Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering singl...
Gespeichert in:
| Veröffentlicht in: | Briefings in bioinformatics Jg. 24; H. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Oxford University Press
19.01.2023
Oxford Publishing Limited (England) |
| Schlagworte: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Abstract
Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data. |
|---|---|
| AbstractList | Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data. Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data.Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data. Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data. |
| Author | Hu, Guanyu Cheng, Andrew Li, Wei Vivian |
| Author_xml | – sequence: 1 givenname: Andrew surname: Cheng fullname: Cheng, Andrew – sequence: 2 givenname: Guanyu surname: Hu fullname: Hu, Guanyu – sequence: 3 givenname: Wei Vivian surname: Li fullname: Li, Wei Vivian email: weil@ucr.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36410733$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LxDAQhoOs6O7qybsUBBGkbtIkbXpU8QsEL-455KsabZuapML-e7PselnEU4bwzDDzvDMw6V1vADhB8ArBGi-klQsphSIV3QNTRKoqJ5CSybouq5ySEh-CWQgfEBawYugAHOKSIFhhPAXLG9Or9074T9u_Zcq0bR5Xg8lUO4Zo_PqzM_Hd6ZA1zmdhENGKtl1l3gTXfhudRS_6oLwdouusCpkWURyB_Ua0wRxv3zlY3t-93j7mzy8PT7fXz7nCjMYcE1XootGwaYgmSNSMMiWYoKWRQlDCSlJILKCGFaJYFpQRwrRRBGulpMF4Di42cwfvvkYTIu9sWB8heuPGwIsK17CsCasTeraDfrjR92k7jhHCpExuykSdbqlRdkbzwdvkZsV_hSUAbQDlXQjeNFzZmJy4PnmwLUeQr0PhKRS-DSX1XO70_I79mz7f0G4c_gV_AMotnJs |
| CitedBy_id | crossref_primary_10_3390_cells14141060 crossref_primary_10_1002_qub2_70011 crossref_primary_10_1016_j_csbj_2024_10_029 crossref_primary_10_1016_j_ymeth_2025_03_007 crossref_primary_10_1093_bib_bbae666 crossref_primary_10_1101_gr_277891_123 crossref_primary_10_1093_bib_bbae719 crossref_primary_10_1186_s13059_025_03636_0 crossref_primary_10_1016_j_ymeth_2024_10_002 crossref_primary_10_1002_mco2_765 crossref_primary_10_1093_gpbjnl_qzae057 crossref_primary_10_1093_nar_gkaf303 crossref_primary_10_1016_j_compbiomed_2023_107440 crossref_primary_10_1038_s41576_025_00845_y crossref_primary_10_1177_01926233241311258 crossref_primary_10_1038_s41467_023_44367_9 crossref_primary_10_1016_j_knosys_2025_114100 crossref_primary_10_1093_nargab_lqaf109 crossref_primary_10_1093_bib_bbad500 crossref_primary_10_1002_cyto_a_24884 crossref_primary_10_1038_s41592_024_02325_3 crossref_primary_10_1093_bib_bbad389 crossref_primary_10_1038_s41592_024_02215_8 crossref_primary_10_1038_s42003_024_07001_y crossref_primary_10_1186_s13059_025_03505_w crossref_primary_10_1186_s13059_024_03361_0 crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_1038_s41467_024_44835_w crossref_primary_10_1093_gigascience_giae089 crossref_primary_10_1038_s41467_025_59448_0 crossref_primary_10_1093_bioinformatics_btaf221 crossref_primary_10_1016_j_csbj_2023_11_055 crossref_primary_10_1186_s13059_024_03245_3 crossref_primary_10_1016_j_microc_2025_113189 crossref_primary_10_1186_s12943_024_02040_9 crossref_primary_10_1007_s10766_025_00783_6 |
| Cites_doi | 10.1101/2020.05.31.125658 10.1126/science.aaa6090 10.1038/nbt.3192 10.1177/1066896913517939 10.1038/s41586-021-03634-9 10.1101/gr.275224.121 10.1016/j.cell.2022.04.003 10.1038/s41587-021-00935-2 10.1093/nar/gkac219 10.1093/bib/bbab295 10.1186/s12864-022-08601-w 10.1073/pnas.1912459116 10.1126/science.aau5324 10.1093/bib/bbab466 10.1038/s41592-019-0701-7 10.1126/science.aaw1219 10.1038/s41576-018-0088-9 10.1038/s41592-018-0175-z 10.1126/science.aaf2403 10.1038/s41592-020-01038-7 10.1038/s41592-020-01040-z 10.1016/j.tibtech.2020.05.006 10.1038/s41586-019-1049-y 10.1038/s41592-021-01255-8 10.1093/bioinformatics/btz321 10.1093/bioinformatics/btz914 10.1038/s41467-021-26044-x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| DOI | 10.1093/bib/bbac475 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | 36410733 10_1093_bib_bbac475 10.1093/bib/bbac475 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM142702 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c385t-34c2d2fd0ff4d41a9858ca8a56ebaa548642b3a0d07153b258448dec43dccbe33 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910702200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Fri Sep 05 06:21:33 EDT 2025 Fri Oct 03 03:51:49 EDT 2025 Mon Jul 21 05:58:40 EDT 2025 Tue Nov 18 21:06:16 EST 2025 Sat Nov 29 05:43:33 EST 2025 Wed Apr 02 06:58:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Clustering Spatial trasncriptomics Single-cell genomics |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-34c2d2fd0ff4d41a9858ca8a56ebaa548642b3a0d07153b258448dec43dccbe33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/bib/bbac475 |
| PMID | 36410733 |
| PQID | 3113462076 |
| PQPubID | 26846 |
| ParticipantIDs | proquest_miscellaneous_2739069489 proquest_journals_3113462076 pubmed_primary_36410733 crossref_citationtrail_10_1093_bib_bbac475 crossref_primary_10_1093_bib_bbac475 oup_primary_10_1093_bib_bbac475 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-19 |
| PublicationDateYYYYMMDD | 2023-01-19 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2023 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Dries (2023022309490179400_) 2021; 22 Larsson (2023022309490179400_) 2021; 18 Chen (2023022309490179400_) 2015; 348 Kiselev (2023022309490179400_) 2019; 20 Rodriques (2023022309490179400_) 2019; 363 Pham (2023022309490179400_) 2020 Jian (2023022309490179400_) 2021; 18 Pardo (2023022309490179400_) 2022; 23 Zhao (2023022309490179400_) 2021; 39 Yang (2023022309490179400_) 2022; 23 Mouse Kidney Section from C57BL/6 mice (Visium Demonstration v1 Chemistry) (2023022309490179400_) 2020 Codeluppi (2023022309490179400_) 2018; 15 Sun (2023022309490179400_) 2020; 17 Moffitt (2023022309490179400_) 2018; 362 Mouse Brain Serial Sections from C57BL/6 mice (Visium Demonstration v1 Chemistry) (2023022309490179400_) 2020 Li (2023022309490179400_) 2019; 35 Dong (2023022309490179400_) 2022; 13 He (2023022309490179400_) 2021; 12 Tan (2023022309490179400_) 2019; 36 Ståhl (2023022309490179400_) 2016; 353 Xia (2023022309490179400_) 2019; 116 Liao (2023022309490179400_) 2021; 39 Rao (2023022309490179400_) 2021; 596 Wei Liu (2023022309490179400_) 2022; 50 Chen (2023022309490179400_) 2022; 185 Huazhu (2023022309490179400_) 2021 Sheng (2023022309490179400_) 2021; 22 Dries (2023022309490179400_) 2021; 31 Chan (2023022309490179400_) 2014; 22 Close (2023022309490179400_) 2021; 18 Eng (2023022309490179400_) 2019; 568 Longo (2023022309490179400_) 2021 Satija (2023022309490179400_) 2015; 33 Sun (2023022309490179400_) 2021; 22 |
| References_xml | – year: 2020 ident: 2023022309490179400_ article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues doi: 10.1101/2020.05.31.125658 – volume: 348 issue: 6233 year: 2015 ident: 2023022309490179400_ article-title: Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – volume: 33 start-page: 495 year: 2015 ident: 2023022309490179400_ article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – volume: 22 start-page: 12 issue: 1 year: 2014 ident: 2023022309490179400_ article-title: The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology publication-title: Int J Surg Pathol doi: 10.1177/1066896913517939 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 2023022309490179400_ article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder publication-title: Nat Commun – volume: 596 start-page: 211 issue: 7871 year: 2021 ident: 2023022309490179400_ article-title: Exploring tissue architecture using spatial transcriptomics publication-title: Nature doi: 10.1038/s41586-021-03634-9 – volume: 31 start-page: 1706 issue: 