Benchmarking cell-type clustering methods for spatially resolved transcriptomics data

Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics Jg. 24; H. 1
Hauptverfasser: Cheng, Andrew, Hu, Guanyu, Li, Wei Vivian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 19.01.2023
Oxford Publishing Limited (England)
Schlagworte:
ISSN:1467-5463, 1477-4054, 1477-4054
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data.
AbstractList Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data.
Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data.Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data.
Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data.
Author Hu, Guanyu
Cheng, Andrew
Li, Wei Vivian
Author_xml – sequence: 1
  givenname: Andrew
  surname: Cheng
  fullname: Cheng, Andrew
– sequence: 2
  givenname: Guanyu
  surname: Hu
  fullname: Hu, Guanyu
– sequence: 3
  givenname: Wei Vivian
  surname: Li
  fullname: Li, Wei Vivian
  email: weil@ucr.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36410733$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoOs6O7qybsUBBGkbtIkbXpU8QsEL-455KsabZuapML-e7PselnEU4bwzDDzvDMw6V1vADhB8ArBGi-klQsphSIV3QNTRKoqJ5CSybouq5ySEh-CWQgfEBawYugAHOKSIFhhPAXLG9Or9074T9u_Zcq0bR5Xg8lUO4Zo_PqzM_Hd6ZA1zmdhENGKtl1l3gTXfhudRS_6oLwdouusCpkWURyB_Ua0wRxv3zlY3t-93j7mzy8PT7fXz7nCjMYcE1XootGwaYgmSNSMMiWYoKWRQlDCSlJILKCGFaJYFpQRwrRRBGulpMF4Di42cwfvvkYTIu9sWB8heuPGwIsK17CsCasTeraDfrjR92k7jhHCpExuykSdbqlRdkbzwdvkZsV_hSUAbQDlXQjeNFzZmJy4PnmwLUeQr0PhKRS-DSX1XO70_I79mz7f0G4c_gV_AMotnJs
CitedBy_id crossref_primary_10_3390_cells14141060
crossref_primary_10_1002_qub2_70011
crossref_primary_10_1016_j_csbj_2024_10_029
crossref_primary_10_1016_j_ymeth_2025_03_007
crossref_primary_10_1093_bib_bbae666
crossref_primary_10_1101_gr_277891_123
crossref_primary_10_1093_bib_bbae719
crossref_primary_10_1186_s13059_025_03636_0
crossref_primary_10_1016_j_ymeth_2024_10_002
crossref_primary_10_1002_mco2_765
crossref_primary_10_1093_gpbjnl_qzae057
crossref_primary_10_1093_nar_gkaf303
crossref_primary_10_1016_j_compbiomed_2023_107440
crossref_primary_10_1038_s41576_025_00845_y
crossref_primary_10_1177_01926233241311258
crossref_primary_10_1038_s41467_023_44367_9
crossref_primary_10_1016_j_knosys_2025_114100
crossref_primary_10_1093_nargab_lqaf109
crossref_primary_10_1093_bib_bbad500
crossref_primary_10_1002_cyto_a_24884
crossref_primary_10_1038_s41592_024_02325_3
crossref_primary_10_1093_bib_bbad389
crossref_primary_10_1038_s41592_024_02215_8
crossref_primary_10_1038_s42003_024_07001_y
crossref_primary_10_1186_s13059_025_03505_w
crossref_primary_10_1186_s13059_024_03361_0
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_1038_s41467_024_44835_w
crossref_primary_10_1093_gigascience_giae089
crossref_primary_10_1038_s41467_025_59448_0
crossref_primary_10_1093_bioinformatics_btaf221
crossref_primary_10_1016_j_csbj_2023_11_055
crossref_primary_10_1186_s13059_024_03245_3
crossref_primary_10_1016_j_microc_2025_113189
crossref_primary_10_1186_s12943_024_02040_9
crossref_primary_10_1007_s10766_025_00783_6
Cites_doi 10.1101/2020.05.31.125658
10.1126/science.aaa6090
10.1038/nbt.3192
10.1177/1066896913517939
10.1038/s41586-021-03634-9
10.1101/gr.275224.121
10.1016/j.cell.2022.04.003
10.1038/s41587-021-00935-2
10.1093/nar/gkac219
10.1093/bib/bbab295
10.1186/s12864-022-08601-w
10.1073/pnas.1912459116
10.1126/science.aau5324
10.1093/bib/bbab466
10.1038/s41592-019-0701-7
10.1126/science.aaw1219
10.1038/s41576-018-0088-9
10.1038/s41592-018-0175-z
10.1126/science.aaf2403
10.1038/s41592-020-01038-7
10.1038/s41592-020-01040-z
10.1016/j.tibtech.2020.05.006
10.1038/s41586-019-1049-y
10.1038/s41592-021-01255-8
10.1093/bioinformatics/btz321
10.1093/bioinformatics/btz914
10.1038/s41467-021-26044-x
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac475
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36410733
10_1093_bib_bbac475
10.1093/bib/bbac475
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM142702
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c385t-34c2d2fd0ff4d41a9858ca8a56ebaa548642b3a0d07153b258448dec43dccbe33
IEDL.DBID TOX
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910702200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Fri Sep 05 06:21:33 EDT 2025
Fri Oct 03 03:51:49 EDT 2025
Mon Jul 21 05:58:40 EDT 2025
Tue Nov 18 21:06:16 EST 2025
Sat Nov 29 05:43:33 EST 2025
Wed Apr 02 06:58:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Clustering
Spatial trasncriptomics
Single-cell genomics
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-34c2d2fd0ff4d41a9858ca8a56ebaa548642b3a0d07153b258448dec43dccbe33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbac475
PMID 36410733
PQID 3113462076
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2739069489
proquest_journals_3113462076
pubmed_primary_36410733
crossref_citationtrail_10_1093_bib_bbac475
crossref_primary_10_1093_bib_bbac475
oup_primary_10_1093_bib_bbac475
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Dries (2023022309490179400_) 2021; 22
Larsson (2023022309490179400_) 2021; 18
Chen (2023022309490179400_) 2015; 348
Kiselev (2023022309490179400_) 2019; 20
Rodriques (2023022309490179400_) 2019; 363
Pham (2023022309490179400_) 2020
Jian (2023022309490179400_) 2021; 18
Pardo (2023022309490179400_) 2022; 23
Zhao (2023022309490179400_) 2021; 39
Yang (2023022309490179400_) 2022; 23
Mouse Kidney Section from C57BL/6 mice (Visium Demonstration v1 Chemistry) (2023022309490179400_) 2020
Codeluppi (2023022309490179400_) 2018; 15
Sun (2023022309490179400_) 2020; 17
Moffitt (2023022309490179400_) 2018; 362
Mouse Brain Serial Sections from C57BL/6 mice (Visium Demonstration v1 Chemistry) (2023022309490179400_) 2020
Li (2023022309490179400_) 2019; 35
Dong (2023022309490179400_) 2022; 13
He (2023022309490179400_) 2021; 12
Tan (2023022309490179400_) 2019; 36
Ståhl (2023022309490179400_) 2016; 353
Xia (2023022309490179400_) 2019; 116
Liao (2023022309490179400_) 2021; 39
Rao (2023022309490179400_) 2021; 596
Wei Liu (2023022309490179400_) 2022; 50
Chen (2023022309490179400_) 2022; 185
Huazhu (2023022309490179400_) 2021
Sheng (2023022309490179400_) 2021; 22
Dries (2023022309490179400_) 2021; 31
Chan (2023022309490179400_) 2014; 22
Close (2023022309490179400_) 2021; 18
Eng (2023022309490179400_) 2019; 568
Longo (2023022309490179400_) 2021
Satija (2023022309490179400_) 2015; 33
Sun (2023022309490179400_) 2021; 22
References_xml – year: 2020
  ident: 2023022309490179400_
  article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues
  doi: 10.1101/2020.05.31.125658
– volume: 348
  issue: 6233
  year: 2015
  ident: 2023022309490179400_
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 33
  start-page: 495
  year: 2015
  ident: 2023022309490179400_
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– volume: 22
  start-page: 12
  issue: 1
  year: 2014
  ident: 2023022309490179400_
  article-title: The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology
  publication-title: Int J Surg Pathol
  doi: 10.1177/1066896913517939
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 2023022309490179400_
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nat Commun
– volume: 596
  start-page: 211
  issue: 7871
  year: 2021
  ident: 2023022309490179400_
  article-title: Exploring tissue architecture using spatial transcriptomics
  publication-title: Nature
  doi: 10.1038/s41586-021-03634-9
– volume: 31
  start-page: 1706
  issue: 10
  year: 2021
  ident: 2023022309490179400_
  article-title: Advances in spatial transcriptomic data analysis
  publication-title: Genome Res
  doi: 10.1101/gr.275224.121
– volume: 185
  start-page: 1777
  issue: 10
  year: 2022
  ident: 2023022309490179400_
  article-title: Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.003
– volume: 39
  start-page: 1375
  year: 2021
  ident: 2023022309490179400_
  article-title: Spatial transcriptomics at subspot resolution with BayesSpace
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00935-2
– volume: 50
  start-page: e72
  issue: 12
  year: 2022
  ident: 2023022309490179400_
  article-title: Joint dimension reduction and clustering analysis of single-cell rna-seq and spatial transcriptomics data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac219
– volume: 22
  issue: 6
  year: 2021
  ident: 2023022309490179400_
  article-title: Selecting gene features for unsupervised analysis of single-cell gene expression data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab295
– volume: 23
  start-page: 1
  issue: 1
  year: 2022
  ident: 2023022309490179400_
  article-title: spatiallibd: an r/bioconductor package to visualize spatially-resolved transcriptomics data
  publication-title: BMC Genomics
  doi: 10.1186/s12864-022-08601-w
– volume: 116
  start-page: 19490
  issue: 39
  year: 2019
  ident: 2023022309490179400_
  article-title: Spatial transcriptome profiling by merfish reveals subcellular rna compartmentalization and cell cycle-dependent gene expression
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1912459116
– volume: 362
  issue: 6416
  year: 2018
  ident: 2023022309490179400_
  article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
  doi: 10.1126/science.aau5324
– year: 2021
  ident: 2023022309490179400_
  article-title: Unsupervised spatially embedded deep representation of spatial transcriptomics
  publication-title: Biorxiv
– volume: 23
  issue: 1
  year: 2022
  ident: 2023022309490179400_
  article-title: Sc-meb: spatial clustering with hidden markov random field using empirical bayes
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab466
– volume: 17
  start-page: 193
  issue: 2
  year: 2020
  ident: 2023022309490179400_
  article-title: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0701-7
– start-page: 1
  year: 2021
  ident: 2023022309490179400_
  article-title: Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics
  publication-title: Nat Rev Genet
– volume-title: Spatial Gene Expression Dataset by Space Ranger 1.1.0, 10x Genomics
  year: 2020
  ident: 2023022309490179400_
– volume: 363
  start-page: 1463
  issue: 6434
  year: 2019
  ident: 2023022309490179400_
  article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 20
  start-page: 273
  issue: 5
  year: 2019
  ident: 2023022309490179400_
  article-title: Challenges in unsupervised clustering of single-cell rna-seq data
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0088-9
– volume-title: Spatial Gene Expression Dataset by Space Ranger 1.1.0, 10x Genomics
  year: 2020
  ident: 2023022309490179400_
– volume: 15
  start-page: 932
  year: 2018
  ident: 2023022309490179400_
  article-title: Spatial organization of the somatosensory cortex revealed by osmFISH
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0175-z
– volume: 353
  start-page: 78
  issue: 6294
  year: 2016
  ident: 2023022309490179400_
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
– volume: 18
  start-page: 15
  issue: 1
  year: 2021
  ident: 2023022309490179400_
  article-title: Spatially resolved transcriptomics adds a new dimension to genomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01038-7
– volume: 18
  start-page: 23
  issue: 1
  year: 2021
  ident: 2023022309490179400_
  article-title: Spatially resolved transcriptomics in neuroscience
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01040-z
– volume: 15
  start-page: 932
  issue: 11
  year: 2018
  ident: 2023022309490179400_
  article-title: Spatial organization of the somatosensory cortex revealed by osmfish
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0175-z
– volume: 39
  start-page: 43
  issue: 1
  year: 2021
  ident: 2023022309490179400_
  article-title: Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2020.05.006
– volume: 568
  start-page: 235
  issue: 7751
  year: 2019
  ident: 2023022309490179400_
  article-title: Transcriptome-scale super-resolved imaging in tissues by rna seqfish+
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– volume: 18
  start-page: 1342
  year: 2021
  ident: 2023022309490179400_
  article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 35
  start-page: i41
  issue: 14
  year: 2019
  ident: 2023022309490179400_
  article-title: A statistical simulator scdesign for rational scrna-seq experimental design
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz321
– volume: 22
  issue: 78
  year: 2021
  ident: 2023022309490179400_
  article-title: Giotto: a toolbox for integrative analysis and visualization of spatial expression data
  publication-title: Genome Biol
– volume: 36
  start-page: 2293
  issue: 7
  year: 2019
  ident: 2023022309490179400_
  article-title: Spacell: integrating tissue morphology and spatial gene expression to predict disease cells
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz914
– volume: 22
  issue: 163
  year: 2021
  ident: 2023022309490179400_
  article-title: scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured
  publication-title: Genome Biol
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 2023022309490179400_
  article-title: Clustermap for multi-scale clustering analysis of spatial gene expression
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26044-x
SSID ssj0020781
Score 2.5488267
Snippet Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the...
Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional,...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Accuracy
Benchmarking
Cluster Analysis
Clustering
Computer applications
Datasets
Gene expression
Gene Expression Profiling - methods
Histology
Image enhancement
Information retrieval
Parameter identification
Parameter robustness
Population studies
Quorum sensing
Robustness
Software
Spatial data
Synthetic data
Transcriptome
Transcriptomes
Transcriptomics
Title Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
URI https://www.ncbi.nlm.nih.gov/pubmed/36410733
https://www.proquest.com/docview/3113462076
https://www.proquest.com/docview/2739069489
Volume 24
WOSCitedRecordID wos000910702200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9UFHzx-2M6Z4Q9CWHNkrbpo4rig0wfFPZWkjTFQd1k3Qb-996tdeAH6mubNuXu0vvlcvc7gHaeB7ExoeAGFcwVQgCunYq5R2-QBXlgbFUofBf3errfTx7qBNnyhyP8RHbswHasNfgGqiUXoSZzfrzvL_ZVxFdTFRHFnNjd6zK8L89-cjyfitm-Ycq5b7nZ_O9XbcFGjR7ZRaXubVjywx1Yq_pJvu3C0yXa3POLmce_GcXkOYVYmSumxIdAF6uO0SVDrMpKyqY2RfHGcM89KmY-YxNyXfMfCVUrl4wSSPfg6eb68eqW130TuJM6nHCpXDfr5ijqXGVKmESH2hltwshb1IvSuOew0gQZwotQ2i5iEKUz75TMnLNeyn1YGY6G_hBYIoPMh0SqlhMzuzLeO8JAQjjhnPINOP8QaupqUnHqbVGk1eG2TFFOaS2nBrQXg18rLo2fh52idn4f0fzQXFovuTKVQkgVoTFEDThb3MbFQtI2Qz-alilitYQqfXXSgINK44t5ZKQEdbA8-nP6Y1inpvMUiBFJE1Ym46k_gVU3mwzKcQuW475uzS30HY1C4pY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+cell-type+clustering+methods+for+spatially+resolved+transcriptomics+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Cheng%2C+Andrew&rft.au=Hu%2C+Guanyu&rft.au=Li%2C+Wei+Vivian&rft.date=2023-01-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon