Evolutionary multi-level acyclic graph partitioning
Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to progra...
Uložené v:
| Vydané v: | Journal of heuristics Ročník 26; číslo 5; s. 771 - 799 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1381-1231, 1572-9397 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to program memory restrictions in embedded multiprocessor systems, applications need to be divided into parts without cyclic dependencies. We found that this can be done by a subsequent second graph partitioning step with an additional acyclicity constraint. We have four main contributions. First, we show that this more constrained version of the graph partitioning problem is NP-complete and present linear time heuristics. We then integrate them into an existing
multi-level
graph partitioning framework to better handle large graphs. This achieves a 9% reduction of the edge cut compared to the previous single-level algorithm. Based on this, we engineer an evolutionary algorithm to
further
reduce the cut, achieving a 30% reduction on average compared to the state of the art. Finally, we integrate the partitioning heuristics into a graph compiler for an embedded multiprocessor architecture and show that this can reduce the amount of communication for a real-world imaging application and thereby accelerate it by an average of 11%. It is shown that the compiler can emit optimized code for vastly different hardware platforms using the heuristics. In addition, we demonstrate how a custom fitness function for the evolutionary algorithm can be used to optimize other objectives like load balancing if the communication volume is not predominantly important on a given hardware platform. |
|---|---|
| AbstractList | Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to program memory restrictions in embedded multiprocessor systems, applications need to be divided into parts without cyclic dependencies. We found that this can be done by a subsequent second graph partitioning step with an additional acyclicity constraint. We have four main contributions. First, we show that this more constrained version of the graph partitioning problem is NP-complete and present linear time heuristics. We then integrate them into an existing multi-level graph partitioning framework to better handle large graphs. This achieves a 9% reduction of the edge cut compared to the previous single-level algorithm. Based on this, we engineer an evolutionary algorithm to further reduce the cut, achieving a 30% reduction on average compared to the state of the art. Finally, we integrate the partitioning heuristics into a graph compiler for an embedded multiprocessor architecture and show that this can reduce the amount of communication for a real-world imaging application and thereby accelerate it by an average of 11%. It is shown that the compiler can emit optimized code for vastly different hardware platforms using the heuristics. In addition, we demonstrate how a custom fitness function for the evolutionary algorithm can be used to optimize other objectives like load balancing if the communication volume is not predominantly important on a given hardware platform. Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning algorithms for the problem of parallelizing execution on multiprocessor architectures under hardware resource constraints. However due to program memory restrictions in embedded multiprocessor systems, applications need to be divided into parts without cyclic dependencies. We found that this can be done by a subsequent second graph partitioning step with an additional acyclicity constraint. We have four main contributions. First, we show that this more constrained version of the graph partitioning problem is NP-complete and present linear time heuristics. We then integrate them into an existing multi-level graph partitioning framework to better handle large graphs. This achieves a 9% reduction of the edge cut compared to the previous single-level algorithm. Based on this, we engineer an evolutionary algorithm to further reduce the cut, achieving a 30% reduction on average compared to the state of the art. Finally, we integrate the partitioning heuristics into a graph compiler for an embedded multiprocessor architecture and show that this can reduce the amount of communication for a real-world imaging application and thereby accelerate it by an average of 11%. It is shown that the compiler can emit optimized code for vastly different hardware platforms using the heuristics. In addition, we demonstrate how a custom fitness function for the evolutionary algorithm can be used to optimize other objectives like load balancing if the communication volume is not predominantly important on a given hardware platform. |
| Author | Popp, Merten Schulz, Christian Moreira, Orlando |
| Author_xml | – sequence: 1 givenname: Orlando surname: Moreira fullname: Moreira, Orlando organization: GrAI Matter Labs – sequence: 2 givenname: Merten orcidid: 0000-0001-5916-8180 surname: Popp fullname: Popp, Merten email: mail@merten-popp.de organization: Braunschweig Institute of Technology – sequence: 3 givenname: Christian surname: Schulz fullname: Schulz, Christian organization: University of Vienna |
| BookMark | eNp9kM1OwzAQhC1UJNrCC3CKxNmwtpPYPqKq_EiVuMDZcly7uEqTYCeV-vY4BAmJQ0-7h_lmd2aBZk3bWIRuCdwTAP4QCXBGMVDAIPNcYHGB5qTgFEsm-SztTBBMKCNXaBHjHgCkKNgcsfWxrYfet40Op-ww1L3HtT3aOtPmZGpvsl3Q3WfW6dD7Ueab3TW6dLqO9uZ3LtHH0_p99YI3b8-vq8cNNkwUPaZME52zkjhZaai2uSudsJIxQyspSl6U2nILICwVlYOtlFWVV4ICc8RoR9kS3U2-XWi_Bht7tW-H0KSTiibfUnJR8KSik8qENsZgneqCP6Q0ioAay1FTOSqVo37KUSJB4h9kfK_HfH3Qvj6PsgmN6U6zs-HvqzPUN4YDewA |
| CitedBy_id | crossref_primary_10_1109_TPDS_2022_3151194 crossref_primary_10_1145_3571808 crossref_primary_10_1109_TPDS_2021_3107746 crossref_primary_10_1007_s41870_021_00777_w |
| Cites_doi | 10.1007/978-3-642-23719-5_40 10.1007/978-1-4614-6170-8_23 10.1145/368996.369025 10.1145/2001576.2001642 10.1109/CCGRID.2017.101 10.1162/evco.1996.4.2.113 10.1007/BFb0120902 10.1007/s00224-006-1350-7 10.1016/0743-7315(92)90014-E 10.1109/TPDS.2014.2312924 10.1145/2010324.1964963 10.1109/IPDPS.2006.1639360 10.1137/S1064827598337373 10.1007/978-3-319-07959-2_30 10.1109/IPDPS.2006.1639295 10.5220/0006223101440151 10.1007/978-94-017-7358-4_40-1 10.1137/S1064827595287997 10.4203/csets.17.2 10.1201/b11644-15 10.1007/978-1-4614-7705-1_1 10.1007/978-0-387-35498-9_43 10.1093/oso/9780195099713.001.0001 10.1007/978-3-642-22012-8_40 10.1109/TVLSI.2007.909806 10.1016/j.parco.2007.12.001 10.1098/rspa.1935.0134 10.1109/DAC.1982.1585498 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
| DOI | 10.1007/s10732-020-09448-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1572-9397 |
| EndPage | 799 |
| ExternalDocumentID | 10_1007_s10732_020_09448_8 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z86 Z88 Z8U Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7XB 8AL 8FK JQ2 L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c385t-23a1a4361f9ba0bd4f6f8e933c2b986756ae7e008e28bf0d99bb4b8203f1caf23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548786600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1381-1231 |
| IngestDate | Tue Nov 04 23:06:19 EST 2025 Tue Nov 18 22:10:51 EST 2025 Sat Nov 29 06:01:08 EST 2025 Fri Feb 21 02:36:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Graph partitioning Computer vision Embedded systems Evolutionary algorithm Imaging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-23a1a4361f9ba0bd4f6f8e933c2b986756ae7e008e28bf0d99bb4b8203f1caf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5916-8180 |
| PQID | 2436697857 |
| PQPubID | 26068 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2436697857 crossref_primary_10_1007_s10732_020_09448_8 crossref_citationtrail_10_1007_s10732_020_09448_8 springer_journals_10_1007_s10732_020_09448_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationTitle | Journal of heuristics |
| PublicationTitleAbbrev | J Heuristics |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Proceedings of the 13th International Symposium on Experimental Algorithms, LNCS. Springer (2014) WalshawCCrossMMesh partitioning: a multilevel balancing and refinement algorithmSIAM J. Sci. Comput.20002216380176952610.1137/S1064827598337373 Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: The Sourcebook of Parallel Computing, pp. 491–541 (2003) Khronos Group: The OpenVX specification: vision functions. https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html (2017) SouthwellRVStress-calculation in frameworks by the method of “systematic relaxation of constraints”Proc. R. Soc. Lond.1935151872569510.1098/rspa.1935.0134 Stavrinides, G.L., Karatza, H.D.: Scheduling different types of applications in a SaaS Cloud. In: Proceedings of the 6th International Symposium on Business Modeling and Software Design (BMSD’16), pp. 144–151 (2016) Chen, Y., Zhou, H.: Buffer minimization in pipelined SDF scheduling on multi-core platforms. In: Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pp. 127–132. IEEE (2012) Herrmann, J., Kho, J., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Acyclic partitioning of large directed acyclic graphs. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 371–380. IEEE Press (2017) Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006) Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering—Selected Topics (2014). arXiv:1311.3144 Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Conference on Design Automation, pp. 175–181 (1982) Pellegrini, F.: Scotch and PT-scotch graph partitioning software: an overview. In: Combinatorial Scientific Computing, pp. 373–406 (2012) KaoCCPerformance-oriented partitioning for task scheduling of parallel reconfigurable architecturesIEEE Trans. Parallel Distrib. Syst.201526385886710.1109/TPDS.2014.2312924 Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software—an overview. In: Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58 (2007) Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph partitioning: a survey. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 473–480. ACM (2011) Doerr, B., Fouz, M.: Asymptotically optimal randomized rumor spreading. In: Proceedings of the 38th International Colloquium on Automata, Languages and Programming, Proceedings, Part II, LNCS, vol. 6756, pp. 502–513. Springer (2011) ChevalierCPellegriniFPT-ScotchParallel Comput.2008346–8318331242888010.1016/j.parco.2007.12.001 BichotCSiarryPGraph Partitioning2011HobokenWiley1254.05148 Wolf, M.: Embedded computer vision. In: Handbook of Hardware/Software Codesign, pp. 1–14 (2017) AndreevKRäckeHBalanced graph partitioningTheory Comput. Syst.2006396929939227908210.1007/s00224-006-1350-7 Cardoso, J.M.P., Neto, H.C.: An enhanced static-list scheduling algorithm for temporal partitioning onto RPUs. In: VLSI: Systems on a Chip, pp. 485–496. Springer (2000) Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Ph.D. Thesis (1996) FeitelsonDGRudolphLGang scheduling performance benefits for fine-grain synchronizationJ. Parallel Distrib. Comput.199216430631810.1016/0743-7315(92)90014-E Pouchet, L.: Polybench: the polyhedral benchmark suite. http://www.cs.ucla.edu/pouchet/software/polybench (2012) Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Proceedings of the 19th European Symposium on Algorithms, LNCS, vol. 6942, pp. 469–480. Springer (2011) ParisSHasinoffSWKautzJLocal Laplacian filters: edge-aware image processing with a Laplacian pyramidACM Trans. Graph.20113046810.1145/2010324.1964963 JiangYCWangJFTemporal partitioning data flow graphs for dynamically reconfigurable computingIEEE Trans. Very Large Scale Integr. VLSI Syst.200715121351136110.1109/TVLSI.2007.909806 KahnABTopological sorting of large networksCommun. ACM196251155856210.1145/368996.369025 MillerBLGoldbergDEGenetic algorithms, tournament selection, and the effects of noiseEvol. Comput.19964211313110.1162/evco.1996.4.2.113 Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006) Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of Social Network Analysis and Mining (2014) Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979) GoossensJRichardPOptimal Scheduling of Periodic Gang TasksLeibniz Trans. Embed. Syst.20163104-1 KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J. Sci. Comput.1998201359392163907310.1137/S1064827595287997 PicardJCQueyranneMOn the structure of all minimum cuts in a network and applicationsMath. Program. Stud.19801381659208110.1007/BFb0120902 Wolf, M.: Platforms and architectures for distributed smart cameras. In: Distributed Embedded Smart Cameras, pp. 3–23. Springer (2014) RV Southwell (9448_CR31) 1935; 151 YC Jiang (9448_CR16) 2007; 15 CC Kao (9448_CR18) 2015; 26 G Karypis (9448_CR19) 1998; 20 (9448_CR5) 2011 9448_CR10 9448_CR32 9448_CR30 J Goossens (9448_CR14) 2016; 3 C Chevalier (9448_CR9) 2008; 34 JC Picard (9448_CR27) 1980; 13 9448_CR15 9448_CR36 9448_CR13 9448_CR35 9448_CR12 9448_CR34 C Walshaw (9448_CR33) 2000; 22 9448_CR3 9448_CR4 9448_CR6 9448_CR1 9448_CR22 9448_CR21 9448_CR20 DG Feitelson (9448_CR11) 1992; 16 9448_CR7 BL Miller (9448_CR24) 1996; 4 9448_CR8 K Andreev (9448_CR2) 2006; 39 9448_CR29 9448_CR28 9448_CR26 9448_CR23 AB Kahn (9448_CR17) 1962; 5 S Paris (9448_CR25) 2011; 30 |
| References_xml | – reference: Doerr, B., Fouz, M.: Asymptotically optimal randomized rumor spreading. In: Proceedings of the 38th International Colloquium on Automata, Languages and Programming, Proceedings, Part II, LNCS, vol. 6756, pp. 502–513. Springer (2011) – reference: Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software—an overview. In: Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58 (2007) – reference: Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006) – reference: KaoCCPerformance-oriented partitioning for task scheduling of parallel reconfigurable architecturesIEEE Trans. Parallel Distrib. Syst.201526385886710.1109/TPDS.2014.2312924 – reference: Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Proceedings of the 13th International Symposium on Experimental Algorithms, LNCS. Springer (2014) – reference: JiangYCWangJFTemporal partitioning data flow graphs for dynamically reconfigurable computingIEEE Trans. Very Large Scale Integr. VLSI Syst.200715121351136110.1109/TVLSI.2007.909806 – reference: Cardoso, J.M.P., Neto, H.C.: An enhanced static-list scheduling algorithm for temporal partitioning onto RPUs. In: VLSI: Systems on a Chip, pp. 485–496. Springer (2000) – reference: Pellegrini, F.: Scotch and PT-scotch graph partitioning software: an overview. In: Combinatorial Scientific Computing, pp. 373–406 (2012) – reference: Khronos Group: The OpenVX specification: vision functions. https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html (2017) – reference: Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of Social Network Analysis and Mining (2014) – reference: BichotCSiarryPGraph Partitioning2011HobokenWiley1254.05148 – reference: PicardJCQueyranneMOn the structure of all minimum cuts in a network and applicationsMath. Program. Stud.19801381659208110.1007/BFb0120902 – reference: Herrmann, J., Kho, J., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Acyclic partitioning of large directed acyclic graphs. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 371–380. IEEE Press (2017) – reference: AndreevKRäckeHBalanced graph partitioningTheory Comput. Syst.2006396929939227908210.1007/s00224-006-1350-7 – reference: Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979) – reference: ParisSHasinoffSWKautzJLocal Laplacian filters: edge-aware image processing with a Laplacian pyramidACM Trans. Graph.20113046810.1145/2010324.1964963 – reference: Wolf, M.: Embedded computer vision. In: Handbook of Hardware/Software Codesign, pp. 1–14 (2017) – reference: Wolf, M.: Platforms and architectures for distributed smart cameras. In: Distributed Embedded Smart Cameras, pp. 3–23. Springer (2014) – reference: Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Proceedings of the 19th European Symposium on Algorithms, LNCS, vol. 6942, pp. 469–480. Springer (2011) – reference: Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (2006) – reference: Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering—Selected Topics (2014). arXiv:1311.3144 – reference: Chen, Y., Zhou, H.: Buffer minimization in pipelined SDF scheduling on multi-core platforms. In: Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pp. 127–132. IEEE (2012) – reference: FeitelsonDGRudolphLGang scheduling performance benefits for fine-grain synchronizationJ. Parallel Distrib. Comput.199216430631810.1016/0743-7315(92)90014-E – reference: GoossensJRichardPOptimal Scheduling of Periodic Gang TasksLeibniz Trans. Embed. Syst.20163104-1 – reference: Stavrinides, G.L., Karatza, H.D.: Scheduling different types of applications in a SaaS Cloud. In: Proceedings of the 6th International Symposium on Business Modeling and Software Design (BMSD’16), pp. 144–151 (2016) – reference: ChevalierCPellegriniFPT-ScotchParallel Comput.2008346–8318331242888010.1016/j.parco.2007.12.001 – reference: KahnABTopological sorting of large networksCommun. ACM196251155856210.1145/368996.369025 – reference: MillerBLGoldbergDEGenetic algorithms, tournament selection, and the effects of noiseEvol. Comput.19964211313110.1162/evco.1996.4.2.113 – reference: Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: The Sourcebook of Parallel Computing, pp. 491–541 (2003) – reference: Pouchet, L.: Polybench: the polyhedral benchmark suite. http://www.cs.ucla.edu/pouchet/software/polybench (2012) – reference: Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Conference on Design Automation, pp. 175–181 (1982) – reference: WalshawCCrossMMesh partitioning: a multilevel balancing and refinement algorithmSIAM J. Sci. Comput.20002216380176952610.1137/S1064827598337373 – reference: KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J. Sci. Comput.1998201359392163907310.1137/S1064827595287997 – reference: SouthwellRVStress-calculation in frameworks by the method of “systematic relaxation of constraints”Proc. R. Soc. Lond.1935151872569510.1098/rspa.1935.0134 – reference: Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph partitioning: a survey. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 473–480. ACM (2011) – reference: Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Ph.D. Thesis (1996) – volume-title: Graph Partitioning year: 2011 ident: 9448_CR5 – ident: 9448_CR29 doi: 10.1007/978-3-642-23719-5_40 – ident: 9448_CR28 – ident: 9448_CR4 doi: 10.1007/978-1-4614-6170-8_23 – volume: 3 start-page: 04-1 issue: 1 year: 2016 ident: 9448_CR14 publication-title: Leibniz Trans. Embed. Syst. – ident: 9448_CR30 – volume: 5 start-page: 558 issue: 11 year: 1962 ident: 9448_CR17 publication-title: Commun. ACM doi: 10.1145/368996.369025 – ident: 9448_CR21 doi: 10.1145/2001576.2001642 – ident: 9448_CR15 doi: 10.1109/CCGRID.2017.101 – volume: 4 start-page: 113 issue: 2 year: 1996 ident: 9448_CR24 publication-title: Evol. Comput. doi: 10.1162/evco.1996.4.2.113 – volume: 13 start-page: 8 year: 1980 ident: 9448_CR27 publication-title: Math. Program. Stud. doi: 10.1007/BFb0120902 – ident: 9448_CR13 – volume: 39 start-page: 929 issue: 6 year: 2006 ident: 9448_CR2 publication-title: Theory Comput. Syst. doi: 10.1007/s00224-006-1350-7 – volume: 16 start-page: 306 issue: 4 year: 1992 ident: 9448_CR11 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/0743-7315(92)90014-E – volume: 26 start-page: 858 issue: 3 year: 2015 ident: 9448_CR18 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2014.2312924 – volume: 30 start-page: 68 issue: 4 year: 2011 ident: 9448_CR25 publication-title: ACM Trans. Graph. doi: 10.1145/2010324.1964963 – ident: 9448_CR1 doi: 10.1109/IPDPS.2006.1639360 – volume: 22 start-page: 63 issue: 1 year: 2000 ident: 9448_CR33 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827598337373 – ident: 9448_CR23 doi: 10.1007/978-3-319-07959-2_30 – ident: 9448_CR22 doi: 10.1109/IPDPS.2006.1639295 – ident: 9448_CR32 doi: 10.5220/0006223101440151 – ident: 9448_CR36 doi: 10.1007/978-94-017-7358-4_40-1 – volume: 20 start-page: 359 issue: 1 year: 1998 ident: 9448_CR19 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595287997 – ident: 9448_CR34 doi: 10.4203/csets.17.2 – ident: 9448_CR26 doi: 10.1201/b11644-15 – ident: 9448_CR6 – ident: 9448_CR35 doi: 10.1007/978-1-4614-7705-1_1 – ident: 9448_CR8 – ident: 9448_CR7 doi: 10.1007/978-0-387-35498-9_43 – ident: 9448_CR3 doi: 10.1093/oso/9780195099713.001.0001 – ident: 9448_CR10 doi: 10.1007/978-3-642-22012-8_40 – volume: 15 start-page: 1351 issue: 12 year: 2007 ident: 9448_CR16 publication-title: IEEE Trans. Very Large Scale Integr. VLSI Syst. doi: 10.1109/TVLSI.2007.909806 – ident: 9448_CR20 – volume: 34 start-page: 318 issue: 6–8 year: 2008 ident: 9448_CR9 publication-title: Parallel Comput. doi: 10.1016/j.parco.2007.12.001 – volume: 151 start-page: 56 issue: 872 year: 1935 ident: 9448_CR31 publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspa.1935.0134 – ident: 9448_CR12 doi: 10.1109/DAC.1982.1585498 |
| SSID | ssj0009853 |
| Score | 2.3125634 |
| Snippet | Directed graphs are widely used to model data flow and execution dependencies in streaming applications. This enables the utilization of graph partitioning... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 771 |
| SubjectTerms | Artificial Intelligence Calculus of Variations and Optimal Control; Optimization Compilers Constraints Embedded systems Evolutionary algorithms Genetic algorithms Graph theory Graphs Hardware Heuristic Management Science Mathematics Mathematics and Statistics Multiprocessing Operations Research Operations Research/Decision Theory Parallel processing Partitioning Reduction |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7R6UEPzk-cTunBmwabj7bJSUQ2PI0dFIaXkqQJCGOb2xT89yZZalXQi-e2IfR5834kb54H4CLVhPFKVEgpkyNWaYlUUVhUZcYqngolchXEJorBgI9GYhg33BaxrbL2icFRV1Pt98ivCaN57kqerLiZvSCvGuVPV6OExjpseJYEL90wzJ4a0l0eWCixi0rIeWgcL83Eq3MFJcgXT67AYRzx74GpyTZ_HJCGuNNv_3fGu7ATM87kdmUie7BmJvvQrtUckri492H7CzXhAdDeWzRKOX9PQtshGvsGo0Tqdz1-1kmguk5m3vTipu4hPPZ7D3f3KAosIE15tkSESizdLLEVSqaqYja33AhKNVGCu1Iil6YwLkswhCubVkIoxZTLGajFWlpCj6A1mU7MMSQKp4ZbSjKaaoYl5zk2hWSuXJGMEYs7gOu_W-rIPu5FMMZlw5vsESkdImVApOQduPz8Zrbi3vjz7W4NQxnX4aJsMOjAVQ1k8_j30U7-Hu0Utoi3ndDV14XWcv5qzmBTvy2fF_PzYIUfwGjhhA priority: 102 providerName: ProQuest |
| Title | Evolutionary multi-level acyclic graph partitioning |
| URI | https://link.springer.com/article/10.1007/s10732-020-09448-8 https://www.proquest.com/docview/2436697857 |
| Volume | 26 |
| WOSCitedRecordID | wos000548786600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Standard customDbUrl: eissn: 1572-9397 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009853 issn: 1381-1231 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7E-yh68aWDz2E1yVKkIYim-9bIk2QSEUqWtgv_ebJq1KiroJRA2G3ZnJpmZZOYbgN3UECZKWSKtbY5YaRTSnDtUZtZpkUotcx2KTfBOR9zeym5MChvW0e71lWTYqT8ku3FKUOXueJeECSSmYcarO14F8p1fXE-gdkXAnsReFyG_L-OYKvP9HJ_V0cTG_HItGrTN8eL_vnMJFqJ1mRyMxWEZpmx_BRbryg1JXMgrMP8BhtD3zt6xW4erQNsvURzV4DUJAYeoV4UWJcq8mt6DSQLIdfJUCV08zl2Dq-P25dEJiqUVkKEiGyFCFVaM5thJrVJdMpc7YSWlhmgpvBORK8uttw8sEdqlpZRaM-2tBeqwUY7QdWj0H_t2AxKNUyscJRlNDcNKiBxbrph3VBRjxOEm4JrChYm441X5i14xQUyuKFZ4ihWBYoVowt77O09j1I1fR2_XjCviChwWxP9d7l3kjDdhv2bU5PHPs23-bfgWzJGK1yG-bxsao8Gz3YFZ8zJ6GA5aMM1v7lowc9judM9975Qj356lR77tZvetILlv2UThLw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBfXgW1yfPehJg81j2_QgIj5QVhcPCt5qkiawsKzr7qrsn_I3mmRTq4LePHhuO5DONzOZZOYbgJ1YEcaLrEBS6gSxQgkk09Sgoq6N5HEms0T6YRNps8nv77ObMXgre2FcWWXpE72jLh6VOyM_IIwmiU156ulR9wm5qVHudrUcoTGCRUMPX23K1j-8PLX63SXk_Oz25AKFqQJIUV4fIEIFFlYYNpkUsSyYSQzXNq9XRGbc7p8ToVNtQ6MmXJq4yDIpmbSBkhqshHFEB9blTzDKE1dC1khRRfLLPesltlEQ2YiAQ5NOaNVLKUEuWbMJFeOIfw2E1e7224Wsj3Pnc__tD83DbNhRR8cjE1iAMd1ZhLlyWkUUnNcizHyiXlwCevYSjE70hpEvq0RtV0AVCTVU7ZaKPJV31HWmFQ6tl-HuTxayAuOdx45ehUjiWHNDSZ3GimHBeYJ1KphNxwRjxOAa4FKbuQrs6m7IRzuveKEdAnKLgNwjIOc12Pv4pjviFvn17Y1S7XnwM_280nkN9kvgVI9_lrb2u7RtmLq4vb7Kry6bjXWYJg63voJxA8YHvWe9CZPqZdDq97a8BUTw8NeAegeI-z8A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BT9swFH5CbEJwGKOAKGMjBziBRey4iXOYEFqphooqDkPiFmzHlipVbWlLUf8av27PrrMMpHHjsHMSS4m_9z5_zvP3AI5izbgo85IoZVLCSy2JyjJLypaxSsS5ylPlm01kvZ64u8tvVuC5OgvjyiqrnOgTdTnSbo_8jPEkTVHyoIC3oSzipt05Hz8Q10HK_Wmt2mksIdI1iyeUb9PvV22c62PGOpe_fvwkocMA0YlozQhLJJU4MLW5krEquU2tMKjxNVO5wLV0Kk1mkCYNE8rGZZ4rxRWSZmKpltaZHmD6_4AszJ3w62akNvwV3gGTIiMSZAcaDuyEY3tZwogTbiiuuCDiJSnWK91XP2c953U2_-ev9Rk-hZV2dLEMjS1YMcMGbFZdLKKQ1Bqw8Zcl4zYkl_MQjHKyiHy5JRm4wqpI6oUe9HXkLb6jsQu5sJm9A7fv8iK7sDocDc0eRIrGRtiEtZJYcyqFSKnJJEeZJjlnljaBVjNb6OC67pp_DIraL9qhoUA0FB4NhWjCyZ9nxkvPkTfvPqggUIT8My3q-W_CaQWi-vK_R9t_e7RDWEMcFddXve4XWGcOwr6w8QBWZ5NH8xU-6vmsP51888EQwf174-k34llHug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+multi-level+acyclic+graph+partitioning&rft.jtitle=Journal+of+heuristics&rft.au=Moreira%2C+Orlando&rft.au=Popp%2C+Merten&rft.au=Schulz%2C+Christian&rft.date=2020-10-01&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=26&rft.issue=5&rft.spage=771&rft.epage=799&rft_id=info:doi/10.1007%2Fs10732-020-09448-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10732_020_09448_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1231&client=summon |