Evolutionary multi-level acyclic graph partitioning

Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to progra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of heuristics Ročník 26; číslo 5; s. 771 - 799
Hlavní autori: Moreira, Orlando, Popp, Merten, Schulz, Christian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2020
Springer Nature B.V
Predmet:
ISSN:1381-1231, 1572-9397
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to program memory restrictions in embedded multiprocessor systems, applications need to be divided into parts without cyclic dependencies. We found that this can be done by a subsequent second graph partitioning step with an additional acyclicity constraint. We have four main contributions. First, we show that this more constrained version of the graph partitioning problem is NP-complete and present linear time heuristics. We then integrate them into an existing multi-level graph partitioning framework to better handle large graphs. This achieves a 9% reduction of the edge cut compared to the previous single-level algorithm. Based on this, we engineer an evolutionary algorithm to further reduce the cut, achieving a 30% reduction on average compared to the state of the art. Finally, we integrate the partitioning heuristics into a graph compiler for an embedded multiprocessor architecture and show that this can reduce the amount of communication for a real-world imaging application and thereby accelerate it by an average of 11%. It is shown that the compiler can emit optimized code for vastly different hardware platforms using the heuristics. In addition, we demonstrate how a custom fitness function for the evolutionary algorithm can be used to optimize other objectives like load balancing if the communication volume is not predominantly important on a given hardware platform.
AbstractList Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to program memory restrictions in embedded multiprocessor systems, applications need to be divided into parts without cyclic dependencies. We found that this can be done by a subsequent second graph partitioning step with an additional acyclicity constraint. We have four main contributions. First, we show that this more constrained version of the graph partitioning problem is NP-complete and present linear time heuristics. We then integrate them into an existing multi-level graph partitioning framework to better handle large graphs. This achieves a 9% reduction of the edge cut compared to the previous single-level algorithm. Based on this, we engineer an evolutionary algorithm to further reduce the cut, achieving a 30% reduction on average compared to the state of the art. Finally, we integrate the partitioning heuristics into a graph compiler for an embedded multiprocessor architecture and show that this can reduce the amount of communication for a real-world imaging application and thereby accelerate it by an average of 11%. It is shown that the compiler can emit optimized code for vastly different hardware platforms using the heuristics. In addition, we demonstrate how a custom fitness function for the evolutionary algorithm can be used to optimize other objectives like load balancing if the communication volume is not predominantly important on a given hardware platform.
Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to program memory restrictions in embedded multiprocessor systems, applications need to be divided into parts without cyclic dependencies. We found that this can be done by a subsequent second graph partitioning step with an additional acyclicity constraint. We have four main contributions. First, we show that this more constrained version of the graph partitioning problem is NP-complete and present linear time heuristics. We then integrate them into an existing multi-level graph partitioning framework to better handle large graphs. This achieves a 9% reduction of the edge cut compared to the previous single-level algorithm. Based on this, we engineer an evolutionary algorithm to further reduce the cut, achieving a 30% reduction on average compared to the state of the art. Finally, we integrate the partitioning heuristics into a graph compiler for an embedded multiprocessor architecture and show that this can reduce the amount of communication for a real-world imaging application and thereby accelerate it by an average of 11%. It is shown that the compiler can emit optimized code for vastly different hardware platforms using the heuristics. In addition, we demonstrate how a custom fitness function for the evolutionary algorithm can be used to optimize other objectives like load balancing if the communication volume is not predominantly important on a given hardware platform.
Author Popp, Merten
Schulz, Christian
Moreira, Orlando
Author_xml – sequence: 1
  givenname: Orlando
  surname: Moreira
  fullname: Moreira, Orlando
  organization: GrAI Matter Labs
– sequence: 2
  givenname: Merten
  orcidid: 0000-0001-5916-8180
  surname: Popp
  fullname: Popp, Merten
  email: mail@merten-popp.de
  organization: Braunschweig Institute of Technology
– sequence: 3
  givenname: Christian
  surname: Schulz
  fullname: Schulz, Christian
  organization: University of Vienna
BookMark eNp9kM1OwzAQhC1UJNrCC3CKxNmwtpPYPqKq_EiVuMDZcly7uEqTYCeV-vY4BAmJQ0-7h_lmd2aBZk3bWIRuCdwTAP4QCXBGMVDAIPNcYHGB5qTgFEsm-SztTBBMKCNXaBHjHgCkKNgcsfWxrYfet40Op-ww1L3HtT3aOtPmZGpvsl3Q3WfW6dD7Ueab3TW6dLqO9uZ3LtHH0_p99YI3b8-vq8cNNkwUPaZME52zkjhZaai2uSudsJIxQyspSl6U2nILICwVlYOtlFWVV4ICc8RoR9kS3U2-XWi_Bht7tW-H0KSTiibfUnJR8KSik8qENsZgneqCP6Q0ioAay1FTOSqVo37KUSJB4h9kfK_HfH3Qvj6PsgmN6U6zs-HvqzPUN4YDewA
CitedBy_id crossref_primary_10_1109_TPDS_2022_3151194
crossref_primary_10_1145_3571808
crossref_primary_10_1109_TPDS_2021_3107746
crossref_primary_10_1007_s41870_021_00777_w
Cites_doi 10.1007/978-3-642-23719-5_40
10.1007/978-1-4614-6170-8_23
10.1145/368996.369025
10.1145/2001576.2001642
10.1109/CCGRID.2017.101
10.1162/evco.1996.4.2.113
10.1007/BFb0120902
10.1007/s00224-006-1350-7
10.1016/0743-7315(92)90014-E
10.1109/TPDS.2014.2312924
10.1145/2010324.1964963
10.1109/IPDPS.2006.1639360
10.1137/S1064827598337373
10.1007/978-3-319-07959-2_30
10.1109/IPDPS.2006.1639295
10.5220/0006223101440151
10.1007/978-94-017-7358-4_40-1
10.1137/S1064827595287997
10.4203/csets.17.2
10.1201/b11644-15
10.1007/978-1-4614-7705-1_1
10.1007/978-0-387-35498-9_43
10.1093/oso/9780195099713.001.0001
10.1007/978-3-642-22012-8_40
10.1109/TVLSI.2007.909806
10.1016/j.parco.2007.12.001
10.1098/rspa.1935.0134
10.1109/DAC.1982.1585498
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s10732-020-09448-8
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1572-9397
EndPage 799
ExternalDocumentID 10_1007_s10732_020_09448_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-23a1a4361f9ba0bd4f6f8e933c2b986756ae7e008e28bf0d99bb4b8203f1caf23
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548786600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1381-1231
IngestDate Tue Nov 04 23:06:19 EST 2025
Tue Nov 18 22:10:51 EST 2025
Sat Nov 29 06:01:08 EST 2025
Fri Feb 21 02:36:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Graph partitioning
Computer vision
Embedded systems
Evolutionary algorithm
Imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-23a1a4361f9ba0bd4f6f8e933c2b986756ae7e008e28bf0d99bb4b8203f1caf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5916-8180
PQID 2436697857
PQPubID 26068
PageCount 29
ParticipantIDs proquest_journals_2436697857
crossref_primary_10_1007_s10732_020_09448_8
crossref_citationtrail_10_1007_s10732_020_09448_8
springer_journals_10_1007_s10732_020_09448_8
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationTitle Journal of heuristics
PublicationTitleAbbrev J Heuristics
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Proceedings of the 13th International Symposium on Experimental Algorithms, LNCS. Springer (2014)
WalshawCCrossMMesh partitioning: a multilevel balancing and refinement algorithmSIAM J. Sci. Comput.20002216380176952610.1137/S1064827598337373
Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: The Sourcebook of Parallel Computing, pp. 491–541 (2003)
Khronos Group: The OpenVX specification: vision functions. https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html (2017)
SouthwellRVStress-calculation in frameworks by the method of “systematic relaxation of constraints”Proc. R. Soc. Lond.1935151872569510.1098/rspa.1935.0134
Stavrinides, G.L., Karatza, H.D.: Scheduling different types of applications in a SaaS Cloud. In: Proceedings of the 6th International Symposium on Business Modeling and Software Design (BMSD’16), pp. 144–151 (2016)
Chen, Y., Zhou, H.: Buffer minimization in pipelined SDF scheduling on multi-core platforms. In: Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pp. 127–132. IEEE (2012)
Herrmann, J., Kho, J., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Acyclic partitioning of large directed acyclic graphs. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 371–380. IEEE Press (2017)
Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006)
Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering—Selected Topics (2014). arXiv:1311.3144
Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Conference on Design Automation, pp. 175–181 (1982)
Pellegrini, F.: Scotch and PT-scotch graph partitioning software: an overview. In: Combinatorial Scientific Computing, pp. 373–406 (2012)
KaoCCPerformance-oriented partitioning for task scheduling of parallel reconfigurable architecturesIEEE Trans. Parallel Distrib. Syst.201526385886710.1109/TPDS.2014.2312924
Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software—an overview. In: Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58 (2007)
Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph partitioning: a survey. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 473–480. ACM (2011)
Doerr, B., Fouz, M.: Asymptotically optimal randomized rumor spreading. In: Proceedings of the 38th International Colloquium on Automata, Languages and Programming, Proceedings, Part II, LNCS, vol. 6756, pp. 502–513. Springer (2011)
ChevalierCPellegriniFPT-ScotchParallel Comput.2008346–8318331242888010.1016/j.parco.2007.12.001
BichotCSiarryPGraph Partitioning2011HobokenWiley1254.05148
Wolf, M.: Embedded computer vision. In: Handbook of Hardware/Software Codesign, pp. 1–14 (2017)
AndreevKRäckeHBalanced graph partitioningTheory Comput. Syst.2006396929939227908210.1007/s00224-006-1350-7
Cardoso, J.M.P., Neto, H.C.: An enhanced static-list scheduling algorithm for temporal partitioning onto RPUs. In: VLSI: Systems on a Chip, pp. 485–496. Springer (2000)
Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Ph.D. Thesis (1996)
FeitelsonDGRudolphLGang scheduling performance benefits for fine-grain synchronizationJ. Parallel Distrib. Comput.199216430631810.1016/0743-7315(92)90014-E
Pouchet, L.: Polybench: the polyhedral benchmark suite. http://www.cs.ucla.edu/pouchet/software/polybench (2012)
Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Proceedings of the 19th European Symposium on Algorithms, LNCS, vol. 6942, pp. 469–480. Springer (2011)
ParisSHasinoffSWKautzJLocal Laplacian filters: edge-aware image processing with a Laplacian pyramidACM Trans. Graph.20113046810.1145/2010324.1964963
JiangYCWangJFTemporal partitioning data flow graphs for dynamically reconfigurable computingIEEE Trans. Very Large Scale Integr. VLSI Syst.200715121351136110.1109/TVLSI.2007.909806
KahnABTopological sorting of large networksCommun. ACM196251155856210.1145/368996.369025
MillerBLGoldbergDEGenetic algorithms, tournament selection, and the effects of noiseEvol. Comput.19964211313110.1162/evco.1996.4.2.113
Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006)
Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of Social Network Analysis and Mining (2014)
Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979)
GoossensJRichardPOptimal Scheduling of Periodic Gang TasksLeibniz Trans. Embed. Syst.20163104-1
KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J. Sci. Comput.1998201359392163907310.1137/S1064827595287997
PicardJCQueyranneMOn the structure of all minimum cuts in a network and applicationsMath. Program. Stud.19801381659208110.1007/BFb0120902
Wolf, M.: Platforms and architectures for distributed smart cameras. In: Distributed Embedded Smart Cameras, pp. 3–23. Springer (2014)
RV Southwell (9448_CR31) 1935; 151
YC Jiang (9448_CR16) 2007; 15
CC Kao (9448_CR18) 2015; 26
G Karypis (9448_CR19) 1998; 20
(9448_CR5) 2011
9448_CR10
9448_CR32
9448_CR30
J Goossens (9448_CR14) 2016; 3
C Chevalier (9448_CR9) 2008; 34
JC Picard (9448_CR27) 1980; 13
9448_CR15
9448_CR36
9448_CR13
9448_CR35
9448_CR12
9448_CR34
C Walshaw (9448_CR33) 2000; 22
9448_CR3
9448_CR4
9448_CR6
9448_CR1
9448_CR22
9448_CR21
9448_CR20
DG Feitelson (9448_CR11) 1992; 16
9448_CR7
BL Miller (9448_CR24) 1996; 4
9448_CR8
K Andreev (9448_CR2) 2006; 39
9448_CR29
9448_CR28
9448_CR26
9448_CR23
AB Kahn (9448_CR17) 1962; 5
S Paris (9448_CR25) 2011; 30
References_xml – reference: Doerr, B., Fouz, M.: Asymptotically optimal randomized rumor spreading. In: Proceedings of the 38th International Colloquium on Automata, Languages and Programming, Proceedings, Part II, LNCS, vol. 6756, pp. 502–513. Springer (2011)
– reference: Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software—an overview. In: Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58 (2007)
– reference: Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006)
– reference: KaoCCPerformance-oriented partitioning for task scheduling of parallel reconfigurable architecturesIEEE Trans. Parallel Distrib. Syst.201526385886710.1109/TPDS.2014.2312924
– reference: Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Proceedings of the 13th International Symposium on Experimental Algorithms, LNCS. Springer (2014)
– reference: JiangYCWangJFTemporal partitioning data flow graphs for dynamically reconfigurable computingIEEE Trans. Very Large Scale Integr. VLSI Syst.200715121351136110.1109/TVLSI.2007.909806
– reference: Cardoso, J.M.P., Neto, H.C.: An enhanced static-list scheduling algorithm for temporal partitioning onto RPUs. In: VLSI: Systems on a Chip, pp. 485–496. Springer (2000)
– reference: Pellegrini, F.: Scotch and PT-scotch graph partitioning software: an overview. In: Combinatorial Scientific Computing, pp. 373–406 (2012)
– reference: Khronos Group: The OpenVX specification: vision functions. https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html (2017)
– reference: Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of Social Network Analysis and Mining (2014)
– reference: BichotCSiarryPGraph Partitioning2011HobokenWiley1254.05148
– reference: PicardJCQueyranneMOn the structure of all minimum cuts in a network and applicationsMath. Program. Stud.19801381659208110.1007/BFb0120902
– reference: Herrmann, J., Kho, J., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Acyclic partitioning of large directed acyclic graphs. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 371–380. IEEE Press (2017)
– reference: AndreevKRäckeHBalanced graph partitioningTheory Comput. Syst.2006396929939227908210.1007/s00224-006-1350-7
– reference: Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979)
– reference: ParisSHasinoffSWKautzJLocal Laplacian filters: edge-aware image processing with a Laplacian pyramidACM Trans. Graph.20113046810.1145/2010324.1964963
– reference: Wolf, M.: Embedded computer vision. In: Handbook of Hardware/Software Codesign, pp. 1–14 (2017)
– reference: Wolf, M.: Platforms and architectures for distributed smart cameras. In: Distributed Embedded Smart Cameras, pp. 3–23. Springer (2014)
– reference: Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Proceedings of the 19th European Symposium on Algorithms, LNCS, vol. 6942, pp. 469–480. Springer (2011)
– reference: Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006)
– reference: Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering—Selected Topics (2014). arXiv:1311.3144
– reference: Chen, Y., Zhou, H.: Buffer minimization in pipelined SDF scheduling on multi-core platforms. In: Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pp. 127–132. IEEE (2012)
– reference: FeitelsonDGRudolphLGang scheduling performance benefits for fine-grain synchronizationJ. Parallel Distrib. Comput.199216430631810.1016/0743-7315(92)90014-E
– reference: GoossensJRichardPOptimal Scheduling of Periodic Gang TasksLeibniz Trans. Embed. Syst.20163104-1
– reference: Stavrinides, G.L., Karatza, H.D.: Scheduling different types of applications in a SaaS Cloud. In: Proceedings of the 6th International Symposium on Business Modeling and Software Design (BMSD’16), pp. 144–151 (2016)
– reference: ChevalierCPellegriniFPT-ScotchParallel Comput.2008346–8318331242888010.1016/j.parco.2007.12.001
– reference: KahnABTopological sorting of large networksCommun. ACM196251155856210.1145/368996.369025
– reference: MillerBLGoldbergDEGenetic algorithms, tournament selection, and the effects of noiseEvol. Comput.19964211313110.1162/evco.1996.4.2.113
– reference: Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: The Sourcebook of Parallel Computing, pp. 491–541 (2003)
– reference: Pouchet, L.: Polybench: the polyhedral benchmark suite. http://www.cs.ucla.edu/pouchet/software/polybench (2012)
– reference: Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Conference on Design Automation, pp. 175–181 (1982)
– reference: WalshawCCrossMMesh partitioning: a multilevel balancing and refinement algorithmSIAM J. Sci. Comput.20002216380176952610.1137/S1064827598337373
– reference: KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J. Sci. Comput.1998201359392163907310.1137/S1064827595287997
– reference: SouthwellRVStress-calculation in frameworks by the method of “systematic relaxation of constraints”Proc. R. Soc. Lond.1935151872569510.1098/rspa.1935.0134
– reference: Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph partitioning: a survey. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 473–480. ACM (2011)
– reference: Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Ph.D. Thesis (1996)
– volume-title: Graph Partitioning
  year: 2011
  ident: 9448_CR5
– ident: 9448_CR29
  doi: 10.1007/978-3-642-23719-5_40
– ident: 9448_CR28
– ident: 9448_CR4
  doi: 10.1007/978-1-4614-6170-8_23
– volume: 3
  start-page: 04-1
  issue: 1
  year: 2016
  ident: 9448_CR14
  publication-title: Leibniz Trans. Embed. Syst.
– ident: 9448_CR30
– volume: 5
  start-page: 558
  issue: 11
  year: 1962
  ident: 9448_CR17
  publication-title: Commun. ACM
  doi: 10.1145/368996.369025
– ident: 9448_CR21
  doi: 10.1145/2001576.2001642
– ident: 9448_CR15
  doi: 10.1109/CCGRID.2017.101
– volume: 4
  start-page: 113
  issue: 2
  year: 1996
  ident: 9448_CR24
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.2.113
– volume: 13
  start-page: 8
  year: 1980
  ident: 9448_CR27
  publication-title: Math. Program. Stud.
  doi: 10.1007/BFb0120902
– ident: 9448_CR13
– volume: 39
  start-page: 929
  issue: 6
  year: 2006
  ident: 9448_CR2
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-006-1350-7
– volume: 16
  start-page: 306
  issue: 4
  year: 1992
  ident: 9448_CR11
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/0743-7315(92)90014-E
– volume: 26
  start-page: 858
  issue: 3
  year: 2015
  ident: 9448_CR18
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2312924
– volume: 30
  start-page: 68
  issue: 4
  year: 2011
  ident: 9448_CR25
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2010324.1964963
– ident: 9448_CR1
  doi: 10.1109/IPDPS.2006.1639360
– volume: 22
  start-page: 63
  issue: 1
  year: 2000
  ident: 9448_CR33
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827598337373
– ident: 9448_CR23
  doi: 10.1007/978-3-319-07959-2_30
– ident: 9448_CR22
  doi: 10.1109/IPDPS.2006.1639295
– ident: 9448_CR32
  doi: 10.5220/0006223101440151
– ident: 9448_CR36
  doi: 10.1007/978-94-017-7358-4_40-1
– volume: 20
  start-page: 359
  issue: 1
  year: 1998
  ident: 9448_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595287997
– ident: 9448_CR34
  doi: 10.4203/csets.17.2
– ident: 9448_CR26
  doi: 10.1201/b11644-15
– ident: 9448_CR6
– ident: 9448_CR35
  doi: 10.1007/978-1-4614-7705-1_1
– ident: 9448_CR8
– ident: 9448_CR7
  doi: 10.1007/978-0-387-35498-9_43
– ident: 9448_CR3
  doi: 10.1093/oso/9780195099713.001.0001
– ident: 9448_CR10
  doi: 10.1007/978-3-642-22012-8_40
– volume: 15
  start-page: 1351
  issue: 12
  year: 2007
  ident: 9448_CR16
  publication-title: IEEE Trans. Very Large Scale Integr. VLSI Syst.
  doi: 10.1109/TVLSI.2007.909806
– ident: 9448_CR20
– volume: 34
  start-page: 318
  issue: 6–8
  year: 2008
  ident: 9448_CR9
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2007.12.001
– volume: 151
  start-page: 56
  issue: 872
  year: 1935
  ident: 9448_CR31
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1935.0134
– ident: 9448_CR12
  doi: 10.1109/DAC.1982.1585498
SSID ssj0009853
Score 2.3125634
Snippet Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 771
SubjectTerms Artificial Intelligence
Calculus of Variations and Optimal Control; Optimization
Compilers
Constraints
Embedded systems
Evolutionary algorithms
Genetic algorithms
Graph theory
Graphs
Hardware
Heuristic
Management Science
Mathematics
Mathematics and Statistics
Multiprocessing
Operations Research
Operations Research/Decision Theory
Parallel processing
Partitioning
Reduction
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7R6UEPzk-cTunBmwabj7bJSUQ2PI0dFIaXkqQJCGOb2xT89yZZalXQi-e2IfR5834kb54H4CLVhPFKVEgpkyNWaYlUUVhUZcYqngolchXEJorBgI9GYhg33BaxrbL2icFRV1Pt98ivCaN57kqerLiZvSCvGuVPV6OExjpseJYEL90wzJ4a0l0eWCixi0rIeWgcL83Eq3MFJcgXT67AYRzx74GpyTZ_HJCGuNNv_3fGu7ATM87kdmUie7BmJvvQrtUckri492H7CzXhAdDeWzRKOX9PQtshGvsGo0Tqdz1-1kmguk5m3vTipu4hPPZ7D3f3KAosIE15tkSESizdLLEVSqaqYja33AhKNVGCu1Iil6YwLkswhCubVkIoxZTLGajFWlpCj6A1mU7MMSQKp4ZbSjKaaoYl5zk2hWSuXJGMEYs7gOu_W-rIPu5FMMZlw5vsESkdImVApOQduPz8Zrbi3vjz7W4NQxnX4aJsMOjAVQ1k8_j30U7-Hu0Utoi3ndDV14XWcv5qzmBTvy2fF_PzYIUfwGjhhA
  priority: 102
  providerName: ProQuest
Title Evolutionary multi-level acyclic graph partitioning
URI https://link.springer.com/article/10.1007/s10732-020-09448-8
https://www.proquest.com/docview/2436697857
Volume 26
WOSCitedRecordID wos000548786600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Standard
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1381-1231
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7E-yh68aWDz2E1yVKkIYim-9bIk2QSEUqWtgv_ebJq1KiroJRA2G3ZnJpmZZOYbgN3UECZKWSKtbY5YaRTSnDtUZtZpkUotcx2KTfBOR9zeym5MChvW0e71lWTYqT8ku3FKUOXueJeECSSmYcarO14F8p1fXE-gdkXAnsReFyG_L-OYKvP9HJ_V0cTG_HItGrTN8eL_vnMJFqJ1mRyMxWEZpmx_BRbryg1JXMgrMP8BhtD3zt6xW4erQNsvURzV4DUJAYeoV4UWJcq8mt6DSQLIdfJUCV08zl2Dq-P25dEJiqUVkKEiGyFCFVaM5thJrVJdMpc7YSWlhmgpvBORK8uttw8sEdqlpZRaM-2tBeqwUY7QdWj0H_t2AxKNUyscJRlNDcNKiBxbrph3VBRjxOEm4JrChYm441X5i14xQUyuKFZ4ihWBYoVowt77O09j1I1fR2_XjCviChwWxP9d7l3kjDdhv2bU5PHPs23-bfgWzJGK1yG-bxsao8Gz3YFZ8zJ6GA5aMM1v7lowc9judM9975Qj356lR77tZvetILlv2UThLw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBfXgW1yfPehJg81j2_QgIj5QVhcPCt5qkiawsKzr7qrsn_I3mmRTq4LePHhuO5DONzOZZOYbgJ1YEcaLrEBS6gSxQgkk09Sgoq6N5HEms0T6YRNps8nv77ObMXgre2FcWWXpE72jLh6VOyM_IIwmiU156ulR9wm5qVHudrUcoTGCRUMPX23K1j-8PLX63SXk_Oz25AKFqQJIUV4fIEIFFlYYNpkUsSyYSQzXNq9XRGbc7p8ToVNtQ6MmXJq4yDIpmbSBkhqshHFEB9blTzDKE1dC1khRRfLLPesltlEQ2YiAQ5NOaNVLKUEuWbMJFeOIfw2E1e7224Wsj3Pnc__tD83DbNhRR8cjE1iAMd1ZhLlyWkUUnNcizHyiXlwCevYSjE70hpEvq0RtV0AVCTVU7ZaKPJV31HWmFQ6tl-HuTxayAuOdx45ehUjiWHNDSZ3GimHBeYJ1KphNxwRjxOAa4FKbuQrs6m7IRzuveKEdAnKLgNwjIOc12Pv4pjviFvn17Y1S7XnwM_280nkN9kvgVI9_lrb2u7RtmLq4vb7Kry6bjXWYJg63voJxA8YHvWe9CZPqZdDq97a8BUTw8NeAegeI-z8A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BT9swFH5CbEJwGKOAKGMjBziBRey4iXOYEFqphooqDkPiFmzHlipVbWlLUf8av27PrrMMpHHjsHMSS4m_9z5_zvP3AI5izbgo85IoZVLCSy2JyjJLypaxSsS5ylPlm01kvZ64u8tvVuC5OgvjyiqrnOgTdTnSbo_8jPEkTVHyoIC3oSzipt05Hz8Q10HK_Wmt2mksIdI1iyeUb9PvV22c62PGOpe_fvwkocMA0YlozQhLJJU4MLW5krEquU2tMKjxNVO5wLV0Kk1mkCYNE8rGZZ4rxRWSZmKpltaZHmD6_4AszJ3w62akNvwV3gGTIiMSZAcaDuyEY3tZwogTbiiuuCDiJSnWK91XP2c953U2_-ev9Rk-hZV2dLEMjS1YMcMGbFZdLKKQ1Bqw8Zcl4zYkl_MQjHKyiHy5JRm4wqpI6oUe9HXkLb6jsQu5sJm9A7fv8iK7sDocDc0eRIrGRtiEtZJYcyqFSKnJJEeZJjlnljaBVjNb6OC67pp_DIraL9qhoUA0FB4NhWjCyZ9nxkvPkTfvPqggUIT8My3q-W_CaQWi-vK_R9t_e7RDWEMcFddXve4XWGcOwr6w8QBWZ5NH8xU-6vmsP51888EQwf174-k34llHug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+multi-level+acyclic+graph+partitioning&rft.jtitle=Journal+of+heuristics&rft.au=Moreira%2C+Orlando&rft.au=Popp%2C+Merten&rft.au=Schulz%2C+Christian&rft.date=2020-10-01&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=26&rft.issue=5&rft.spage=771&rft.epage=799&rft_id=info:doi/10.1007%2Fs10732-020-09448-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10732_020_09448_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1231&client=summon