10 year: 2021 ident: 2023022309490179400_ article-title: Advances in spatial transcriptomic data analysis publication-title: Genome Res doi: 10.1101/gr.275224.121 – volume: 185 start-page: 1777 issue: 10 year: 2022 ident: 2023022309490179400_ article-title: Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays publication-title: Cell doi: 10.1016/j.cell.2022.04.003 – volume: 39 start-page: 1375 year: 2021 ident: 2023022309490179400_ article-title: Spatial transcriptomics at subspot resolution with BayesSpace publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00935-2 – volume: 50 start-page: e72 issue: 12 year: 2022 ident: 2023022309490179400_ article-title: Joint dimension reduction and clustering analysis of single-cell rna-seq and spatial transcriptomics data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac219 – volume: 22 issue: 6 year: 2021 ident: 2023022309490179400_ article-title: Selecting gene features for unsupervised analysis of single-cell gene expression data publication-title: Brief Bioinform doi: 10.1093/bib/bbab295 – volume: 23 start-page: 1 issue: 1 year: 2022 ident: 2023022309490179400_ article-title: spatiallibd: an r/bioconductor package to visualize spatially-resolved transcriptomics data publication-title: BMC Genomics doi: 10.1186/s12864-022-08601-w – volume: 116 start-page: 19490 issue: 39 year: 2019 ident: 2023022309490179400_ article-title: Spatial transcriptome profiling by merfish reveals subcellular rna compartmentalization and cell cycle-dependent gene expression publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1912459116 – volume: 362 issue: 6416 year: 2018 ident: 2023022309490179400_ article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region publication-title: Science doi: 10.1126/science.aau5324 – year: 2021 ident: 2023022309490179400_ article-title: Unsupervised spatially embedded deep representation of spatial transcriptomics publication-title: Biorxiv – volume: 23 issue: 1 year: 2022 ident: 2023022309490179400_ article-title: Sc-meb: spatial clustering with hidden markov random field using empirical bayes publication-title: Brief Bioinform doi: 10.1093/bib/bbab466 – volume: 17 start-page: 193 issue: 2 year: 2020 ident: 2023022309490179400_ article-title: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies publication-title: Nat Methods doi: 10.1038/s41592-019-0701-7 – start-page: 1 year: 2021 ident: 2023022309490179400_ article-title: Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics publication-title: Nat Rev Genet – volume-title: Spatial Gene Expression Dataset by Space Ranger 1.1.0, 10x Genomics year: 2020 ident: 2023022309490179400_ – volume: 363 start-page: 1463 issue: 6434 year: 2019 ident: 2023022309490179400_ article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 20 start-page: 273 issue: 5 year: 2019 ident: 2023022309490179400_ article-title: Challenges in unsupervised clustering of single-cell rna-seq data publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0088-9 – volume-title: Spatial Gene Expression Dataset by Space Ranger 1.1.0, 10x Genomics year: 2020 ident: 2023022309490179400_ – volume: 15 start-page: 932 year: 2018 ident: 2023022309490179400_ article-title: Spatial organization of the somatosensory cortex revealed by osmFISH publication-title: Nat Methods doi: 10.1038/s41592-018-0175-z – volume: 353 start-page: 78 issue: 6294 year: 2016 ident: 2023022309490179400_ article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science doi: 10.1126/science.aaf2403 – volume: 18 start-page: 15 issue: 1 year: 2021 ident: 2023022309490179400_ article-title: Spatially resolved transcriptomics adds a new dimension to genomics publication-title: Nat Methods doi: 10.1038/s41592-020-01038-7 – volume: 18 start-page: 23 issue: 1 year: 2021 ident: 2023022309490179400_ article-title: Spatially resolved transcriptomics in neuroscience publication-title: Nat Methods doi: 10.1038/s41592-020-01040-z – volume: 15 start-page: 932 issue: 11 year: 2018 ident: 2023022309490179400_ article-title: Spatial organization of the somatosensory cortex revealed by osmfish publication-title: Nat Methods doi: 10.1038/s41592-018-0175-z – volume: 39 start-page: 43 issue: 1 year: 2021 ident: 2023022309490179400_ article-title: Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2020.05.006 – volume: 568 start-page: 235 issue: 7751 year: 2019 ident: 2023022309490179400_ article-title: Transcriptome-scale super-resolved imaging in tissues by rna seqfish+ publication-title: Nature doi: 10.1038/s41586-019-1049-y – volume: 18 start-page: 1342 year: 2021 ident: 2023022309490179400_ article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network publication-title: Nat Methods doi: 10.1038/s41592-021-01255-8 – volume: 35 start-page: i41 issue: 14 year: 2019 ident: 2023022309490179400_ article-title: A statistical simulator scdesign for rational scrna-seq experimental design publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz321 – volume: 22 issue: 78 year: 2021 ident: 2023022309490179400_ article-title: Giotto: a toolbox for integrative analysis and visualization of spatial expression data publication-title: Genome Biol – volume: 36 start-page: 2293 issue: 7 year: 2019 ident: 2023022309490179400_ article-title: Spacell: integrating tissue morphology and spatial gene expression to predict disease cells publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz914 – volume: 22 issue: 163 year: 2021 ident: 2023022309490179400_ article-title: scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured publication-title: Genome Biol – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 2023022309490179400_ article-title: Clustermap for multi-scale clustering analysis of spatial gene expression publication-title: Nat Commun doi: 10.1038/s41467-021-26044-x |
| SSID | ssj0020781 |
| Score | 2.5488267 |
| Snippet | Abstract
Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the... Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional,... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Accuracy Benchmarking Cluster Analysis Clustering Computer applications Datasets Gene expression Gene Expression Profiling - methods Histology Image enhancement Information retrieval Parameter identification Parameter robustness Population studies Quorum sensing Robustness Software Spatial data Synthetic data Transcriptome Transcriptomes Transcriptomics |
| Title | Benchmarking cell-type clustering methods for spatially resolved transcriptomics data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36410733 https://www.proquest.com/docview/3113462076 https://www.proquest.com/docview/2739069489 |
| Volume | 24 |
| WOSCitedRecordID | wos000910702200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9UFHzx-2M6Z4Q9CWHNkrbpo4rig0wfFPZWkjTFQd1k3Qb-996tdeAH6mubNuXu0vvlcvc7gHaeB7ExoeAGFcwVQgCunYq5R2-QBXlgbFUofBf3errfTx7qBNnyhyP8RHbswHasNfgGqiUXoSZzfrzvL_ZVxFdTFRHFnNjd6zK8L89-cjyfitm-Ycq5b7nZ_O9XbcFGjR7ZRaXubVjywx1Yq_pJvu3C0yXa3POLmce_GcXkOYVYmSumxIdAF6uO0SVDrMpKyqY2RfHGcM89KmY-YxNyXfMfCVUrl4wSSPfg6eb68eqW130TuJM6nHCpXDfr5ijqXGVKmESH2hltwshb1IvSuOew0gQZwotQ2i5iEKUz75TMnLNeyn1YGY6G_hBYIoPMh0SqlhMzuzLeO8JAQjjhnPINOP8QaupqUnHqbVGk1eG2TFFOaS2nBrQXg18rLo2fh52idn4f0fzQXFovuTKVQkgVoTFEDThb3MbFQtI2Qz-alilitYQqfXXSgINK44t5ZKQEdbA8-nP6Y1inpvMUiBFJE1Ym46k_gVU3mwzKcQuW475uzS30HY1C4pY |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+cell-type+clustering+methods+for+spatially+resolved+transcriptomics+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Cheng%2C+Andrew&rft.au=Hu%2C+Guanyu&rft.au=Li%2C+Wei+Vivian&rft.date=2023-01-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |