ACCESS_2025_3577730
crossref_primary_10_3390_s21248294
crossref_primary_10_1109_JBHI_2022_3193148
crossref_primary_10_1080_02564602_2022_2101557
crossref_primary_10_1016_j_engappai_2023_106144
crossref_primary_10_1109_JSEN_2025_3565646
crossref_primary_10_1016_j_eswa_2025_128236
crossref_primary_10_1007_s11042_023_17289_3
crossref_primary_10_1017_S0263574723001327
crossref_primary_10_1038_s41598_023_45954_y
crossref_primary_10_1109_JIOT_2024_3394050
crossref_primary_10_1371_journal_pone_0304655
crossref_primary_10_1109_ACCESS_2022_3185112
crossref_primary_10_1007_s00521_024_09645_7
crossref_primary_10_3390_diagnostics15050537
crossref_primary_10_1016_j_asoc_2024_111344
crossref_primary_10_1177_18761364251339587
crossref_primary_10_3389_fbioe_2022_946329
crossref_primary_10_1049_2024_4982277
crossref_primary_10_1049_htl2_70013
crossref_primary_10_1007_s40747_023_01257_3
crossref_primary_10_1080_1206212X_2024_2427287
crossref_primary_10_1109_TITS_2023_3326281
crossref_primary_10_3390_s23239613
crossref_primary_10_1109_JBHI_2023_3298530
crossref_primary_10_1109_JSEN_2022_3198248
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1016_j_asoc_2024_112550
crossref_primary_10_1007_s44163_025_00503_6
crossref_primary_10_3389_fenrg_2023_1160302
crossref_primary_10_1016_j_future_2024_06_016
crossref_primary_10_1016_j_ins_2023_01_121
crossref_primary_10_1007_s11042_025_20650_3
crossref_primary_10_1016_j_ins_2023_119073
crossref_primary_10_1088_2631_8695_ad43b9
crossref_primary_10_3390_info15060343
crossref_primary_10_1038_s41598_024_82045_y
crossref_primary_10_1109_ACCESS_2025_3561697
crossref_primary_10_1002_for_3147
crossref_primary_10_1007_s13198_021_01194_9
crossref_primary_10_3390_s23177493
crossref_primary_10_1038_s41598_024_57912_3
crossref_primary_10_1109_ACCESS_2024_3493389
crossref_primary_10_1007_s10115_024_02122_6
crossref_primary_10_3233_THC_241064
crossref_primary_10_3390_rs14051196
crossref_primary_10_1155_2021_3870657
crossref_primary_10_1109_JSEN_2024_3373444
crossref_primary_10_32604_cmc_2023_040506
crossref_primary_10_3390_modelling6020033
crossref_primary_10_1109_JSEN_2023_3319353
crossref_primary_10_1016_j_birob_2023_100089
crossref_primary_10_1038_s41598_025_01941_z
crossref_primary_10_1109_JSEN_2021_3122258
crossref_primary_10_1088_2634_4386_ac4c38
crossref_primary_10_1109_JSEN_2024_3492004
crossref_primary_10_3390_app131910560
crossref_primary_10_1109_JSEN_2022_3174280
crossref_primary_10_1109_JIOT_2024_3394244
crossref_primary_10_1007_s41870_022_01116_3
crossref_primary_10_32604_cmes_2023_025484
crossref_primary_10_1016_j_image_2025_117308
crossref_primary_10_1016_j_procs_2025_03_261
crossref_primary_10_3390_mca29050080
crossref_primary_10_3390_s23125715
crossref_primary_10_3390_s24217077
crossref_primary_10_3390_computers13110300
crossref_primary_10_1016_j_eswa_2023_121978
crossref_primary_10_1038_s41598_025_12114_3
crossref_primary_10_1155_2024_1832298
crossref_primary_10_1017_S0263574725102312
crossref_primary_10_3390_s22145222
crossref_primary_10_1109_JIOT_2024_3415114
crossref_primary_10_32604_cmc_2023_040528
crossref_primary_10_1080_21642583_2024_2328549
crossref_primary_10_1109_JSEN_2023_3312146
crossref_primary_10_1109_JSEN_2023_3332897
crossref_primary_10_3390_s22020635
crossref_primary_10_1109_JIOT_2021_3101115
crossref_primary_10_3390_s25030632
crossref_primary_10_1109_TIM_2023_3303495
crossref_primary_10_3390_s25144320
crossref_primary_10_1016_j_measen_2024_101398
crossref_primary_10_1007_s10845_024_02518_9
crossref_primary_10_1109_JSEN_2024_3380076
crossref_primary_10_3390_bioengineering11111124
crossref_primary_10_1016_j_inffus_2025_103409
crossref_primary_10_1109_ACCESS_2024_3372593
crossref_primary_10_3390_app131910931
crossref_primary_10_3390_app132312602
crossref_primary_10_1002_spe_3394
crossref_primary_10_1109_TCE_2023_3266506
crossref_primary_10_3390_s23010113
crossref_primary_10_1109_JSEN_2024_3355704
crossref_primary_10_1109_ACCESS_2024_3360490
crossref_primary_10_1038_s41598_025_90307_6
crossref_primary_10_1109_JIOT_2022_3209084
crossref_primary_10_1016_j_neucom_2023_126882
crossref_primary_10_1109_JSEN_2023_3282171
crossref_primary_10_1109_JSEN_2023_3327723
crossref_primary_10_1109_ACCESS_2023_3338137
crossref_primary_10_1109_TCSS_2023_3244188
crossref_primary_10_1016_j_asoc_2023_110954
crossref_primary_10_1109_ACCESS_2025_3590407
crossref_primary_10_1021_acsami_5c06453
crossref_primary_10_1007_s11042_021_11885_x
crossref_primary_10_1186_s42408_023_00203_5
crossref_primary_10_1016_j_measurement_2023_113267
crossref_primary_10_3390_s24165436
crossref_primary_10_1145_3705893
crossref_primary_10_3390_bios12060393
crossref_primary_10_3390_app13042475
crossref_primary_10_3389_fphys_2023_1239453
crossref_primary_10_1016_j_patcog_2025_112142
crossref_primary_10_1109_TII_2022_3229522
crossref_primary_10_1109_JSEN_2023_3282601
crossref_primary_10_1109_ACCESS_2024_3524032
crossref_primary_10_1016_j_knosys_2023_110758
crossref_primary_10_1016_j_bspc_2024_106034
crossref_primary_10_1109_JSEN_2023_3335213
crossref_primary_10_1109_TNSM_2023_3266257
crossref_primary_10_1007_s11063_022_10744_6
crossref_primary_10_1109_JIOT_2024_3375337
crossref_primary_10_1111_exsy_12988
crossref_primary_10_1111_exsy_12743
crossref_primary_10_1088_1361_6501_adf76d
crossref_primary_10_3390_jimaging9010003
crossref_primary_10_1016_j_chemosphere_2023_140989
crossref_primary_10_1016_j_iot_2024_101487
crossref_primary_10_3390_bios12100821
crossref_primary_10_1016_j_eswa_2023_122987
crossref_primary_10_1007_s00521_023_08644_4
crossref_primary_10_1016_j_ifacol_2022_06_015
crossref_primary_10_1016_j_compbiomed_2025_110962
crossref_primary_10_3390_s23073388
crossref_primary_10_1007_s11042_022_13716_z
crossref_primary_10_1016_j_knosys_2023_110867
crossref_primary_10_1109_JSEN_2023_3335449
crossref_primary_10_3390_computation11020020
crossref_primary_10_1109_JIOT_2025_3559892
crossref_primary_10_3390_s22041476
crossref_primary_10_1155_2022_3321810
crossref_primary_10_1109_JIOT_2023_3286378
crossref_primary_10_1186_s40537_024_00915_8
crossref_primary_10_1080_10589759_2024_2440644
crossref_primary_10_1016_j_scs_2024_105437
crossref_primary_10_1007_s00521_025_11410_3
crossref_primary_10_1007_s10462_021_09979_x
crossref_primary_10_1007_s11042_023_15007_7
crossref_primary_10_1016_j_patcog_2023_110054
crossref_primary_10_1109_TNSRE_2025_3574999
crossref_primary_10_1111_exsy_13457
crossref_primary_10_1007_s12530_022_09480_y
crossref_primary_10_3390_s23198234
crossref_primary_10_1109_JSEN_2023_3332290
crossref_primary_10_1109_TBDATA_2023_3319252
crossref_primary_10_1142_S0219519425400421
crossref_primary_10_1007_s11042_025_21047_y
crossref_primary_10_3390_electronics12234772
crossref_primary_10_1109_JSEN_2024_3464633
crossref_primary_10_1109_JSEN_2021_3119381
crossref_primary_10_1109_ACCESS_2024_3440215
crossref_primary_10_3390_bios12070549
crossref_primary_10_1109_ACCESS_2024_3484955
crossref_primary_10_1109_JSEN_2022_3175881
crossref_primary_10_3390_technologies11020055
crossref_primary_10_1109_ACCESS_2024_3473828
crossref_primary_10_1109_JSEN_2021_3066473
crossref_primary_10_1109_JSEN_2023_3338264
crossref_primary_10_3390_s21196393
crossref_primary_10_1111_exsy_12706
crossref_primary_10_1016_j_inffus_2023_102136
crossref_primary_10_3389_fpsyg_2022_897642
crossref_primary_10_1109_JSEN_2023_3267243
crossref_primary_10_1109_TIM_2025_3568970
crossref_primary_10_3390_s25010197
crossref_primary_10_1109_ACCESS_2023_3310269
crossref_primary_10_32604_cmc_2023_037514
crossref_primary_10_1007_s12273_021_0870_z
crossref_primary_10_1155_2022_4753732
crossref_primary_10_1016_j_nanoen_2023_108418
crossref_primary_10_3390_asi8030057
crossref_primary_10_1007_s13748_025_00381_0
crossref_primary_10_3390_s23249721
crossref_primary_10_1088_1361_6579_ad0ab8
crossref_primary_10_1016_j_knosys_2025_113076
crossref_primary_10_1007_s40747_021_00508_5
crossref_primary_10_1016_j_neunet_2024_106159
crossref_primary_10_1109_TDEI_2024_3379954
crossref_primary_10_3390_s23094319
crossref_primary_10_1109_JIOT_2022_3223674
crossref_primary_10_3390_app13169059
crossref_primary_10_1007_s11042_024_20352_2
crossref_primary_10_1016_j_engappai_2023_105982
crossref_primary_10_1109_JIOT_2022_3222221
crossref_primary_10_3389_fbioe_2024_1398291
crossref_primary_10_1007_s00521_022_07911_0
crossref_primary_10_1155_2023_8273546
crossref_primary_10_1109_JSEN_2023_3323314
crossref_primary_10_3390_app14125019
crossref_primary_10_3390_bioengineering10091082
crossref_primary_10_1088_1402_4896_adab43
Cites_doi 10.1155/2018/7316954
10.1007/s11042-015-2643-0
10.1016/j.inffus.2017.01.004
10.1007/978-3-030-48849-9_12
10.1109/JSEN.2016.2628346
10.1007/s00607-018-0677-7
10.1007/s00521-015-2089-3
10.1016/j.eswa.2018.03.056
10.1109/JSEN.2016.2519679
10.1007/s00521-016-2744-3
10.1007/978-981-15-3357-0_14
10.1109/THMS.2018.2884717
10.1016/j.asoc.2017.09.027
10.1016/j.neucom.2019.07.034
10.1109/TIE.2018.2864702
10.1109/JSEN.2016.2570281
10.1109/ACCESS.2017.2779939
10.1007/s00607-012-0216-x
10.1007/s00607-019-00745-0
10.1007/s00607-018-0609-6
10.1109/ACCESS.2018.2890675
10.1007/s11042-019-08463-7
10.1109/JSEN.2017.2782492
10.1007/s11036-019-01445-x
10.1109/JIOT.2020.2995940
10.1109/72.279181
10.1109/ACCESS.2018.2873315
10.1016/j.eswa.2016.04.032
10.1007/978-981-13-0923-6_12
10.1109/ACCESS.2019.2920969
10.1109/ACCESS.2020.2982225
10.1145/1964897.1964918
10.1145/1553374.1553453
10.1109/ICAIIC48513.2020.9065078
10.1109/EUVIP47703.2019.8946180
10.1145/3267242.3267286
10.3115/v1/W14-4012
10.1109/ICASERT.2019.8934463
10.1109/ISWC.2012.13
10.5772/intechopen.81170
10.2991/icaita-16.2016.13
10.1109/ICMCCE.2018.00052
10.1109/TENCON.2016.7848159
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s00607-021-00928-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 1478
ExternalDocumentID 10_1007_s00607_021_00928_8
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: ECR/2018/000203
  funderid: http://dx.doi.org/10.13039/501100001843
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-36bb314d1fc1896a4e370a56ebdb10b481e3ac5bd34c0b00909ee46857fb1e003
IEDL.DBID RSV
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627196600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Wed Nov 26 13:52:22 EST 2025
Sat Nov 29 03:51:38 EST 2025
Tue Nov 18 21:56:25 EST 2025
Fri Feb 21 02:47:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Long short term memory (LSTM)
CNN
Deep neural networks
68W
Primary Classification: 68T
GRU
Human activity recognition
62H
15A
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-36bb314d1fc1896a4e370a56ebdb10b481e3ac5bd34c0b00909ee46857fb1e003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9812-9141
PQID 2546405208
PQPubID 48322
PageCount 18
ParticipantIDs proquest_journals_2546405208
crossref_citationtrail_10_1007_s00607_021_00928_8
crossref_primary_10_1007_s00607_021_00928_8
springer_journals_10_1007_s00607_021_00928_8
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2021
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Zhao, Yang, Chevalier, Xu, Zhang (CR26) 2018
Guo, Wang, Yang, Li, An (CR7) 2018; 49
Yang, Raymond, Zhang, Wan, Long (CR50) 2018; 6
Semwal, Mondal, Nandi (CR11) 2017; 28
CR39
Yu, Dong (CR10) 2018; 100
CR33
Raj, Semwal, Nandi (CR44) 2018; 30
Khan, Sohn (CR1) 2013; 95
Ignatov (CR20) 2018; 62
Canizo, Triguero, Conde, Onieva (CR30) 2019; 363
CR4
CR3
Gupta, Semwal (CR43) 2020
Bengio, Simard, Frasconi (CR47) 1994; 5
CR49
CR48
Semwal, Gaud, Nandi (CR34) 2019
CR46
CR45
Zhang, Zhang, Hu (CR9) 2019; 101
CR41
Kwapisz, Weiss, Moore (CR23) 2011; 12
Quaid, Jalal (CR36) 2020; 79
Ronao, Cho (CR21) 2016; 59
Wang, Wu, Gravina, Fortino, Jiang, Tang (CR35) 2017; 37
Karim, Majumdar, Darabi, Chen (CR31) 2017; 6
CR19
CR16
CR15
CR14
Cornacchia, Ozcan, Zheng, Velipasalar (CR2) 2016; 17
CR12
CR52
CR51
Xu, Chai, He, Zhang, Duan (CR27) 2019; 7
Zhang, Zhang, Zhang, Bao, Zhang, Deng (CR37) 2019; 7
Lu, Zheng, Sheng, Jin, Yu (CR38) 2020; 7
Nweke, Teh, Al-Garadi, Alo (CR8) 2018; 105
Kaushik, Choudhury, Dasgupta, Natarajan, Pickett, Dutt (CR32) 2020
Liu, Hsaio, Tu (CR18) 2018; 66
Semwal, Nandi (CR42) 2016; 16
CR28
Wan, Qi, Xu, Tong, Gu (CR17) 2020; 25
CR25
Jain, Kanhangad (CR5) 2017; 18
CR24
CR22
Xia, Huang, Wang (CR29) 2020; 8
Ignatov, Strijov (CR40) 2016; 75
Wang, Wu, Chen, Ghoneim, Hossain (CR6) 2016; 16
Al-Makhadmeh, Tolba (CR13) 2020; 102
X Yu (928_CR10) 2018; 100
JR Kwapisz (928_CR23) 2011; 12
Z Yang (928_CR50) 2018; 6
Y Zhang (928_CR37) 2019; 7
MA Quaid (928_CR36) 2020; 79
K Xia (928_CR29) 2020; 8
928_CR33
Y Bengio (928_CR47) 1994; 5
928_CR39
CA Ronao (928_CR21) 2016; 59
AD Ignatov (928_CR40) 2016; 75
A Jain (928_CR5) 2017; 18
Z Al-Makhadmeh (928_CR13) 2020; 102
J Lu (928_CR38) 2020; 7
A Ignatov (928_CR20) 2018; 62
928_CR41
928_CR49
X Zhang (928_CR9) 2019; 101
VB Semwal (928_CR34) 2019
928_CR45
928_CR46
M Cornacchia (928_CR2) 2016; 17
928_CR48
M Raj (928_CR44) 2018; 30
M Guo (928_CR7) 2018; 49
VB Semwal (928_CR11) 2017; 28
C Xu (928_CR27) 2019; 7
HF Nweke (928_CR8) 2018; 105
VB Semwal (928_CR42) 2016; 16
A Gupta (928_CR43) 2020
928_CR52
S Wan (928_CR17) 2020; 25
F Karim (928_CR31) 2017; 6
928_CR51
928_CR16
928_CR19
928_CR12
928_CR14
928_CR15
M Canizo (928_CR30) 2019; 363
S Kaushik (928_CR32) 2020
928_CR22
Z Wang (928_CR6) 2016; 16
CL Liu (928_CR18) 2018; 66
ZA Khan (928_CR1) 2013; 95
928_CR28
928_CR3
928_CR4
928_CR24
Z Wang (928_CR35) 2017; 37
928_CR25
Y Zhao (928_CR26) 2018
References_xml – ident: CR45
– ident: CR22
– year: 2018
  ident: CR26
  article-title: Deep residual bidir-LSTM for human activity recognition using wearable sensors
  publication-title: Math Problems Eng
  doi: 10.1155/2018/7316954
– volume: 75
  start-page: 7257
  issue: 12
  year: 2016
  end-page: 7270
  ident: CR40
  article-title: Human activity recognition using quasiperiodic time series collected from a single tri-axial accelerometer
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2643-0
– volume: 37
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR35
  article-title: Kernel fusion based extreme learning machine for cross-location activity recognition
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.01.004
– ident: CR49
– start-page: 185
  year: 2020
  end-page: 197
  ident: CR43
  article-title: Multiple task human gait analysis and identification: ensemble learning approach
  publication-title: Emotion and Information Processing
  doi: 10.1007/978-3-030-48849-9_12
– ident: CR4
– ident: CR39
– ident: CR16
– volume: 17
  start-page: 386
  year: 2016
  end-page: 403
  ident: CR2
  article-title: A survey on activity detection and classification using wearable sensors
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2628346
– ident: CR51
– ident: CR12
– volume: 101
  start-page: 637
  issue: 6
  year: 2019
  end-page: 652
  ident: CR9
  article-title: Deep learning based vein segmentation from susceptibility-weighted images
  publication-title: Computing
  doi: 10.1007/s00607-018-0677-7
– volume: 28
  start-page: 565
  year: 2017
  end-page: 574
  ident: CR11
  article-title: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2089-3
– volume: 105
  start-page: 233
  year: 2018
  end-page: 261
  ident: CR8
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.056
– ident: CR25
– ident: CR46
– ident: CR19
– volume: 16
  start-page: 3198
  issue: 9
  year: 2016
  end-page: 3207
  ident: CR6
  article-title: A triaxial accelerometer-based human activity recognition via EEMD-based features and game-theory-based feature selection
  publication-title: IEEE Sens J.
  doi: 10.1109/JSEN.2016.2519679
– ident: CR15
– volume: 30
  start-page: 1747
  issue: 6
  year: 2018
  end-page: 1755
  ident: CR44
  article-title: Bidirectional association of joint angle trajectories for humanoid locomotion: the restricted Boltzmann machine approach
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2744-3
– start-page: 199
  year: 2020
  end-page: 216
  ident: CR32
  article-title: Ensemble of multi-headed machine learning architectures for time-series forecasting of healthcare expenditures
  publication-title: Applications of Machine Learning
  doi: 10.1007/978-981-15-3357-0_14
– volume: 49
  start-page: 105
  issue: 1
  year: 2018
  end-page: 111
  ident: CR7
  article-title: A multisensor multiclassifier hierarchical fusion model based on entropy weight for human activity recognition using wearable inertial sensors
  publication-title: IEEE Trans Hum–Mach Syst.
  doi: 10.1109/THMS.2018.2884717
– volume: 62
  start-page: 915
  year: 2018
  end-page: 922
  ident: CR20
  article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.09.027
– volume: 363
  start-page: 246
  year: 2019
  end-page: 260
  ident: CR30
  article-title: Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.034
– volume: 66
  start-page: 4788
  issue: 6
  year: 2018
  end-page: 4797
  ident: CR18
  article-title: Time series classification with multivariate convolutional neural network
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2864702
– volume: 16
  start-page: 5805
  issue: 14
  year: 2016
  end-page: 5816
  ident: CR42
  article-title: Generation of joint trajectories using hybrid automate-based model: a rocking block-based approach
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2570281
– volume: 6
  start-page: 1662
  year: 2017
  end-page: 1669
  ident: CR31
  article-title: LSTM fully convolutional networks for time series classification
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2017.2779939
– volume: 95
  start-page: 109
  year: 2013
  end-page: 127
  ident: CR1
  article-title: A hierarchical abnormal human activity recognition system based on R-transform and kernel discriminant analysis for elderly health care
  publication-title: Computing
  doi: 10.1007/s00607-012-0216-x
– volume: 102
  start-page: 501
  issue: 2
  year: 2020
  end-page: 522
  ident: CR13
  article-title: Automatic hate speech detection using killer natural language processing optimizing ensemble deep learning approach
  publication-title: Computing
  doi: 10.1007/s00607-019-00745-0
– ident: CR14
– volume: 100
  start-page: 773
  issue: 8
  year: 2018
  end-page: 785
  ident: CR10
  article-title: PTL-CFS based deep convolutional neural network model for remote sensing classification
  publication-title: Computing
  doi: 10.1007/s00607-018-0609-6
– volume: 7
  start-page: 9893
  year: 2019
  end-page: 9902
  ident: CR27
  article-title: InnoHAR: A deep neural network for complex human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890675
– volume: 79
  start-page: 6061
  issue: 9
  year: 2020
  end-page: 6083
  ident: CR36
  article-title: Wearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithm
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08463-7
– ident: CR33
– volume: 18
  start-page: 1169
  issue: 3
  year: 2017
  end-page: 1177
  ident: CR5
  article-title: Human activity classification in smartphones using accelerometer and gyroscope sensors
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2782492
– volume: 25
  start-page: 743
  issue: 2
  year: 2020
  end-page: 755
  ident: CR17
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mobile Networks Appl
  doi: 10.1007/s11036-019-01445-x
– volume: 7
  start-page: 11137
  issue: 11
  year: 2020
  end-page: 11146
  ident: CR38
  article-title: Efficient human activity recognition using a single wearable sensor
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2995940
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  ident: CR47
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.279181
– volume: 6
  start-page: 56750
  year: 2018
  end-page: 56764
  ident: CR50
  article-title: DFTerNet: Towards 2-bit dynamic fusion networks for accurate human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873315
– volume: 59
  start-page: 235
  year: 2016
  end-page: 244
  ident: CR21
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.032
– start-page: 135
  year: 2019
  end-page: 145
  ident: CR34
  article-title: Human gait state prediction using cellular automata and classification using ELM
  publication-title: Machine intelligence and signal analysis
  doi: 10.1007/978-981-13-0923-6_12
– volume: 7
  start-page: 75213
  year: 2019
  end-page: 75226
  ident: CR37
  article-title: Human activity recognition based on motion sensor using u-net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920969
– ident: CR48
– volume: 8
  start-page: 56855
  year: 2020
  end-page: 56866
  ident: CR29
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– ident: CR3
– ident: CR52
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 82
  ident: CR23
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1964897.1964918
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 100
  start-page: 773
  issue: 8
  year: 2018
  ident: 928_CR10
  publication-title: Computing
  doi: 10.1007/s00607-018-0609-6
– ident: 928_CR15
  doi: 10.1145/1553374.1553453
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 928_CR47
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.279181
– volume: 7
  start-page: 75213
  year: 2019
  ident: 928_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920969
– ident: 928_CR4
– year: 2018
  ident: 928_CR26
  publication-title: Math Problems Eng
  doi: 10.1155/2018/7316954
– ident: 928_CR14
– ident: 928_CR28
  doi: 10.1109/ICAIIC48513.2020.9065078
– volume: 37
  start-page: 1
  year: 2017
  ident: 928_CR35
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.01.004
– ident: 928_CR24
  doi: 10.1109/EUVIP47703.2019.8946180
– ident: 928_CR52
  doi: 10.1145/3267242.3267286
– volume: 95
  start-page: 109
  year: 2013
  ident: 928_CR1
  publication-title: Computing
  doi: 10.1007/s00607-012-0216-x
– volume: 101
  start-page: 637
  issue: 6
  year: 2019
  ident: 928_CR9
  publication-title: Computing
  doi: 10.1007/s00607-018-0677-7
– start-page: 199
  volume-title: Applications of Machine Learning
  year: 2020
  ident: 928_CR32
  doi: 10.1007/978-981-15-3357-0_14
– volume: 30
  start-page: 1747
  issue: 6
  year: 2018
  ident: 928_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2744-3
– ident: 928_CR48
  doi: 10.3115/v1/W14-4012
– volume: 363
  start-page: 246
  year: 2019
  ident: 928_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.034
– volume: 6
  start-page: 1662
  year: 2017
  ident: 928_CR31
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2017.2779939
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  ident: 928_CR23
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1964897.1964918
– ident: 928_CR51
– volume: 102
  start-page: 501
  issue: 2
  year: 2020
  ident: 928_CR13
  publication-title: Computing
  doi: 10.1007/s00607-019-00745-0
– ident: 928_CR49
– volume: 7
  start-page: 11137
  issue: 11
  year: 2020
  ident: 928_CR38
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2995940
– volume: 6
  start-page: 56750
  year: 2018
  ident: 928_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873315
– volume: 105
  start-page: 233
  year: 2018
  ident: 928_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.056
– ident: 928_CR16
– ident: 928_CR33
  doi: 10.1109/ICASERT.2019.8934463
– ident: 928_CR39
  doi: 10.1109/ISWC.2012.13
– volume: 18
  start-page: 1169
  issue: 3
  year: 2017
  ident: 928_CR5
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2782492
– volume: 49
  start-page: 105
  issue: 1
  year: 2018
  ident: 928_CR7
  publication-title: IEEE Trans Hum–Mach Syst.
  doi: 10.1109/THMS.2018.2884717
– ident: 928_CR12
– start-page: 135
  volume-title: Machine intelligence and signal analysis
  year: 2019
  ident: 928_CR34
  doi: 10.1007/978-981-13-0923-6_12
– ident: 928_CR41
  doi: 10.5772/intechopen.81170
– volume: 16
  start-page: 3198
  issue: 9
  year: 2016
  ident: 928_CR6
  publication-title: IEEE Sens J.
  doi: 10.1109/JSEN.2016.2519679
– volume: 62
  start-page: 915
  year: 2018
  ident: 928_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.09.027
– volume: 59
  start-page: 235
  year: 2016
  ident: 928_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.032
– volume: 66
  start-page: 4788
  issue: 6
  year: 2018
  ident: 928_CR18
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2864702
– volume: 28
  start-page: 565
  year: 2017
  ident: 928_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2089-3
– volume: 25
  start-page: 743
  issue: 2
  year: 2020
  ident: 928_CR17
  publication-title: Mobile Networks Appl
  doi: 10.1007/s11036-019-01445-x
– start-page: 185
  volume-title: Emotion and Information Processing
  year: 2020
  ident: 928_CR43
  doi: 10.1007/978-3-030-48849-9_12
– volume: 79
  start-page: 6061
  issue: 9
  year: 2020
  ident: 928_CR36
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08463-7
– ident: 928_CR19
– volume: 75
  start-page: 7257
  issue: 12
  year: 2016
  ident: 928_CR40
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2643-0
– ident: 928_CR46
– ident: 928_CR22
  doi: 10.2991/icaita-16.2016.13
– volume: 7
  start-page: 9893
  year: 2019
  ident: 928_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890675
– ident: 928_CR25
  doi: 10.1109/ICMCCE.2018.00052
– ident: 928_CR3
– volume: 8
  start-page: 56855
  year: 2020
  ident: 928_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– volume: 16
  start-page: 5805
  issue: 14
  year: 2016
  ident: 928_CR42
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2570281
– volume: 17
  start-page: 386
  year: 2016
  ident: 928_CR2
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2628346
– ident: 928_CR45
  doi: 10.1109/TENCON.2016.7848159
SSID ssj0002389
Score 2.671024
Snippet Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1461
SubjectTerms Accelerometers
Artificial Intelligence
Artificial neural networks
Classification
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Feature extraction
Human activity recognition
Information Systems Applications (incl.Internet)
Moving object recognition
Neural networks
Regular Paper
Sensors
Software Engineering
Wearable technology
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgMiqOGzl402DTpG16EhlcQBxEFOZWmjSVAenodNS_b14m7aDgXOy1SSh9a5L3vg_gpJRRkJeK04DLgIqyCKlKy5iKyD6hDo0qtSObSPp9ORikD_7ArfZllY1PdI66GGk8Iz9H3HaBRRvy4u2dImsU3q56Co1FWGZhyFDP7xLaemIbjqbpr_U1QkYD3zTjWucQiCShWKCAsEOSyp-BaZZt_rogdXHneuO_X7wJ6z7jJJdTFdmCBVN1YKNhcyDeuDuwdt8iuNbbcOc6c-mwsqNIr9-nN4_PBENeQRytH8GGCOSdIG0J0qgiWEX_Qr6s9WBHFqntHnk0rnfg-frqqXdLPfEC1VxGE8pjpTgTBSs1k2mcC8OTII9iowrFAiUkMzzXkSq40IG12zRIjRGxjJJSMWP9xC4sVaPK7AHBDVZsvWKSY8dsKaVOuUlSldjEI9TCdIE1fz3THpUcyTFesxZP2Ukqs5LKnKQy2YXTds7bFJNj7ujDRjyZt886m8mmC2eNgGev_15tf_5qB7AaOp3Cet5DWJqMP8wRrOjPybAeHzvt_AYimueb
  priority: 102
  providerName: ProQuest
Title Multi-input CNN-GRU based human activity recognition using wearable sensors
URI https://link.springer.com/article/10.1007/s00607-021-00928-8
https://www.proquest.com/docview/2546405208
Volume 103
WOSCitedRecordID wos000627196600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o5oM-OJ2Klzny4JsG2iZt0kcdXkBWx7xNX0qTpiJIJ-vUv2-StRVFBe1DoCQN5STnEnK-7wDsZdx3kkwQ7BDuYJqlHhZhFmDq68eTnhKZtMUmWBTx0SgclKCwosp2r64kraWuwW6GOoRhk1JgiII45vPQ1O6OG3UcXt7U9lc7oVnQqy0M5f6ohMp8P8dnd_QRY365FrXe5qT1v_9cgeUyukSHs-2wCnMqb0OrqtyASkVuw1K_Zmst1uDconDxY65HoV4U4dPhNTLuLUW2hB8y4AdTYwLV6UbjHJmM-Qf0pjXFoK9Qoc_D40mxDtcnx1e9M1wWWcCScH-KSSAEcWnqZtLlYZBQRZiT-IESqXAdQbmrSCJ9kRIqHa2joRMqRQPus0y4StuEDWjk41xtAjKHqUBbQJYYdGzGuQyJYqFgOsjwJFVb4FayjmXJQG4KYTzFNXeylV2sZRdb2cV8C_brb55n_Bu_ju5USxiXuljEhvGfmnQf3X1QLdlH98-zbf9t-A4senbVTS5vBxrTyYvahQX5On0sJl2YZ7d3XWgeHUeDoX47Z1i3fadnWu9CtwP_vmt38jsW_OQ0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS-QwFD64urD6oK4XHG-bB33SYNukbfogIqOuMlpkUZi32qSpDEhHp6Pin_I3mpNpOyisbz7Y17aBNN-5pDnf-QC2cuE7aS4ZdZhwKM8zj8ooDyj3zeUpT8tcWbGJMI5FtxtdTsBrzYXBssraJ1pHnfUV_iPfw77tHIs2xMH9A0XVKDxdrSU0RrDo6Jdns2Ur98-OzPpue97J8VX7lFaqAlQx4Q8pC6RkLs_cXLkiClKuWeikfqBlJl1HcuFqlipfZowrx4AyciKteSD8MJeuNkZgxv0BU5wbc8BSQafdeH4T_kbptvFtXPjdiqRjqXrY-CSkWBCBbY4EFe8D4Ti7_XAga-Pcydx3-0LzMFtl1ORwZAK_YUIXCzBXq1WQynktwMxF06G2XISOZR7TXmGeIu04pn__XRMM6RmxsoUECR-oq0GaEqt-QZAlcEuezSSRcUZKXZT9QbkE118ywWWYLPqFXgGCG8jAeP0wRUZwLoSKmA4jGZrEylNct8CtVzlRVdd1FP-4S5p-0RYZiUFGYpGRiBbsNO_cj3qOfPr0eg2HpPI_ZTLGQgt2a0CNb_9_tNXPR_sDv06vLs6T87O4swbTnsUz1i6vw-Rw8Kg34Kd6GvbKwaa1DAI3Xw20N7NsRJ4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iUSFYQMtDDI_iBV211iSxkzgLVFXQKWhKhCqQZhdix0ZIKAOTAcSv8XX4epKMWgl2LJptEkuOz304vucegH0jQi83klGPCY9yUwRUJiaiPLRXoAItjXJiE3GaisEgOZuB54YLg2WVjU90jroYKvxH3sW-7RyLNkTX1GURZ0e977d3FBWk8KS1kdOYQKSvnx7t9q06ODmya_0lCHo_zw-Paa0wQBUT4ZiySErm88I3yhdJlHPNYi8PIy0L6XuSC1-zXIWyYFx5FqCJl2jNIxHGRvraGoQddxbmbRQO0cb6MW2jgA2Fk9Tb-jkuwkFN2HG0PWyCElMsjsCWR4KKv4PiNNP953DWxbzeyv_8tT7Ccp1pkx8T0_gEM7pchZVGxYLUTm0Vlk7bzrXVGvQdI5lel_Ypcpim9NefC4KhviBOzpAgEQT1NkhbejUsCbIHrsijnSQy0Uily2o4qtbh4l0muAFz5bDUm0BwYxnZaBDnyBQ2QqiE6TiRsU24AsV1B_xmxTNVd2NHUZCbrO0j7VCSWZRkDiWZ6MDX9p3bSS-SN5_eaaCR1X6pyqa46MC3BlzT26-PtvX2aHuwYPGV_T5J-9uwGDhoY0nzDsyNR_d6Fz6oh_F1NfrsjITA5Xvj7AW31U1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-input+CNN-GRU+based+human+activity+recognition+using+wearable+sensors&rft.jtitle=Computing&rft.au=Dua%2C+Nidhi&rft.au=Singh%2C+Shiva+Nand&rft.au=Semwal%2C+Vijay+Bhaskar&rft.date=2021-07-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=103&rft.issue=7&rft.spage=1461&rft.epage=1478&rft_id=info:doi/10.1007%2Fs00607-021-00928-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_021_00928_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon