H-index manipulation by merging articles: Models, theory, and experiments
An author's profile on Google Scholar consists of indexed articles and associated data, such as the number of citations and the H-index. The author is allowed to merge articles; this may affect the H-index. We analyze the (parameterized) computational complexity of maximizing the H-index using...
Saved in:
| Published in: | Artificial intelligence Vol. 240; pp. 19 - 35 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2016
|
| Subjects: | |
| ISSN: | 0004-3702, 1872-7921 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An author's profile on Google Scholar consists of indexed articles and associated data, such as the number of citations and the H-index. The author is allowed to merge articles; this may affect the H-index. We analyze the (parameterized) computational complexity of maximizing the H-index using article merges. Herein, to model realistic manipulation scenarios, we define a compatibility graph whose edges correspond to plausible merges. Moreover, we consider several different measures for computing the citation count of a merged article. For the measure used by Google Scholar, we give an algorithm that maximizes the H-index in linear time if the compatibility graph has constant-size connected components. In contrast, if we allow to merge arbitrary articles (that is, for compatibility graphs that are cliques), then already increasing the H-index by one is NP-hard. Experiments on Google Scholar profiles of AI researchers show that the H-index can be manipulated substantially only if one merges articles with highly dissimilar titles. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0004-3702 1872-7921 |
| DOI: | 10.1016/j.artint.2016.08.001 |