High-order contact transformations of molecular Hamiltonians: general approach, fast computational algorithm and convergence of ro-vibrational polyad models

The paper describes methods and fast computational algorithm for building effective Hamiltonians in molecular physics using perturbative approach. Separations of fast and slow variables are considered in the framework of contact transformations (CT). The particular focus is on a systematic derivatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular physics Jg. 120; H. 15-16
Hauptverfasser: Tyuterev, Vladimir, Tashkun, Sergey, Rey, Michael, Nikitin, Andrei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 18.08.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:0026-8976, 1362-3028
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The paper describes methods and fast computational algorithm for building effective Hamiltonians in molecular physics using perturbative approach. Separations of fast and slow variables are considered in the framework of contact transformations (CT). The particular focus is on a systematic derivation of effective models for rovibrational spectroscopy from ab initio-based potential energy surfaces with an exhaustive review of previous studies in this field. We consider applications to several types of polyads coupled by Fermi, Coriolis, Darling-Dennison and other types of resonance interactions with examples for asymmetric top, symmetric top and spherical top molecules. A flexible choice of the modelling operator accounts for strong couplings of various types of nuclear motion in molecules among closely lying levels including vibrational resonance schemes (2:1:2 . . . ), (2:1:2:1), (4:2:6:3), (3:2:1:2:1:1), etc. that occur for C 2v , C 3v and T d molecules and their isotopic species. The method is implemented in the MOL_CT programme suite, which offers a complementary tool to variational methods in terms of convergence and computational time. The range of applications is also different. The goal of the CT method is providing mathematical models for analyses of molecular spectra with the high-resolution accuracy using physically meaningful parameters derived from ab initio functions.
AbstractList The paper describes methods and fast computational algorithm for building effective Hamiltonians in molecular physics using perturbative approach. Separations of fast and slow variables are considered in the framework of contact transformations (CT). The particular focus is on a systematic derivation of effective models for rovibrational spectroscopy from ab initio-based potential energy surfaces with an exhaustive review of previous studies in this field. We consider applications to several types of polyads coupled by Fermi, Coriolis, Darling-Dennison and other types of resonance interactions with examples for asymmetric top, symmetric top and spherical top molecules. A flexible choice of the modelling operator accounts for strong couplings of various types of nuclear motion in molecules among closely lying levels including vibrational resonance schemes (2:1:2 . . . ), (2:1:2:1), (4:2:6:3), (3:2:1:2:1:1), etc. that occur for C 2v , C 3v and T d molecules and their isotopic species. The method is implemented in the MOL_CT programme suite, which offers a complementary tool to variational methods in terms of convergence and computational time. The range of applications is also different. The goal of the CT method is providing mathematical models for analyses of molecular spectra with the high-resolution accuracy using physically meaningful parameters derived from ab initio functions.
The paper describes methods and fast computational algorithm for building effective Hamiltonians in molecular physics using perturbative approach. Separations of fast and slow variables are considered in the framework of contact transformations (CT). The particular focus is on a systematic derivation of effective models for rovibrational spectroscopy from ab initio-based potential energy surfaces with an exhaustive review of previous studies in this field. We consider applications to several types of polyads coupled by Fermi, Coriolis, Darling-Dennison and other types of resonance interactions with examples for asymmetric top, symmetric top and spherical top molecules. A flexible choice of the modelling operator accounts for strong couplings of various types of nuclear motion in molecules among closely lying levels including vibrational resonance schemes (2:1:2 . . . ), (2:1:2:1), (4:2:6:3), (3:2:1:2:1:1), etc. that occur for C2v, C3v and Td molecules and their isotopic species. The method is implemented in the MOL_CT programme suite, which offers a complementary tool to variational methods in terms of convergence and computational time. The range of applications is also different. The goal of the CT method is providing mathematical models for analyses of molecular spectra with the high-resolution accuracy using physically meaningful parameters derived from ab initio functions.
Author Tyuterev, Vladimir
Tashkun, Sergey
Rey, Michael
Nikitin, Andrei
Author_xml – sequence: 1
  givenname: Vladimir
  orcidid: 0000-0002-2181-1158
  surname: Tyuterev
  fullname: Tyuterev, Vladimir
  email: vladimir.tyuterev@univ-reims.fr
  organization: Laboratory of Molecular Quantum Mechanics and Radiative Transfer, Tomsk State University
– sequence: 2
  givenname: Sergey
  surname: Tashkun
  fullname: Tashkun, Sergey
  organization: Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences
– sequence: 3
  givenname: Michael
  surname: Rey
  fullname: Rey, Michael
  organization: Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims
– sequence: 4
  givenname: Andrei
  orcidid: 0000-0002-4280-4096
  surname: Nikitin
  fullname: Nikitin, Andrei
  organization: Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences
BookMark eNqFkcFO3DAQhi1EJRbaR6hkqdcGHDvrOO2lFWpZJCQucLYc29k1cuww9oL2XXhYHBYuHOAyPsz3_-OZ_xgdhhgsQt9rcloTQc4IoVx0LT-lhNJSOl435AAtasZpxQgVh2gxM9UMHaHjlO4IIZzUZIGeVm69qSIYC1jHkJXOOIMKaYgwquxiSDgOeIze6q1XgFdqdD7H4ArzC69tsKA8VtMEUenNTzyolIvTOG3zi3xu-nUElzcjVsHMUx4sFKG2szPE6sH18MZO0e-UKfOM9ekr-jIon-y31_cE3f7_d3O-qq6uLy7P_15VmollrhgzejlYZRhfUqNtbco5aK9FT7huGtHa3rLOGmparnlHBFct7Zu64aobhNDsBP3Y-5Yl7rc2ZXkXt1C-kyRtGRNNRzgr1O89pSGmBHaQ2u13LAdzXtZEznHItzjkHId8jaOol-_UE7hRwe5T3Z-9zoWXSB4jeCOz2vkIQwlKuyTZxxbPntSn1Q
CitedBy_id crossref_primary_10_1016_j_chemphys_2024_112480
crossref_primary_10_1016_j_saa_2022_122071
crossref_primary_10_1016_j_saa_2023_122896
crossref_primary_10_1016_j_saa_2023_123456
crossref_primary_10_1002_qua_27378
crossref_primary_10_1016_j_jqsrt_2023_108616
crossref_primary_10_1063_5_0232298
crossref_primary_10_1016_j_jms_2023_111776
crossref_primary_10_1134_S1024856024700167
crossref_primary_10_3103_S002713142470024X
crossref_primary_10_1016_j_jqsrt_2024_109196
crossref_primary_10_1134_S0036024424050121
crossref_primary_10_1016_j_jqsrt_2024_109098
crossref_primary_10_1016_j_jqsrt_2024_109286
Cites_doi 10.1039/C3CP54175D
10.1016/j.jqsrt.2018.11.020
10.1016/j.icarus.2009.07.044
10.1016/0022-2852(87)90142-1
10.1063/1.3604935
10.1016/B978-0-12-580643-5.50006-3
10.1070/PU1976v019n07ABEH005278
10.1006/jmsp.2002.8558
10.1063/1.1701809
10.3847/1538-4365/aaed39
10.1063/1.445849
10.1146/annurev.pc.40.100189.002345
10.1016/S0022-4073(03)00013-X
10.1063/1.476513
10.1016/0022-2852(79)90020-1
10.1016/j.jqsrt.2015.06.009
10.1063/1.447255
10.1016/0022-2852(87)90086-5
10.1063/1.4868327
10.1080/00268976.2012.669504
10.1016/S1386-1425(01)00669-2
10.1021/jp0032513
10.1016/j.cplett.2010.06.027
10.1016/j.jqsrt.2019.03.001
10.1080/00268976.2010.506892
10.1021/jp809839t
10.1006/jmsp.1994.1144
10.1016/j.cplett.2005.06.115
10.1016/j.jqsrt.2019.01.018
10.1016/j.jqsrt.2017.06.032
10.1086/110172
10.1063/1.4705278
10.1016/j.jqsrt.2021.108021
10.1006/jmsp.1995.1131
10.1063/5.0049418
10.1016/j.jms.2016.04.006
10.1021/jp037305v
10.1016/j.molap.2017.05.002
10.1063/5.0009732
10.1016/S0065-3276(05)48014-4
10.1063/1.4903927
10.1063/1.470217
10.1063/1.461371
10.1016/0167-7977(86)90006-7
10.1016/0022-2852(89)90196-3
10.1080/00268976.2013.793831
10.1021/jp0131065
10.1063/1.4984266
10.1142/4650
10.1117/12.545644
10.1016/S0022-4073(97)00106-4
10.1016/0022-2852(86)90220-1
10.1016/j.jms.2020.111289
10.1016/0022-2860(83)90091-1
10.1515/zna-1996-0807
10.1016/j.jqsrt.2020.107364
10.1016/j.jms.2007.07.009
10.1063/1.473987
10.1016/j.jms.2011.01.002
10.1063/1.5042154
10.1016/0022-2852(86)90261-4
10.1002/qua.560390208
10.1016/0022-2860(82)87201-3
10.1016/0022-2852(86)90189-X
10.1016/j.cpc.2003.10.003
10.3847/1538-4365/ab7a1a
10.1016/S0022-4073(98)00082-X
10.1016/0022-2852(84)90153-X
10.1063/1.1290027
10.1063/1.471531
10.1016/j.jqsrt.2020.107478
10.1016/0022-2852(76)90123-5
10.1103/PhysRevA.47.2653
10.1016/0009-2614(75)85222-5
10.1016/0022-2852(82)90214-4
10.1063/1.5040360
10.1021/jp408116j
10.1016/j.jms.2013.06.003
10.1093/astrogeo/atab102
10.1016/j.jqsrt.2013.05.001
10.1063/1.4939521
10.1063/1.1749833
10.1002/qua.23183
10.1016/j.jqsrt.2018.12.034
10.1063/5.0089097
10.1016/j.jqsrt.2021.107949
10.1080/00268977400100881
10.1080/00268979300101741
10.1016/0022-2852(83)90319-3
10.1016/0022-2852(73)90132-X
10.1080/00268976.2015.1015642
10.1134/S0030400X15070139
10.1088/0305-4470/18/5/014
10.1016/j.jqsrt.2012.01.008
10.1063/1.4764099
10.1063/1.1465413
10.1021/jp9029425
10.1021/ct9004454
10.1103/PhysRev.75.486
10.1063/5.0016365
10.1080/00268976.2021.1987543
10.1063/1.1377893
10.1039/D0CP02177F
10.1016/j.jms.2021.111510
10.1063/1.1290614
10.1063/1.1724245
10.1063/1.1840957
10.1006/jmsp.1996.0114
10.1016/j.jqsrt.2014.04.024
10.1016/B978-0-12-580640-4.50013-3
10.1063/1.1682018
10.1016/j.jqsrt.2015.11.014
10.1016/0029-5582(58)90116-0
10.1016/S0378-4371(99)00540-3
10.1063/1.436520
10.1016/j.jms.2004.02.022
10.1039/c001944e
10.1016/0022-2852(92)90009-D
10.1051/0004-6361/201629004
10.1063/1.3187528
10.1016/0022-2852(79)90019-5
10.1080/00268978100102741
10.1063/1.3266577
10.1016/0022-2852(85)90062-1
10.1093/mnras/sty1239
10.3847/1538-4357/aa8909
10.1021/acs.jpca.5b03241
10.1063/1.444261
10.1063/1.460850
10.1016/0009-2614(84)80035-4
10.1063/1.2743441
10.1016/S0009-2614(99)00850-7
10.1007/BF00895258
10.1016/0166-1280(91)89006-M
10.1063/1.4829143
10.1021/jp070398m
10.1016/B978-0-12-580645-9.50009-5
10.1016/j.icarus.2017.12.045
10.1103/PhysRevA.105.023704
10.1080/00268970903501709
10.1021/ar00127a002
10.1002/wcms.73
10.1016/0022-4073(94)90174-0
10.1016/0022-2852(86)90070-6
10.1007/BF03155942
10.1063/1.474366
10.1016/0003-4916(88)90268-0
10.1063/1.4973977
10.1080/00268976.2018.1473652
10.1080/00268976.2018.1512720
10.1039/c3cp50275a
10.1016/0022-2852(88)90214-7
10.1080/00268976800101381
10.1016/j.saa.2020.119158
10.1063/1.480271
10.1364/JOSAB.2.000387
10.1021/jp014008m
10.1016/S0022-2860(99)00235-5
10.1139/p02-075
10.1002/cpa.3160080204
10.1063/1.3533950
10.1021/jp211400w
10.1063/1.481001
10.1016/j.jqsrt.2015.08.004
10.1063/1.470387
10.1016/j.jms.2014.01.013
10.1016/0022-2852(91)90141-V
10.1063/1.1675780
10.1080/002689798169168
10.1063/1.3156311
10.1063/1.476724
10.1080/00268978800100891
10.1021/jp1030569
10.1016/0010-4655(88)90068-9
10.1016/0022-2852(74)90177-5
10.1143/PTP.11.190
10.1016/0022-2852(70)90024-X
10.1021/acs.jctc.7b00506
10.1016/0022-4073(89)90050-2
10.1080/00268970802258609
10.1016/j.jqsrt.2021.107936
10.1016/j.saa.2004.10.039
10.1002/cpa.3160070404
10.1063/1.453797
10.1016/j.saa.2013.03.090
10.1039/D0CP05727D
10.1146/annurev.pc.46.100195.000503
10.1016/j.jqsrt.2018.04.032
10.1007/s11182-020-01923-w
10.1063/1.3541351
10.1016/0009-2614(82)83128-X
10.1016/j.physrep.2009.05.003
10.1021/ar000153r
10.1016/0029-5582(60)90177-2
10.1021/jp311398z
10.1039/C8CP03252A
10.1016/0022-2852(74)90191-X
10.1016/0022-2852(75)90270-2
10.1016/j.jms.2009.01.008
10.1007/BF00891667
10.1021/acs.jpca.0c09526
10.1063/1.4940798
10.1063/1.474810
10.1016/0022-2852(92)90010-L
10.1063/1.458083
10.1016/j.jqsrt.2010.05.001
10.1016/j.jqsrt.2012.08.025
10.1016/j.jqsrt.2019.06.002
10.1021/jp013057w
10.1364/JOSAB.10.001526
10.1063/1.475670
10.1103/PhysRevA.94.042514
10.1016/0022-2852(79)90156-5
10.1063/1.4952414
10.1080/00268977500100971
10.1016/j.jqsrt.2012.02.037
10.1016/0009-2614(84)85622-5
10.1006/jmsp.1996.7185
10.1080/00268978200100802
10.1063/1.1738643
10.1016/0022-2852(70)90080-9
10.1016/j.jqsrt.2010.02.009
10.1016/j.jqsrt.2017.06.039
10.1063/1.2790016
10.1016/S0022-4073(03)00156-0
10.1016/j.jms.2009.10.005
10.1080/00268976.2017.1390616
10.1063/1.4890956
10.1063/1.437470
10.1002/jrs.4248
10.1063/1.4729536
10.1016/S0009-2614(96)01346-2
10.1016/S0009-2614(96)01144-X
10.1021/acs.jpca.1c08717
10.1063/1.1599354
10.1016/j.jms.2004.02.002
10.1016/0022-2852(61)90098-4
10.1080/00268979200102711
10.1080/00268977400100041
10.1063/1.3555758
10.1016/j.jqsrt.2015.12.021
10.1016/j.jqsrt.2017.05.023
10.1016/j.jms.2005.06.017
10.1016/j.jqsrt.2012.02.034
10.1016/j.jqsrt.2021.107713
10.1016/j.jms.2020.111255
10.1093/mnras/sty1877
10.1063/1.474613
10.1016/j.jms.2016.03.005
10.1016/0375-9601(74)90378-8
10.1016/0022-2852(71)90255-4
10.1063/1.4896569
10.1016/S0370-1573(00)00089-2
10.1063/1.1701280
10.1016/j.icarus.2009.03.023
10.1016/S0022-4073(98)00091-0
10.1016/0009-2614(80)85260-2
10.1139/p88-004
10.1016/j.jqsrt.2018.06.022
10.1016/j.cplett.2010.11.008
10.1007/s10910-010-9779-y
10.1063/1.481590
10.1021/acs.jpca.5b00587
10.1016/j.jqsrt.2013.06.020
10.1016/j.jqsrt.2015.09.014
10.3390/molecules27030911
10.1051/jphys:01982004305072300
10.1016/0022-2852(72)90150-6
10.1016/j.molstruc.2020.128260
10.1016/j.jms.2013.05.014
10.1103/PhysRevA.103.022810
10.1016/j.icarus.2022.114947
10.1063/1.1574013
10.1080/00268970500224549
10.1021/jp5077092
10.1103/RevModPhys.23.90
10.1063/1.469051
10.1177/0734242X09345599
10.1063/1.1574016
10.1016/S1386-1425(00)00451-0
10.1016/0022-2852(84)90108-5
10.1063/1.4962261
10.1080/00268977600103251
10.1016/j.jms.2017.12.005
10.1016/j.physleta.2018.11.008
10.1007/s00159-013-0063-6
10.1007/BF00892435
10.1063/1.3077130
10.1039/C5CP05265C
10.1063/1.4961973
10.1016/j.cplett.2007.12.061
10.1063/1.3025885
10.1063/1.4895557
10.1063/1.3532927
10.1016/0022-2852(87)90135-4
10.1080/00268978400101981
10.1093/mnras/stu326
10.1080/00268977700100351
10.1016/0022-2852(74)90277-X
10.1063/1.4942172
10.1063/1.1767093
10.1063/1.1637579
10.1016/S1386-1425(97)00214-X
10.1080/00268970512331316247
10.1016/0022-2852(88)90164-6
10.1016/j.chemphys.2008.10.019
10.1063/1.5023331
10.1080/00268976.2016.1269966
10.1103/PhysRevLett.126.063001
10.1103/PhysRevA.95.032124
10.1063/1.3476468
10.1006/jmsp.2001.8445
10.1063/1.5041911
10.1016/j.jqsrt.2019.04.023
10.1039/c3cp50463h
10.1016/j.jms.2011.04.005
10.1002/9780470141731.ch4
10.1063/1.455965
10.1063/1.2956488
10.1051/jphyslet:0198400450101100
10.1080/01442359009353236
10.1016/j.jms.2013.04.005
10.1016/j.jms.2008.03.021
10.1021/cr900069m
10.1007/BF02859806
10.1007/BF00893136
10.1016/j.jqsrt.2020.107061
10.1063/1.471986
10.1117/12.545641
10.1080/00268977700101361
10.1063/1.3273207
10.1016/S1386-1425(01)00673-4
10.1021/jp9525447
10.1021/jp071862q
10.1098/rsta.2013.0087
10.1016/j.jqsrt.2012.02.023
10.1016/0022-2852(76)90379-9
10.1007/BF00893137
10.1063/1.1482699
10.1063/1.449095
10.1021/acs.jctc.7b00236
10.1021/es035424i
10.1021/acs.jpca.0c02733
10.1016/B978-0-12-580643-5.50011-7
10.1017/S0263034600002469
10.1080/00268977200102361
10.1103/PhysRev.33.467
10.1016/j.jms.2011.11.005
10.1063/1.1726953
10.1063/1.1601593
10.1002/qua.10556
10.1016/0022-2852(73)90219-1
10.1016/S0022-4073(03)00107-9
10.1016/j.jqsrt.2017.05.014
10.1007/BF00895254
10.1103/PhysRev.57.128
10.1016/j.jqsrt.2015.12.023
10.1146/annurev.pc.46.100195.002143
10.1063/1.4913520
10.1063/1.469398
10.1063/1.4730030
10.1063/1.4899263
10.1016/j.jqsrt.2019.106668
10.1016/0022-2852(79)90081-X
10.1016/j.jqsrt.2012.01.027
10.1103/RevModPhys.35.710
10.1063/1.459576
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1080/00268976.2022.2096140
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1362-3028
ExternalDocumentID 10_1080_00268976_2022_2096140
2096140
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29M
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TCY
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
WH7
YNT
YQT
ZGOLN
~S~
AAYXX
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c385t-33dc5fead3652dce1d6892bc8b06c4487ebe39ed2d76c69086a72b4146a9f88c3
IEDL.DBID TFW
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831178700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0026-8976
IngestDate Wed Aug 13 11:12:45 EDT 2025
Tue Nov 18 22:31:56 EST 2025
Sat Nov 29 02:28:27 EST 2025
Mon Oct 20 23:46:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-33dc5fead3652dce1d6892bc8b06c4487ebe39ed2d76c69086a72b4146a9f88c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2181-1158
0000-0002-4280-4096
OpenAccessLink https://hal.science/hal-03841335
PQID 2733849063
PQPubID 196148
ParticipantIDs informaworld_taylorfrancis_310_1080_00268976_2022_2096140
proquest_journals_2733849063
crossref_citationtrail_10_1080_00268976_2022_2096140
crossref_primary_10_1080_00268976_2022_2096140
PublicationCentury 2000
PublicationDate 2022-08-18
PublicationDateYYYYMMDD 2022-08-18
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-18
  day: 18
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Molecular physics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0230
CIT0351
CIT0350
Child M.S. (CIT0081) 2000
CIT0111
CIT0232
CIT0353
CIT0231
CIT0352
CIT0113
CIT0234
CIT0355
Aliev M.R. (CIT0099) 1968; 24
CIT0112
CIT0233
CIT0354
CIT0236
CIT0357
CIT0114
CIT0235
CIT0356
CIT0117
CIT0238
CIT0359
Mathea T. (CIT0165) 2021; 125
CIT0237
CIT0358
CIT0119
CIT0118
CIT0120
CIT0241
CIT0362
CIT0240
CIT0001
CIT0243
CIT0364
CIT0121
CIT0242
CIT0363
Krasnoshchekov S. (CIT0141) 2020; 384
Wang X.G. (CIT0214) 2016; 144
CIT0124
CIT0245
CIT0366
CIT0002
CIT0123
CIT0244
CIT0365
Rosenblum M. (CIT0417) 1957; 23
CIT0005
CIT0126
CIT0247
CIT0368
CIT0004
CIT0125
CIT0246
CIT0367
CIT0007
CIT0128
CIT0249
CIT0006
CIT0248
CIT0369
CIT0009
CIT0008
CIT0129
CIT0250
CIT0371
CIT0370
CIT0131
CIT0252
CIT0373
CIT0130
CIT0251
CIT0372
CIT0012
CIT0133
CIT0375
CIT0011
Primas H. (CIT0098) 1961; 34
CIT0132
CIT0253
CIT0374
CIT0014
CIT0135
CIT0256
CIT0377
CIT0013
CIT0134
CIT0255
CIT0376
CIT0016
CIT0137
CIT0258
CIT0379
CIT0015
CIT0136
CIT0257
CIT0378
CIT0139
CIT0017
CIT0138
CIT0259
CIT0019
CIT0380
CIT0140
CIT0261
CIT0382
CIT0260
CIT0381
CIT0142
CIT0263
CIT0384
CIT0020
CIT0262
CIT0383
CIT0023
CIT0144
CIT0265
CIT0143
CIT0264
CIT0025
CIT0146
CIT0267
CIT0388
CIT0266
CIT0387
CIT0027
CIT0148
CIT0269
CIT0268
CIT0389
CIT0029
CIT0028
CIT0149
Zhilinskii B. (CIT0116) 1987
CIT0319
CIT0318
CIT0311
CIT0310
CIT0313
CIT0312
CIT0315
CIT0314
CIT0317
CIT0316
CIT0320
CIT0209
CIT0208
CIT0329
Neese F. (CIT0024) 2020
CIT0322
CIT0200
CIT0321
CIT0203
CIT0324
CIT0202
CIT0323
CIT0205
CIT0326
CIT0204
CIT0325
CIT0207
CIT0328
CIT0206
CIT0327
CIT0210
CIT0331
CIT0330
CIT0219
CIT0212
CIT0333
CIT0211
CIT0332
CIT0335
CIT0213
CIT0334
CIT0216
CIT0337
CIT0215
CIT0336
CIT0218
CIT0339
CIT0217
CIT0338
CIT0340
CIT0221
CIT0342
CIT0220
CIT0341
Yang Q. (CIT0239) 2021; 8
CIT0109
CIT0102
CIT0223
CIT0344
CIT0101
CIT0222
CIT0343
Mila F. (CIT0021) 2011
CIT0104
CIT0225
CIT0346
CIT0103
CIT0224
CIT0345
CIT0106
CIT0227
CIT0348
CIT0105
CIT0226
CIT0347
CIT0108
CIT0229
CIT0228
CIT0349
Rabitz H. (CIT0018) 1976
CIT0407
CIT0406
CIT0409
CIT0408
Sarka K. (CIT0010) 2000
CIT0401
CIT0400
CIT0403
CIT0402
CIT0405
CIT0404
Laane J. (CIT0360) 1993
CIT0418
CIT0410
CIT0412
CIT0411
CIT0414
CIT0413
CIT0416
Flügge S. (CIT0254) 1971
CIT0415
Gerber R.B. (CIT0158) 1988; 70
CIT0308
CIT0307
CIT0309
CIT0300
CIT0302
CIT0301
CIT0304
CIT0303
CIT0306
CIT0305
Tyuterev V.G. (CIT0127) 2002
Zhilinskií B.I. (CIT0067) 1987; 65
Makushkin Y.S. (CIT0100) 1973; 35
McCoy A.B. (CIT0122) 1991
Jauslin H.R. (CIT0182) 1995
Flaud J.M. (CIT0057) 1990
Wachsmuth J. (CIT0022) 2014; 230
Starikov V.I. (CIT0107) 1981; 51
Velichko T.I. (CIT0115) 1986
Legay F. (CIT0145) 1958; 12
Starikov V.I. (CIT0385) 1983; 55
Kozin I.N. (CIT0086) 2004; 61
CIT0072
CIT0193
CIT0071
CIT0192
CIT0074
CIT0195
CIT0073
CIT0194
CIT0076
CIT0197
CIT0075
CIT0196
CIT0078
CIT0199
CIT0077
CIT0198
Smeyers Y.E. (CIT0361) 2012
CIT0070
CIT0191
CIT0190
CIT0079
CIT0083
CIT0082
CIT0085
CIT0084
CIT0087
CIT0089
CIT0088
CIT0080
CIT0094
CIT0093
Makushkin Y.S. (CIT0147) 1974; 1
CIT0096
CIT0095
CIT0097
CIT0090
CIT0092
CIT0091
Papoušek D. (CIT0110) 1982
CIT0270
CIT0391
CIT0390
CIT0151
CIT0272
CIT0393
CIT0150
CIT0271
CIT0392
CIT0032
CIT0153
CIT0274
CIT0395
CIT0031
CIT0152
CIT0273
CIT0394
CIT0034
CIT0155
CIT0276
CIT0397
CIT0033
CIT0154
CIT0275
CIT0396
Soliverez C. (CIT0030) 1969; 2
Starikov V.I. (CIT0386) 1990; 68
CIT0036
CIT0157
CIT0278
CIT0399
CIT0035
CIT0156
CIT0277
CIT0398
CIT0038
CIT0159
CIT0037
CIT0279
CIT0039
CIT0160
CIT0281
CIT0280
CIT0041
CIT0162
CIT0283
CIT0040
CIT0161
CIT0282
CIT0043
CIT0164
CIT0285
CIT0042
CIT0163
CIT0284
CIT0045
CIT0166
CIT0287
CIT0044
CIT0286
Bogolyubov N.N. (CIT0026) 1949; 19
CIT0047
CIT0168
CIT0289
CIT0046
CIT0167
CIT0288
CIT0049
CIT0048
CIT0169
CIT0050
CIT0171
CIT0292
CIT0170
CIT0291
CIT0052
CIT0173
CIT0294
CIT0051
CIT0172
CIT0293
CIT0054
CIT0175
CIT0296
CIT0053
CIT0174
CIT0295
CIT0056
CIT0177
CIT0298
Amat G. (CIT0003) 1971
CIT0055
CIT0176
CIT0297
CIT0290
Guerin S. (CIT0201) 2003; 125
CIT0058
CIT0179
CIT0178
CIT0299
CIT0059
CIT0061
CIT0060
CIT0181
CIT0063
CIT0184
CIT0062
CIT0183
CIT0065
CIT0186
CIT0064
CIT0185
CIT0188
CIT0066
CIT0187
CIT0180
CIT0069
CIT0068
CIT0189
References_xml – ident: CIT0044
  doi: 10.1039/C3CP54175D
– ident: CIT0055
  doi: 10.1016/j.jqsrt.2018.11.020
– ident: CIT0318
  doi: 10.1016/j.icarus.2009.07.044
– ident: CIT0339
  doi: 10.1016/0022-2852(87)90142-1
– ident: CIT0368
  doi: 10.1063/1.3604935
– ident: CIT0007
  doi: 10.1016/B978-0-12-580643-5.50006-3
– ident: CIT0149
  doi: 10.1070/PU1976v019n07ABEH005278
– ident: CIT0257
  doi: 10.1006/jmsp.2002.8558
– ident: CIT0004
  doi: 10.1063/1.1701809
– ident: CIT0311
  doi: 10.3847/1538-4365/aaed39
– ident: CIT0261
  doi: 10.1063/1.445849
– ident: CIT0167
  doi: 10.1146/annurev.pc.40.100189.002345
– ident: CIT0224
  doi: 10.1016/S0022-4073(03)00013-X
– ident: CIT0301
  doi: 10.1063/1.476513
– ident: CIT0376
  doi: 10.1016/0022-2852(79)90020-1
– ident: CIT0222
  doi: 10.1016/j.jqsrt.2015.06.009
– ident: CIT0066
  doi: 10.1063/1.447255
– ident: CIT0194
  doi: 10.1016/0022-2852(87)90086-5
– ident: CIT0267
  doi: 10.1063/1.4868327
– ident: CIT0242
  doi: 10.1080/00268976.2012.669504
– ident: CIT0168
  doi: 10.1016/S1386-1425(01)00669-2
– ident: CIT0013
  doi: 10.1021/jp0032513
– ident: CIT0093
  doi: 10.1016/j.cplett.2010.06.027
– ident: CIT0403
  doi: 10.1016/j.jqsrt.2019.03.001
– ident: CIT0220
  doi: 10.1080/00268976.2010.506892
– ident: CIT0289
  doi: 10.1021/jp809839t
– ident: CIT0383
  doi: 10.1006/jmsp.1994.1144
– ident: CIT0143
  doi: 10.1016/j.cplett.2005.06.115
– ident: CIT0294
  doi: 10.1016/j.jqsrt.2019.01.018
– ident: CIT0405
  doi: 10.1016/j.jqsrt.2017.06.032
– ident: CIT0180
  doi: 10.1086/110172
– ident: CIT0155
  doi: 10.1063/1.4705278
– ident: CIT0336
  doi: 10.1016/j.jqsrt.2021.108021
– ident: CIT0342
  doi: 10.1006/jmsp.1995.1131
– volume-title: Atlas of Ozone Spectral Parameters from Microwave to Medium Infrared
  year: 1990
  ident: CIT0057
– volume: 24
  start-page: 695
  year: 1968
  ident: CIT0099
  publication-title: Opt. Spektrosk
– ident: CIT0345
– ident: CIT0371
  doi: 10.1063/5.0049418
– ident: CIT0317
  doi: 10.1016/j.jms.2016.04.006
– ident: CIT0300
  doi: 10.1021/jp037305v
– ident: CIT0354
  doi: 10.1016/j.molap.2017.05.002
– ident: CIT0164
  doi: 10.1063/5.0009732
– volume: 230
  start-page: 1
  year: 2014
  ident: CIT0022
  publication-title: Am. Math. Soc
– ident: CIT0364
  doi: 10.1016/S0065-3276(05)48014-4
– volume: 12
  start-page: 416
  year: 1958
  ident: CIT0145
  publication-title: Cahiers de Physique
– ident: CIT0138
  doi: 10.1063/1.4903927
– ident: CIT0230
  doi: 10.1063/1.470217
– ident: CIT0120
  doi: 10.1063/1.461371
– ident: CIT0202
  doi: 10.1016/0167-7977(86)90006-7
– ident: CIT0382
  doi: 10.1016/0022-2852(89)90196-3
– ident: CIT0391
  doi: 10.1080/00268976.2013.793831
– ident: CIT0084
  doi: 10.1021/jp0131065
– ident: CIT0163
  doi: 10.1063/1.4984266
– ident: CIT0393
  doi: 10.1142/4650
– ident: CIT0268
  doi: 10.1117/12.545644
– ident: CIT0323
  doi: 10.1016/S0022-4073(97)00106-4
– ident: CIT0038
  doi: 10.1016/0022-2852(86)90220-1
– ident: CIT0407
  doi: 10.1016/j.jms.2020.111289
– ident: CIT0178
  doi: 10.1016/0022-2860(83)90091-1
– ident: CIT0406
  doi: 10.1515/zna-1996-0807
– ident: CIT0062
  doi: 10.1016/j.jqsrt.2020.107364
– ident: CIT0174
  doi: 10.1016/j.jms.2007.07.009
– ident: CIT0258
  doi: 10.1063/1.473987
– ident: CIT0052
  doi: 10.1016/j.jms.2011.01.002
– ident: CIT0219
  doi: 10.1063/1.5042154
– ident: CIT0263
  doi: 10.1016/0022-2852(86)90261-4
– ident: CIT0223
  doi: 10.1002/qua.560390208
– ident: CIT0380
  doi: 10.1016/0022-2860(82)87201-3
– ident: CIT0151
  doi: 10.1016/0022-2852(86)90189-X
– ident: CIT0225
  doi: 10.1016/j.cpc.2003.10.003
– ident: CIT0312
  doi: 10.3847/1538-4365/ab7a1a
– ident: CIT0042
  doi: 10.1016/S0022-4073(98)00082-X
– ident: CIT0356
  doi: 10.1016/0022-2852(84)90153-X
– ident: CIT0128
  doi: 10.1063/1.1290027
– ident: CIT0124
  doi: 10.1063/1.471531
– ident: CIT0218
  doi: 10.1016/j.jqsrt.2020.107478
– volume: 55
  start-page: 467
  year: 1983
  ident: CIT0385
  publication-title: Opt. Spectrosk
– ident: CIT0381
  doi: 10.1016/0022-2852(76)90123-5
– ident: CIT0071
  doi: 10.1103/PhysRevA.47.2653
– ident: CIT0188
  doi: 10.1016/0009-2614(75)85222-5
– ident: CIT0191
  doi: 10.1016/0022-2852(82)90214-4
– ident: CIT0237
  doi: 10.1063/1.5040360
– ident: CIT0344
– ident: CIT0015
  doi: 10.1021/jp408116j
– ident: CIT0325
  doi: 10.1016/j.jms.2013.06.003
– ident: CIT0295
  doi: 10.1093/astrogeo/atab102
– volume: 68
  start-page: 302
  year: 1990
  ident: CIT0386
  publication-title: Opt. Spectrosk
– ident: CIT0402
  doi: 10.1016/j.jqsrt.2013.05.001
– ident: CIT0327
  doi: 10.1063/1.4939521
– volume: 2
  start-page: 2161
  year: 1969
  ident: CIT0030
  publication-title: J. Phys
– ident: CIT0245
  doi: 10.1063/1.1749833
– ident: CIT0134
  doi: 10.1002/qua.23183
– ident: CIT0359
  doi: 10.1016/j.jqsrt.2018.12.034
– volume-title: Effective Hamiltonians in Molecular Collisions, Modern Theoretical Chemistry III
  year: 1976
  ident: CIT0018
– ident: CIT0184
  doi: 10.1063/5.0089097
– ident: CIT0058
  doi: 10.1016/j.jqsrt.2021.107949
– ident: CIT0187
  doi: 10.1080/00268977400100881
– ident: CIT0244
  doi: 10.1080/00268979300101741
– ident: CIT0377
  doi: 10.1016/0022-2852(83)90319-3
– ident: CIT0177
  doi: 10.1016/0022-2852(73)90132-X
– ident: CIT0306
  doi: 10.1080/00268976.2015.1015642
– ident: CIT0343
  doi: 10.1134/S0030400X15070139
– ident: CIT0019
  doi: 10.1088/0305-4470/18/5/014
– ident: CIT0207
  doi: 10.1016/j.jqsrt.2012.01.008
– ident: CIT0398
  doi: 10.1063/1.4764099
– ident: CIT0130
  doi: 10.1063/1.1465413
– volume-title: Computational Molecular Spectroscopy
  year: 2000
  ident: CIT0081
– ident: CIT0215
  doi: 10.1021/jp9029425
– ident: CIT0159
  doi: 10.1021/ct9004454
– ident: CIT0199
  doi: 10.1103/PhysRev.75.486
– ident: CIT0233
  doi: 10.1063/5.0016365
– ident: CIT0063
  doi: 10.1080/00268976.2021.1987543
– ident: CIT0266
  doi: 10.1063/1.1377893
– ident: CIT0390
  doi: 10.1039/D0CP02177F
– ident: CIT0059
  doi: 10.1016/j.jms.2021.111510
– ident: CIT0153
  doi: 10.1063/1.1290614
– ident: CIT0418
  doi: 10.1063/1.1724245
– ident: CIT0253
  doi: 10.1063/1.1840957
– ident: CIT0050
  doi: 10.1006/jmsp.1996.0114
– ident: CIT0401
  doi: 10.1016/j.jqsrt.2014.04.024
– ident: CIT0005
  doi: 10.1016/B978-0-12-580640-4.50013-3
– ident: CIT0031
  doi: 10.1063/1.1682018
– ident: CIT0404
  doi: 10.1016/j.jqsrt.2015.11.014
– ident: CIT0027
  doi: 10.1016/0029-5582(58)90116-0
– ident: CIT0183
  doi: 10.1016/S0378-4371(99)00540-3
– ident: CIT0091
– ident: CIT0078
– ident: CIT0333
  doi: 10.1063/1.436520
– ident: CIT0248
  doi: 10.1016/j.jms.2004.02.022
– ident: CIT0210
  doi: 10.1039/c001944e
– ident: CIT0271
  doi: 10.1016/0022-2852(92)90009-D
– ident: CIT0355
  doi: 10.1051/0004-6361/201629004
– ident: CIT0208
  doi: 10.1063/1.3187528
– ident: CIT0375
  doi: 10.1016/0022-2852(79)90019-5
– ident: CIT0064
  doi: 10.1080/00268978100102741
– ident: CIT0241
  doi: 10.1063/1.3266577
– ident: CIT0357
  doi: 10.1016/0022-2852(85)90062-1
– ident: CIT0396
  doi: 10.1093/mnras/sty1239
– ident: CIT0353
  doi: 10.3847/1538-4357/aa8909
– ident: CIT0139
  doi: 10.1021/acs.jpca.5b03241
– ident: CIT0037
  doi: 10.1063/1.444261
– ident: CIT0121
  doi: 10.1063/1.460850
– ident: CIT0113
  doi: 10.1016/0009-2614(84)80035-4
– volume: 384
  start-page: 126493-1
  year: 2020
  ident: CIT0141
  publication-title: Phys. Letters
– ident: CIT0133
  doi: 10.1063/1.2743441
– ident: CIT0090
  doi: 10.1016/S0009-2614(99)00850-7
– ident: CIT0387
  doi: 10.1007/BF00895258
– ident: CIT0020
  doi: 10.1016/0166-1280(91)89006-M
– ident: CIT0136
  doi: 10.1063/1.4829143
– ident: CIT0365
  doi: 10.1021/jp070398m
– ident: CIT0011
  doi: 10.1016/B978-0-12-580645-9.50009-5
– ident: CIT0315
  doi: 10.1016/j.icarus.2017.12.045
– ident: CIT0025
  doi: 10.1103/PhysRevA.105.023704
– ident: CIT0054
  doi: 10.1080/00268970903501709
– ident: CIT0157
  doi: 10.1021/ar00127a002
– ident: CIT0213
  doi: 10.1002/wcms.73
– ident: CIT0322
  doi: 10.1016/0022-4073(94)90174-0
– ident: CIT0196
  doi: 10.1016/0022-2852(86)90070-6
– volume-title: Problems in Quantum Mechanics
  year: 1971
  ident: CIT0254
– ident: CIT0340
  doi: 10.1007/BF03155942
– ident: CIT0076
  doi: 10.1063/1.474366
– ident: CIT0087
  doi: 10.1016/0003-4916(88)90268-0
– ident: CIT0350
  doi: 10.1063/1.4973977
– ident: CIT0212
  doi: 10.1080/00268976.2018.1473652
– ident: CIT0046
  doi: 10.1080/00268976.2018.1512720
– ident: CIT0175
  doi: 10.1039/c3cp50275a
– ident: CIT0269
  doi: 10.1016/0022-2852(88)90214-7
– ident: CIT0243
  doi: 10.1080/00268976800101381
– ident: CIT0346
– ident: CIT0171
  doi: 10.1016/j.saa.2020.119158
– ident: CIT0320
  doi: 10.1063/1.480271
– volume-title: Introduction to Frustrated Magnetism. Springer Series in Solid-State Sciences
  year: 2011
  ident: CIT0021
– ident: CIT0114
  doi: 10.1364/JOSAB.2.000387
– ident: CIT0082
  doi: 10.1021/jp014008m
– ident: CIT0281
  doi: 10.1016/S0022-2860(99)00235-5
– volume: 19
  start-page: 251
  year: 1949
  ident: CIT0026
  publication-title: ZETF
– ident: CIT0085
  doi: 10.1139/p02-075
– ident: CIT0415
  doi: 10.1002/cpa.3160080204
– ident: CIT0367
  doi: 10.1063/1.3533950
– ident: CIT0135
  doi: 10.1021/jp211400w
– ident: CIT0144
  doi: 10.1063/1.481001
– ident: CIT0337
  doi: 10.1016/j.jqsrt.2015.08.004
– ident: CIT0126
  doi: 10.1063/1.470387
– volume-title: Symmetry and Perturbation Theory
  year: 2002
  ident: CIT0127
– ident: CIT0280
  doi: 10.1016/j.jms.2014.01.013
– ident: CIT0341
  doi: 10.1016/0022-2852(91)90141-V
– ident: CIT0016
  doi: 10.1063/1.1675780
– ident: CIT0235
  doi: 10.1080/002689798169168
– ident: CIT0283
  doi: 10.1063/1.3156311
– ident: CIT0142
  doi: 10.1063/1.476724
– ident: CIT0334
  doi: 10.1080/00268978800100891
– ident: CIT0103
– ident: CIT0092
  doi: 10.1021/jp1030569
– ident: CIT0117
  doi: 10.1016/0010-4655(88)90068-9
– ident: CIT0041
  doi: 10.1016/0022-2852(74)90177-5
– ident: CIT0416
  doi: 10.1143/PTP.11.190
– ident: CIT0060
  doi: 10.1016/0022-2852(70)90024-X
– ident: CIT0033
– ident: CIT0217
  doi: 10.1021/acs.jctc.7b00506
– ident: CIT0349
  doi: 10.1016/0022-4073(89)90050-2
– ident: CIT0240
  doi: 10.1080/00268970802258609
– ident: CIT0048
  doi: 10.1016/j.jqsrt.2021.107936
– volume: 61
  start-page: 2867
  year: 2004
  ident: CIT0086
  publication-title: Spectrochim. Acta
  doi: 10.1016/j.saa.2004.10.039
– ident: CIT0200
  doi: 10.1002/cpa.3160070404
– ident: CIT0009
  doi: 10.1063/1.453797
– ident: CIT0209
  doi: 10.1016/j.saa.2013.03.090
– ident: CIT0250
  doi: 10.1039/D0CP05727D
– ident: CIT0073
  doi: 10.1146/annurev.pc.46.100195.000503
– ident: CIT0310
  doi: 10.1016/j.jqsrt.2018.04.032
– ident: CIT0096
  doi: 10.1007/s11182-020-01923-w
– ident: CIT0197
  doi: 10.1063/1.3541351
– ident: CIT0260
  doi: 10.1016/0009-2614(82)83128-X
– ident: CIT0366
  doi: 10.1016/j.physrep.2009.05.003
– ident: CIT0088
  doi: 10.1021/ar000153r
– ident: CIT0028
  doi: 10.1016/0029-5582(60)90177-2
– ident: CIT0137
  doi: 10.1021/jp311398z
– ident: CIT0293
  doi: 10.1039/C8CP03252A
– ident: CIT0374
  doi: 10.1016/0022-2852(74)90191-X
– ident: CIT0148
  doi: 10.1016/0022-2852(75)90270-2
– ident: CIT0279
  doi: 10.1016/j.jms.2009.01.008
– ident: CIT0111
  doi: 10.1007/BF00891667
– ident: CIT0238
  doi: 10.1021/acs.jpca.0c09526
– ident: CIT0094
  doi: 10.1063/1.4940798
– ident: CIT0408
  doi: 10.1063/1.474810
– volume: 1
  start-page: 59
  year: 1974
  ident: CIT0147
  publication-title: Opt. Spektrosk
– ident: CIT0256
  doi: 10.1016/0022-2852(92)90010-L
– ident: CIT0068
  doi: 10.1063/1.458083
– ident: CIT0006
– ident: CIT0395
  doi: 10.1016/j.jqsrt.2010.05.001
– ident: CIT0043
  doi: 10.1016/j.jqsrt.2012.08.025
– ident: CIT0412
  doi: 10.1016/j.jqsrt.2019.06.002
– ident: CIT0083
  doi: 10.1021/jp013057w
– ident: CIT0347
  doi: 10.1364/JOSAB.10.001526
– ident: CIT0265
  doi: 10.1063/1.475670
– ident: CIT0392
  doi: 10.1103/PhysRevA.94.042514
– ident: CIT0106
  doi: 10.1016/0022-2852(79)90156-5
– ident: CIT0162
  doi: 10.1063/1.4952414
– ident: CIT0034
  doi: 10.1080/00268977500100971
– ident: CIT0369
  doi: 10.1016/j.jqsrt.2012.02.037
– ident: CIT0192
  doi: 10.1016/0009-2614(84)85622-5
– ident: CIT0249
  doi: 10.1006/jmsp.1996.7185
– ident: CIT0065
  doi: 10.1080/00268978200100802
– ident: CIT0131
  doi: 10.1063/1.1738643
– ident: CIT0255
  doi: 10.1016/0022-2852(70)90080-9
– volume: 8
  start-page: 665232-1
  year: 2021
  ident: CIT0239
  publication-title: J. Bloino, Front. Astron. Space Sci
– ident: CIT0264
  doi: 10.1016/j.jqsrt.2010.02.009
– ident: CIT0292
  doi: 10.1016/j.jqsrt.2017.06.039
– ident: CIT0160
  doi: 10.1063/1.2790016
– ident: CIT0348
  doi: 10.1016/S0022-4073(03)00156-0
– ident: CIT0409
  doi: 10.1016/j.jms.2009.10.005
– ident: CIT0056
  doi: 10.1080/00268976.2017.1390616
– ident: CIT0284
  doi: 10.1063/1.4890956
– ident: CIT0373
– ident: CIT0150
  doi: 10.1063/1.437470
– ident: CIT0291
  doi: 10.1002/jrs.4248
– ident: CIT0232
  doi: 10.1063/1.4729536
– volume-title: Topology, Entanglement, and Strong Correlations Modeling and Simulation
  year: 2020
  ident: CIT0024
– ident: CIT0074
  doi: 10.1016/S0009-2614(96)01346-2
– ident: CIT0075
  doi: 10.1016/S0009-2614(96)01144-X
– ident: CIT0372
  doi: 10.1021/acs.jpca.1c08717
– ident: CIT0411
  doi: 10.1063/1.1599354
– ident: CIT0363
  doi: 10.1016/j.jms.2004.02.002
– ident: CIT0234
  doi: 10.1016/0022-2852(61)90098-4
– ident: CIT0123
  doi: 10.1080/00268979200102711
– ident: CIT0186
  doi: 10.1080/00268977400100041
– ident: CIT0198
  doi: 10.1063/1.3555758
– ident: CIT0045
  doi: 10.1016/j.jqsrt.2015.12.021
– ident: CIT0061
  doi: 10.1016/j.jqsrt.2017.05.023
– ident: CIT0270
  doi: 10.1016/j.jms.2005.06.017
– ident: CIT0176
  doi: 10.1016/j.jqsrt.2012.02.034
– ident: CIT0338
  doi: 10.1016/j.jqsrt.2021.107713
– ident: CIT0370
  doi: 10.1016/j.jms.2020.111255
– ident: CIT0259
  doi: 10.1093/mnras/sty1877
– ident: CIT0125
  doi: 10.1063/1.474613
– ident: CIT0400
  doi: 10.1016/j.jms.2016.03.005
– ident: CIT0102
  doi: 10.1016/0375-9601(74)90378-8
– volume: 144
  start-page: 204304
  year: 2016
  ident: CIT0214
  publication-title: Chem. Phys
– ident: CIT0146
  doi: 10.1016/0022-2852(71)90255-4
– ident: CIT0286
  doi: 10.1063/1.4896569
– ident: CIT0079
  doi: 10.1016/S0370-1573(00)00089-2
– ident: CIT0008
– ident: CIT0002
  doi: 10.1063/1.1701280
– ident: CIT0277
  doi: 10.1016/j.icarus.2009.03.023
– ident: CIT0399
  doi: 10.1016/S0022-4073(98)00091-0
– ident: CIT0036
  doi: 10.1016/0009-2614(80)85260-2
– ident: CIT0152
  doi: 10.1139/p88-004
– ident: CIT0276
  doi: 10.1016/j.jqsrt.2018.06.022
– ident: CIT0288
  doi: 10.1016/j.cplett.2010.11.008
– ident: CIT0189
  doi: 10.1007/s10910-010-9779-y
– ident: CIT0129
  doi: 10.1063/1.481590
– ident: CIT0285
  doi: 10.1021/acs.jpca.5b00587
– ident: CIT0321
  doi: 10.1016/j.jqsrt.2013.06.020
– ident: CIT0331
  doi: 10.1016/j.jqsrt.2015.09.014
– ident: CIT0414
  doi: 10.3390/molecules27030911
– ident: CIT0108
  doi: 10.1051/jphys:01982004305072300
– ident: CIT0332
  doi: 10.1016/0022-2852(72)90150-6
– ident: CIT0351
  doi: 10.1016/j.molstruc.2020.128260
– ident: CIT0304
  doi: 10.1016/j.jms.2013.05.014
– ident: CIT0314
  doi: 10.1103/PhysRevA.103.022810
– volume-title: Advances in Molecular Vibrations and Collision Dynamics
  year: 1991
  ident: CIT0122
– ident: CIT0394
  doi: 10.1016/j.icarus.2022.114947
– ident: CIT0205
  doi: 10.1063/1.1574013
– volume-title: Computational Molecular Spectroscopy
  year: 2000
  ident: CIT0010
– volume: 125
  start-page: 990
  year: 2021
  ident: CIT0165
  publication-title: Phys. Chem
– ident: CIT0190
  doi: 10.1080/00268970500224549
– ident: CIT0140
  doi: 10.1021/jp5077092
– volume-title: Method of Irreducible Tensor Operators in the Theory of Molecular Spectra
  year: 1987
  ident: CIT0116
– ident: CIT0179
– ident: CIT0097
  doi: 10.1103/RevModPhys.23.90
– ident: CIT0229
  doi: 10.1063/1.469051
– ident: CIT0290
  doi: 10.1177/0734242X09345599
– ident: CIT0308
  doi: 10.1063/1.1574016
– ident: CIT0287
  doi: 10.1016/S1386-1425(00)00451-0
– ident: CIT0195
  doi: 10.1016/0022-2852(84)90108-5
– ident: CIT0307
  doi: 10.1063/1.4962261
– ident: CIT0272
  doi: 10.1080/00268977600103251
– ident: CIT0410
  doi: 10.1016/j.jms.2017.12.005
– ident: CIT0089
  doi: 10.1016/j.physleta.2018.11.008
– ident: CIT0297
  doi: 10.1007/s00159-013-0063-6
– volume: 23
  start-page: 263
  year: 1957
  ident: CIT0417
  publication-title: Duje Math. T.
– volume-title: Rotation – Vibration of Polyatomic Molecules
  year: 1971
  ident: CIT0003
– ident: CIT0388
  doi: 10.1007/BF00892435
– ident: CIT0169
  doi: 10.1063/1.3077130
– ident: CIT0221
  doi: 10.1039/C5CP05265C
– ident: CIT0303
  doi: 10.1063/1.4961973
– ident: CIT0154
  doi: 10.1016/j.cplett.2007.12.061
– ident: CIT0206
  doi: 10.1063/1.3025885
– volume-title: Chaos – The Interplay Between Stochastic and Deterministic Behaviour
  year: 1995
  ident: CIT0182
– ident: CIT0231
  doi: 10.1063/1.4895557
– ident: CIT0040
  doi: 10.1063/1.3532927
– ident: CIT0274
  doi: 10.1016/0022-2852(87)90135-4
– volume-title: Molecular Vibration-Rotation Spectra
  year: 1982
  ident: CIT0110
– ident: CIT0203
  doi: 10.1080/00268978400101981
– ident: CIT0305
  doi: 10.1093/mnras/stu326
– ident: CIT0193
  doi: 10.1063/1.1840957
– ident: CIT0012
  doi: 10.1080/00268977700100351
– ident: CIT0032
  doi: 10.1016/0022-2852(74)90277-X
– ident: CIT0211
  doi: 10.1063/1.4942172
– ident: CIT0309
  doi: 10.1063/1.1767093
– volume: 65
  start-page: 221
  year: 1987
  ident: CIT0067
  publication-title: Sov. Phys. JETP
– ident: CIT0166
  doi: 10.1063/1.1637579
– ident: CIT0275
  doi: 10.1016/S1386-1425(97)00214-X
– ident: CIT0132
  doi: 10.1080/00268970512331316247
– ident: CIT0316
  doi: 10.3847/1538-4357/aa8909
– ident: CIT0329
  doi: 10.1016/j.jqsrt.2013.05.001
– ident: CIT0204
  doi: 10.1016/0022-2852(88)90164-6
– ident: CIT0324
  doi: 10.1016/j.chemphys.2008.10.019
– ident: CIT0328
  doi: 10.1063/1.5023331
– ident: CIT0051
  doi: 10.1080/00268976.2016.1269966
– ident: CIT0313
  doi: 10.1103/PhysRevLett.126.063001
– ident: CIT0023
  doi: 10.1103/PhysRevA.95.032124
– ident: CIT0161
  doi: 10.1063/1.3476468
– ident: CIT0226
  doi: 10.1006/jmsp.2001.8445
– volume-title: Analytical Calculations Using Computers in Molecular Spectroscopy
  year: 1986
  ident: CIT0115
– ident: CIT0095
  doi: 10.1063/1.5041911
– volume: 34
  start-page: 331
  year: 1961
  ident: CIT0098
  publication-title: Helv. Phys. Acta
– ident: CIT0252
  doi: 10.1016/j.jqsrt.2019.04.023
– ident: CIT0017
  doi: 10.1039/c3cp50463h
– ident: CIT0216
  doi: 10.1016/j.jms.2011.04.005
– ident: CIT0228
  doi: 10.1002/9780470141731.ch4
– ident: CIT0118
  doi: 10.1063/1.455965
– ident: CIT0282
  doi: 10.1063/1.2956488
– ident: CIT0112
  doi: 10.1051/jphyslet:0198400450101100
– ident: CIT0119
  doi: 10.1080/01442359009353236
– ident: CIT0319
  doi: 10.1016/j.jms.2013.04.005
– ident: CIT0384
  doi: 10.1016/j.jms.2008.03.021
– ident: CIT0077
  doi: 10.1021/cr900069m
– ident: CIT0185
  doi: 10.1007/BF02859806
– ident: CIT0035
  doi: 10.1007/BF00893136
– ident: CIT0047
  doi: 10.1016/j.jqsrt.2020.107061
– ident: CIT0227
  doi: 10.1063/1.471986
– ident: CIT0039
  doi: 10.1117/12.545641
– ident: CIT0262
  doi: 10.1080/00268977700101361
– ident: CIT0389
  doi: 10.1063/1.3273207
– ident: CIT0302
  doi: 10.1016/S1386-1425(01)00673-4
– ident: CIT0172
  doi: 10.1021/jp9525447
– ident: CIT0362
  doi: 10.1021/jp071862q
– ident: CIT0296
  doi: 10.1098/rsta.2013.0087
– ident: CIT0352
  doi: 10.1016/j.jqsrt.2012.02.023
– ident: CIT0104
  doi: 10.1016/0022-2852(76)90379-9
– ident: CIT0105
  doi: 10.1007/BF00893137
– ident: CIT0080
  doi: 10.1063/1.1482699
– ident: CIT0070
  doi: 10.1063/1.449095
– ident: CIT0170
  doi: 10.1021/acs.jctc.7b00236
– ident: CIT0298
  doi: 10.1021/es035424i
– ident: CIT0397
  doi: 10.1021/acs.jpca.0c02733
– ident: CIT0379
  doi: 10.1016/B978-0-12-580643-5.50011-7
– ident: CIT0378
  doi: 10.1016/0022-2852(86)90220-1
– volume: 125
  start-page: 1
  year: 2003
  ident: CIT0201
  publication-title: Adv. Chem. Phys
– ident: CIT0181
  doi: 10.1017/S0263034600002469
– ident: CIT0247
  doi: 10.1080/00268977200102361
– ident: CIT0001
  doi: 10.1103/PhysRev.33.467
– ident: CIT0053
  doi: 10.1016/j.jms.2011.11.005
– ident: CIT0273
  doi: 10.1063/1.1726953
– volume: 70
  start-page: 97
  year: 1988
  ident: CIT0158
  publication-title: Adv. Chem. Phys
– volume: 35
  start-page: 439
  year: 1973
  ident: CIT0100
  publication-title: Opt. Spektrosk
– ident: CIT0156
  doi: 10.1063/1.1601593
– ident: CIT0236
  doi: 10.1002/qua.10556
– ident: CIT0101
  doi: 10.1016/0022-2852(73)90219-1
– ident: CIT0278
  doi: 10.1016/S0022-4073(03)00107-9
– ident: CIT0251
  doi: 10.1016/j.jqsrt.2017.05.014
– ident: CIT0109
  doi: 10.1007/BF00895254
– ident: CIT0246
  doi: 10.1103/PhysRev.57.128
– ident: CIT0335
  doi: 10.1016/j.jqsrt.2015.12.023
– ident: CIT0072
  doi: 10.1146/annurev.pc.46.100195.002143
– ident: CIT0173
  doi: 10.1063/1.4913520
– ident: CIT0299
  doi: 10.1063/1.469398
– ident: CIT0358
  doi: 10.1063/1.4730030
– ident: CIT0326
  doi: 10.1063/1.4899263
– volume-title: Structures and Conformations of Non-Rigid Molecules, NATO ASI Series, Series C: Mathematical and Physical Sciences
  year: 1993
  ident: CIT0360
– ident: CIT0413
  doi: 10.1016/j.jqsrt.2019.106668
– ident: CIT0049
  doi: 10.1016/0022-2852(79)90081-X
– ident: CIT0014
  doi: 10.1016/j.jqsrt.2012.01.027
– ident: CIT0029
  doi: 10.1103/RevModPhys.35.710
– ident: CIT0069
  doi: 10.1063/1.459576
– volume: 51
  start-page: 268
  year: 1981
  ident: CIT0107
  publication-title: Opt. Spectrosk
– ident: CIT0330
– volume-title: Structure and Dynamics of Non-Rigid Molecular Systems
  year: 2012
  ident: CIT0361
SSID ssj0006010
Score 2.4890542
Snippet The paper describes methods and fast computational algorithm for building effective Hamiltonians in molecular physics using perturbative approach. Separations...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computing time
contact transformation
Convergence
Coupling (molecular)
Couplings
effective dipole transition moments
Effective Hamiltonian
Hamiltonian functions
Mathematical models
Molecular physics
Molecular spectra
Potential energy
Resonant interactions
Spectrum analysis
symmetry
Transformations (mathematics)
Variational methods
Title High-order contact transformations of molecular Hamiltonians: general approach, fast computational algorithm and convergence of ro-vibrational polyad models
URI https://www.tandfonline.com/doi/abs/10.1080/00268976.2022.2096140
https://www.proquest.com/docview/2733849063
Volume 120
WOSCitedRecordID wos000831178700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1362-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006010
  issn: 0026-8976
  databaseCode: TFW
  dateStart: 19580101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iil58i29y8GhkN-mmqTcRF0_iYcW9lTwaFdatbKvgf_HHOpOmi4vIHvRSKHRC25nMI3wzHyGnHGKuhOKHSWc6LPGWM8OdZjqzvLDe-VSZQDaR3t6q4TC7i2jCKsIqsYb2zaCI4Ktxc2tTtYg47OCWCsIoVHcce6kyCDFYtUPox6056D9MfTGWGw3IQzIUaXt4fltlJjrNzC794atDAOqv_8Orb5C1mH3Sy8ZcNslCMd4iK1ct6dsWWQ6IUFttk09EgLAwmZMinl3bmtbfslywVlp6-tLS69IbPCqBTBLsrbqgj804a9rOLD-jXlc1tYFEIh5AUj16LCfP9dMLhQ-iAQAfekELXHlSsnes5eOzr-XoQzsamHuqHXLfvx5c3bBI5cCsUL2aCeEQ1qadkD3ubNF18Bu4scp0pIUKMQVbElnhuEulhYJdSZ1yk4Ab15lXyopdsjgux8UeoVykWQdib88Zm2hnlJfKarjylBfgv_dJ0qowt3HOOdJtjPLudBxqo4QclZBHJeyT86nYazPoY55A9t0-8jqcsPiGDiUXc2SPWmPKo8-ockgkhUoyyBkP_rD0IVnFWzz27qojslhP3opjsmTf6-dqchJ2xxdl2A4R
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmGIILGwVEGRs-cMSotVPH2W1CqzqN9VREb5Zjx1CpbaomVOJ_4Y_lPSepiqaJA7vkkjwriZ_fL733fYRccPC5EpIfJl3aYZG3nKXcGWYSyzPrnY9VGsgm4uFQjcfJ5iwMtlViDu0roIhgq_FwYzG6aYnDEW6pwI9CesdxmCoBHwNp-3YPfC3i54_6d2trjAlH1eYhGco0Uzz_WuaVf3qFXvqXtQ4uqP_pf7z8Z7JfB6D0R6UxB-RDNm-R3euG961FdkJTqC0OyTM2gbAAzkmxpd3YkpYbgS4oLM09nTUMu3SA1RIIJkHliu_0vkK0pg1s-SX1piipDTwSdQ2Smul9vpyUDzMKX0RDD3wYB81w5WXOVpjO188u8umTcTSQ9xRH5Lb_c3Q9YDWbA7NC9UomhMPONuOE7HFns66D38BTq9KOtJAkxqBOIskcd7G0kLMraWKeRmDJTeKVsuKYbM3zeXZCKBdx0gH323OpjYxLlZfKGrjymGdgwtskavZQ2xrqHBk3prq7RkStNkHjJuh6E9rkai22qLA-3hJINhVEl6HI4itGFC3ekD1rtEnXZqPQEEsKFSUQNp6-Y-lzsjsY_bnRN7-Gv7-QPbyFVfCuOiNb5fIx-0o-2lU5KZbfwlF5AXHuEjs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ0MIFKAXxrg891mjXzjoONwSsQFQrDqBysxw7BqRls9oEJP4LP5YZx1mBKsQBLrkkYyWZ8Tysb74h5DeHmCuh-GHS5R2WeMtZzp1hJrO8sN75VOVh2EQ6GKjr6-wiogmrCKvEGto3RBHBV-PmHjvfIuKwg1sqCKNQ3XHspcogxEDVPgeps0Qjv-z_mzpjrDcalIdkKNM28by3zJvw9Ia89D9nHSJQf_kL3n2FLMX0kx429vKDzBSjVbJw1E59WyXfAiTUVj_JM0JAWKDmpAhoN7am9as0F8yVlp7et_N16SmelUAqCQZXHdCbhs-atqTlf6g3VU1tmCIRTyCpGd6Uk7v69p7CB9GAgA_NoAWuPCnZIxbz8dlxOXwyjobRPdUaueqfXB6dsjjLgVmhejUTwiGuzTghe9zZouvgN_DcqrwjLZSIKRiTyArHXSotVOxKmpTnCfhxk3mlrFgns6NyVGwQykWadSD49lxuE-Ny5aWyBq485QU48E2StCrUNhKd47yNoe5O-VAbJWhUgo5K2CT7U7Fxw_TxkUD22j50HY5YfDMPRYsPZHdaY9LRaVQaMkmhkgySxq1PLP2LfL847uu_Z4PzbbKId_AIvKt2yGw9eSh2ybx9rO-qyV7YKC8phxDt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+contact+transformations+of+molecular+Hamiltonians%3A+general+approach%2C+fast+computational+algorithm+and+convergence+of+ro-vibrational+polyad+models&rft.jtitle=Molecular+physics&rft.au=Tyuterev%2C+Vladimir&rft.au=Tashkun%2C+Sergey&rft.au=Rey%2C+Michael&rft.au=Nikitin%2C+Andrei&rft.date=2022-08-18&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0026-8976&rft.eissn=1362-3028&rft.volume=120&rft.issue=15-16&rft_id=info:doi/10.1080%2F00268976.2022.2096140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-8976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-8976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-8976&client=summon