Multi-Task Deep Learning for Real-Time 3D Human Pose Estimation and Action Recognition

Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for joint...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 8; pp. 2752 - 2764
Main Authors: Luvizon, Diogo C., Picard, David, Tabia, Hedi
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way. Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts, which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly available at https://github.com/dluvizon/deephar .
AbstractList Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way. Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts, which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly available at https://github.com/dluvizon/deephar .
Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this work, we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way. Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts, which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly available at https://github.com/dluvizon/deephar.
Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way. Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts, which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly available at https://github.com/dluvizon/deephar.Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this article, we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way. Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts, which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly available at https://github.com/dluvizon/deephar.
Author Tabia, Hedi
Luvizon, Diogo C.
Picard, David
Author_xml – sequence: 1
  givenname: Diogo C.
  orcidid: 0000-0002-5055-500X
  surname: Luvizon
  fullname: Luvizon, Diogo C.
  email: diogo.luvizon@ensea.fr
  organization: SAMSUNG Research Institute, Campinas, SP, Brazil
– sequence: 2
  givenname: David
  orcidid: 0000-0002-6296-4222
  surname: Picard
  fullname: Picard, David
  email: david.picard@enpc.fr
  organization: LIGM, IMAGINE, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
– sequence: 3
  givenname: Hedi
  surname: Tabia
  fullname: Tabia, Hedi
  email: hedi.tabia@univ-evry.fr
  organization: IBISC, Univ Evry, Université Paris-Saclay, Evry, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32091993$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02558843$$DView record in HAL
BookMark eNp9kcFu1DAQhi1URLeFFwAJWeIChyz2OHHs46otbKWtqKptr5bXmRSXxF7ipFLfnmR320MPnDyyvm88nv-EHIUYkJCPnM05Z_r7-npxdTkHBmwOupSM52_IDLhkmQYNR2TGuIRMKVDH5CSlBzYSBRPvyLEAprnWYkburoam99napj_0HHFLV2i74MM9rWNHb9A22dq3SMU5XQ6tDfQ6JqQXqfet7X0M1IaKLtyuvEEX74Of6vfkbW2bhB8O5ym5_XGxPltmq18_L88Wq8wJVfQZlFUldc0U2FK7QjqXQyG1kgyklXVhkWspWb1hFbiNlhvtVF6jBp7XFdhanJJv-76_bWO23ThU92Si9Wa5WJnpjkFRKJWLRz6yX_fstot_B0y9aX1y2DQ2YBySASFzJhTXE_rlFfoQhy6MPzFQ5KXM81LBSH0-UMOmxerl_eftjoDaA66LKXVYG-f73dr6zvrGcGamIM0uSDMFaQ5Bjiq8Up-7_1f6tJc8Ir4ImrFS6kL8A2CWpXQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3315849
crossref_primary_10_1109_ACCESS_2022_3186465
crossref_primary_10_1109_TASE_2023_3279928
crossref_primary_10_1109_TPAMI_2023_3238411
crossref_primary_10_1007_s10489_022_03623_z
crossref_primary_10_1016_j_image_2021_116410
crossref_primary_10_1109_TIM_2021_3092524
crossref_primary_10_1016_j_neucom_2025_131309
crossref_primary_10_3389_fpsyt_2022_1019043
crossref_primary_10_1109_ACCESS_2023_3241606
crossref_primary_10_1016_j_eswa_2021_116424
crossref_primary_10_1109_TPAMI_2024_3507918
crossref_primary_10_1007_s00138_020_01120_2
crossref_primary_10_1109_TNNLS_2022_3175480
crossref_primary_10_4018_IJAEC_315633
crossref_primary_10_1109_JSEN_2023_3323869
crossref_primary_10_1109_ACCESS_2024_3470789
crossref_primary_10_1049_ipr2_12404
crossref_primary_10_1109_TCSVT_2023_3284493
crossref_primary_10_3389_fnbot_2024_1371385
crossref_primary_10_20965_jaciii_2024_p0552
crossref_primary_10_1109_TPAMI_2024_3364185
crossref_primary_10_1016_j_patcog_2021_108487
crossref_primary_10_1109_TNNLS_2023_3264647
crossref_primary_10_1109_TPAMI_2022_3188716
crossref_primary_10_1109_TMM_2024_3521749
crossref_primary_10_1155_2021_5593916
crossref_primary_10_1515_jisys_2024_0082
crossref_primary_10_1109_TPAMI_2022_3170353
crossref_primary_10_1109_TIE_2021_3105977
crossref_primary_10_1007_s13369_022_07236_z
crossref_primary_10_1007_s11042_020_09708_6
crossref_primary_10_1007_s11263_021_01529_w
Cites_doi 10.1109/ICCV.2013.396
10.1007/978-3-319-46478-7_44
10.1109/CVPR.2018.00539
10.1109/CVPR.2017.391
10.1109/CVPR.2018.00127
10.1109/ICCV.2013.280
10.1109/CVPR.2018.00056
10.1109/CVPR.2016.115
10.1109/TPAMI.2017.2712608
10.5244/C.30.109
10.1109/ICCV.2017.137
10.1109/CVPR.2017.195
10.1109/3DV.2017.00064
10.1109/CVPR.2013.391
10.1109/CVPR.2017.601
10.1109/TPAMI.2013.248
10.1109/CVPR.2017.610
10.1016/j.cviu.2016.09.002
10.1109/TPAMI.2018.2816031
10.1109/FG.2017.61
10.1109/CVPR.2017.139
10.1016/j.patcog.2015.11.019
10.1109/CVPR.2016.511
10.1109/CVPR.2015.7298664
10.1016/j.patrec.2017.02.001
10.1109/CVPR.2016.533
10.1109/ICCV.2017.284
10.1109/CVPR.2016.512
10.1016/j.imavis.2017.01.010
10.1016/j.cag.2019.09.002
10.1109/CVPR.2017.603
10.1109/CVPR.2013.82
10.1109/CVPR.2019.00584
10.1007/978-3-030-01231-1_33
10.1109/CVPR.2009.5206754
10.1109/CVPR.2017.486
10.1007/s11263-012-0532-9
10.1007/978-3-319-46466-4_28
10.1007/978-3-030-01240-3_28
10.1109/CVPR.2017.579
10.1007/978-3-319-46493-0_44
10.1109/ICCV.2017.144
10.1109/CVPR.2017.501
10.1109/CVPR.2014.471
10.1109/TCYB.2017.2756840
10.1109/ICCV.2017.288
10.1109/TPAMI.2017.2691321
10.1145/3072959.3073596
10.1109/CVPR.2018.00551
10.1007/978-3-319-46466-4_3
10.1007/978-3-030-01252-6_8
10.1109/ICCV.2015.324
10.1109/CVPR.2014.214
10.1109/TMM.2017.2762010
10.1111/j.1467-9868.2005.00503.x
10.1109/ICCV.2017.402
10.1109/ICCV.2017.316
10.1109/CVPR.2018.00734
10.1109/CVPR.2017.502
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TPAMI.2020.2976014
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2764
ExternalDocumentID oai:HAL:hal-02558843v1
32091993
10_1109_TPAMI_2020_2976014
9007695
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Brazilian National Council for Scientific and Technological Development
  grantid: 233342/2014-1
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
XJT
ID FETCH-LOGICAL-c385t-27dd69f082a79c56cc4256986026a6f5ae19660fb0d2cb96b9c84fe9214fd2af3
IEDL.DBID RIE
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670578800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Oct 19 06:20:44 EDT 2025
Sun Sep 28 06:30:53 EDT 2025
Sun Jun 29 12:31:43 EDT 2025
Mon Jul 21 06:03:21 EDT 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:34:45 EST 2025
Wed Aug 27 02:26:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Multitask deep learning
Human action recognition
Human pose estimation
Neural networks
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-27dd69f082a79c56cc4256986026a6f5ae19660fb0d2cb96b9c84fe9214fd2af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6296-4222
0000-0002-5055-500X
0000-0002-1827-7150
OpenAccessLink https://hal.science/hal-02558843
PMID 32091993
PQID 2547644782
PQPubID 85458
PageCount 13
ParticipantIDs pubmed_primary_32091993
crossref_citationtrail_10_1109_TPAMI_2020_2976014
proquest_journals_2547644782
crossref_primary_10_1109_TPAMI_2020_2976014
proquest_miscellaneous_2364038191
ieee_primary_9007695
hal_primary_oai_HAL_hal_02558843v1
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
baradel (ref64) 2017
ref54
ref10
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
tekin (ref38) 2016; abs 1611 5708
ref41
ref44
ref43
ref8
ref7
ref9
ref4
chou (ref32) 2017
ref3
ref6
chéron (ref1) 2015
ref5
ref40
liu (ref60) 2016
ref35
ref34
ref37
lifshitz (ref16) 2016
ref36
ref30
ref33
newell (ref27) 2016
ref2
ref39
ref71
ref70
song (ref62) 2017
ref68
ref67
ref23
ref26
ref69
ref25
ref20
ref63
ref66
ref22
ref65
ref21
goodfellow (ref31) 2014
ref28
pfister (ref24) 2014
ref29
xiaohan nie (ref49) 2015
ref61
References_xml – start-page: 3218
  year: 2015
  ident: ref1
  article-title: P-CNN: Pose-based CNN features for action recognition
  publication-title: Proc ICCV
– ident: ref50
  doi: 10.1109/ICCV.2013.396
– ident: ref25
  doi: 10.1007/978-3-319-46478-7_44
– ident: ref9
  doi: 10.1109/CVPR.2018.00539
– ident: ref61
  doi: 10.1109/CVPR.2017.391
– ident: ref57
  doi: 10.1109/CVPR.2018.00127
– ident: ref68
  doi: 10.1109/ICCV.2013.280
– ident: ref55
  doi: 10.1109/CVPR.2018.00056
– ident: ref69
  doi: 10.1109/CVPR.2016.115
– ident: ref53
  doi: 10.1109/TPAMI.2017.2712608
– ident: ref19
  doi: 10.5244/C.30.109
– ident: ref33
  doi: 10.1109/ICCV.2017.137
– start-page: 816
  year: 2016
  ident: ref60
  article-title: Spatio-temporal LSTM with trust gates for 3D human action recognition
  publication-title: Proc Eur Conf Comput Vis
– ident: ref65
  doi: 10.1109/CVPR.2017.195
– start-page: 538
  year: 2014
  ident: ref24
  article-title: Deep convolutional neural networks for efficient pose estimation in gesture videos
  publication-title: Proc Asian Conf Comput Vis
– ident: ref39
  doi: 10.1109/3DV.2017.00064
– ident: ref13
  doi: 10.1109/CVPR.2013.391
– ident: ref28
  doi: 10.1109/CVPR.2017.601
– year: 2017
  ident: ref64
  article-title: Pose-conditioned spatio-temporal attention for human action recognition
– ident: ref41
  doi: 10.1109/TPAMI.2013.248
– ident: ref43
  doi: 10.1109/CVPR.2017.610
– ident: ref71
  doi: 10.1109/CVPR.2018.00056
– start-page: 483
  year: 2016
  ident: ref27
  article-title: Stacked hourglass networks for human pose estimation
  publication-title: Proc Eur Conf Comput Vis
– ident: ref10
  doi: 10.1016/j.cviu.2016.09.002
– ident: ref35
  doi: 10.1109/TPAMI.2018.2816031
– ident: ref3
  doi: 10.1109/FG.2017.61
– ident: ref45
  doi: 10.1109/CVPR.2017.139
– ident: ref59
  doi: 10.1016/j.patcog.2015.11.019
– start-page: 4263
  year: 2017
  ident: ref62
  article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref20
  doi: 10.1109/CVPR.2016.511
– ident: ref22
  doi: 10.1109/CVPR.2015.7298664
– ident: ref58
  doi: 10.1016/j.patrec.2017.02.001
– ident: ref17
  doi: 10.1109/CVPR.2016.533
– ident: ref44
  doi: 10.1109/ICCV.2017.284
– ident: ref34
  doi: 10.1109/CVPR.2016.512
– ident: ref11
  doi: 10.1016/j.imavis.2017.01.010
– ident: ref7
  doi: 10.1016/j.cag.2019.09.002
– volume: abs 1611 5708
  year: 2016
  ident: ref38
  article-title: Fusing 2D uncertainty and 3D cues for monocular body pose estimation
  publication-title: CoRR
– ident: ref36
  doi: 10.1109/CVPR.2017.603
– ident: ref14
  doi: 10.1109/CVPR.2013.82
– ident: ref30
  doi: 10.1109/CVPR.2019.00584
– ident: ref46
  doi: 10.1007/978-3-030-01231-1_33
– ident: ref12
  doi: 10.1109/CVPR.2009.5206754
– ident: ref66
  doi: 10.1109/CVPR.2017.486
– ident: ref2
  doi: 10.1007/s11263-012-0532-9
– ident: ref8
  doi: 10.1007/978-3-319-46466-4_28
– ident: ref56
  doi: 10.1007/978-3-030-01240-3_28
– ident: ref4
  doi: 10.1109/CVPR.2017.579
– ident: ref26
  doi: 10.1007/978-3-319-46493-0_44
– ident: ref29
  doi: 10.1109/ICCV.2017.144
– ident: ref40
  doi: 10.1109/CVPR.2017.501
– start-page: 246
  year: 2016
  ident: ref16
  publication-title: Human Pose Estimation using Deep Consensus Voting
– ident: ref67
  doi: 10.1109/CVPR.2014.471
– ident: ref51
  doi: 10.1109/TCYB.2017.2756840
– ident: ref37
  doi: 10.1109/ICCV.2017.288
– ident: ref63
  doi: 10.1109/TPAMI.2017.2691321
– ident: ref42
  doi: 10.1145/3072959.3073596
– start-page: 1293
  year: 2015
  ident: ref49
  article-title: Joint action recognition and pose estimation from video
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref47
  doi: 10.1109/CVPR.2018.00551
– ident: ref18
  doi: 10.1007/978-3-319-46466-4_3
– ident: ref48
  doi: 10.1007/978-3-030-01252-6_8
– start-page: 2672
  year: 2014
  ident: ref31
  article-title: Generative adversarial nets
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref21
  doi: 10.1109/ICCV.2015.324
– ident: ref23
  doi: 10.1109/CVPR.2014.214
– ident: ref15
  doi: 10.1109/TMM.2017.2762010
– ident: ref70
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref54
  doi: 10.1109/ICCV.2017.402
– start-page: 17
  year: 2017
  ident: ref32
  article-title: Self adversarial training for human pose estimation
  publication-title: Proc Asia-Pacific Signal Inf Process Assoc Annu Summit Conf
– ident: ref5
  doi: 10.1109/ICCV.2017.316
– ident: ref6
  doi: 10.1109/CVPR.2018.00734
– ident: ref52
  doi: 10.1109/CVPR.2017.502
SSID ssj0014503
Score 2.674643
Snippet Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human body representation and analysis....
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2752
SubjectTerms Color imagery
Computer Science
Decoupling
Frames per second
Heating systems
Human action recognition
human pose estimation
Image classification
Machine learning
multitask deep learning
neural networks
Pose estimation
Signal and Image Processing
Skeleton
Source code
Target recognition
Task analysis
Three-dimensional displays
Two dimensional displays
Video data
Visualization
Title Multi-Task Deep Learning for Real-Time 3D Human Pose Estimation and Action Recognition
URI https://ieeexplore.ieee.org/document/9007695
https://www.ncbi.nlm.nih.gov/pubmed/32091993
https://www.proquest.com/docview/2547644782
https://www.proquest.com/docview/2364038191
https://hal.science/hal-02558843
Volume 43
WOSCitedRecordID wos000670578800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ9wxAd4EASRKpKF8KaF3na3u_t4EQgmSC7kNPfW7FfRSFrC3fH3O7v9CCZq4lvTTttNZ6bzm50vgBPjtXeVdqlU3KSs8vgftCZPrRVKOrRBzMapJdfi5kbO52q6Bh-HWhjvfUw-86fhMMbyXWNXYavsTIW4keIjGAkh2lqtIWLAeJyCjAgGNRzdiL5AJlNns-nky2d0BWl2SlXIAQnDeHKKllKp_Dd7NPoesiHjmJW_I85oeS63_m_N2_CyQ5hk0orEK1jz9Q5s9dMbSKfMO7D5rBXhLnyLlbjpTC9-knPvH0jXePWOIKoltwgn01AtQvJzEvf9ybRZeHKBP4i29pHo2pFJLJIgt31SUlO_hq-XF7NPV2k3cyG1ueTLlArnClUhMNBCWV5Yi0pdqDipShcV134c-nlWJnPUGlUYZSVyWNExqxzVVb4H63VT-30gnBWGa82lEBVzrJCa-sxIakILPibHCYz7L1_ariF5mItxX0bHJFNlZFwZGFd2jEvgw3DPQ9uO45_Ux8jQgTB00r6aXJfhXHClpGT5Ey5jN3BtoOoYlsBBz_-yU-tFid60QACJqCqBo-EyKmSIsujaNyukyQuWRT84gTet3AzP7oXu7Z_f-Q42aEiZifmFB7C-fFz59_DCPi1_LB4PUern8jBK_S_wPviM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BQk4UGh5BAoYxA3SJo6d2McVbbUV29WqWlBvll8BBEqq7m5_P2PnIZAAiVuUTBIrM5OZ8Tw-gLfGa-9q7VIhuUlZ7fE_aE2RWltJ4dAGMRtRS2bVfC4uL-ViC96PvTDe-1h85g_DYczlu9ZuwlbZkQx5I8m34RZnjOZdt9aYM2A84iCjD4M6joHE0CKTyaPlYnJ-hsEgzQ6pDFUgAY6noGgrpSx-s0jbX0M9ZARa-bvPGW3P6e7_rfoB3O99TDLphOIhbPlmD3YH_AbSq_Me3PtlGOE-fI69uOlSr76TY--vSD969QtBv5ZcoEOZhn4RUhyTuPNPFu3KkxP8RXTdj0Q3jkximwS5GMqS2uYRfDo9WX6Ypj3qQmoLwdcprZwrZY2uga6k5aW1qNaljFhVuqy59nmY6FmbzFFrZGmkFchjSXNWO6rr4jHsNG3jnwLhrDRcay6qqmaOlUJTnxlBTRjCx0SeQD58eWX7keQBGeOHiqFJJlVknAqMUz3jEng33nPVDeT4J_UbZOhIGGZpTyczFc6FYEoIVtzgMvYD10aqnmEJHAz8V71irxTG0xW6kOhXJfB6vIwqGfIsuvHtBmmKkmUxEk7gSSc347MHoXv253e-gjvT5flMzc7mH5_DXRoKaGK14QHsrK83_gXctjfrb6vrl1H2fwIqQ_rr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Task+Deep+Learning+for+Real-Time+3D+Human+Pose+Estimation+and+Action+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Luvizon%2C+Diogo+C&rft.au=Picard%2C+David&rft.au=Tabia%2C+Hedi&rft.date=2021-08-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=43&rft.issue=8&rft.spage=2752&rft_id=info:doi/10.1109%2FTPAMI.2020.2976014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon