Multi-Task Deep Learning for Real-Time 3D Human Pose Estimation and Action Recognition

Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for joint...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 8; s. 2752 - 2764
Hlavní autori: Luvizon, Diogo C., Picard, David, Tabia, Hedi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way. Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts, which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly available at https://github.com/dluvizon/deephar .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2020.2976014