Runtime Analysis of an Ant Colony Optimization Algorithm for TSP Instances

Ant colony optimization (ACO) is a relatively new random heuristic approach for solving optimization problems. The main application of the ACO algorithm lies in the field of combinatorial optimization, and the traveling salesman problem (TSP) is the first benchmark problem to which the ACO algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 13; číslo 5; s. 1083 - 1092
Hlavní autor: Yuren Zhou, Yuren Zhou
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.10.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ant colony optimization (ACO) is a relatively new random heuristic approach for solving optimization problems. The main application of the ACO algorithm lies in the field of combinatorial optimization, and the traveling salesman problem (TSP) is the first benchmark problem to which the ACO algorithm has been applied. However, relatively few results on the runtime analysis of the ACO on the TSP are available. This paper presents the first rigorous analysis of a simple ACO algorithm called (1 + 1) MMAA (Max-Min ant algorithm) on the TSP. The expected runtime bounds for (1 + 1) MMAA on two TSP instances of complete and non-complete graphs are obtained. The influence of the parameters controlling the relative importance of pheromone trail versus visibility is also analyzed, and their choice is shown to have an impact on the expected runtime.
AbstractList Ant colony optimization (ACO) is a relatively new random heuristic approach for solving optimization problems. The main application of the ACO algorithm lies in the field of combinatorial optimization, and the traveling salesman problem (TSP) is the first benchmark problem to which the ACO algorithm has been applied. However, relatively few results on the runtime analysis of the ACO on the TSP are available. This paper presents the first rigorous analysis of a simple ACO algorithm called (1 + 1) MMAA (Max-Min ant algorithm) on the TSP. The expected runtime bounds for (1 + 1) MMAA on two TSP instances of complete and non-complete graphs are obtained. The influence of the parameters controlling the relative importance of pheromone trail versus visibility is also analyzed, and their choice is shown to have an impact on the expected runtime.
Author Yuren Zhou
Author_xml – sequence: 1
  givenname: Yuren Zhou
  surname: Yuren Zhou
  fullname: Yuren Zhou, Yuren Zhou
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22159711$$DView record in Pascal Francis
BookMark eNp9kU9PGzEQxa0KpAboB6h6WVUqPS14_GdtH1EEhQoJ1KZVbytnbYPRxg62c0g_PQ6JcuDAZTy2fu-NPO8IHYQYLEKfAZ8BYHU-u_w7PSMYq1qg4wJ_QBNQDFqMSXdQeyxVK4T89xEd5fyEMTAOaoJ-_lqF4he2uQh6XGefm-gaHeq1NNM4xrBu7pYV8P918bG-jw8x-fK4aFxMzez3fXMTctFhsPkEHTo9Zvtpdx6jP1eXs-l1e3v342Z6cdsOVPLSQse00oQZ1lFhmANqFDZKGye54nOKHbcSq_l8MHQAJTkjhjFtDe0sMcLRY_R967tM8Xllc-kXPg92HHWwcZV7KTgGySWp5Om7JOWYMklYBb--AZ_iKtWNVDcuGJG0kxX6toN0HvToUv21z_0y-YVO654Q4EoAVA623JBizsm6PQK434TVb8LqN2H1u7CqRrzRDL68brwk7cd3lV-2Sm-t3U_ilaGM0xdVcaHl
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TASE_2021_3087353
crossref_primary_10_1007_s00453_011_9606_2
crossref_primary_10_1016_j_tcs_2017_10_012
crossref_primary_10_1145_3472304
crossref_primary_10_1016_j_eswa_2011_07_062
crossref_primary_10_1007_s00500_014_1279_8
crossref_primary_10_4018_IJAMC_2017070104
crossref_primary_10_1007_s42452_025_06809_5
crossref_primary_10_1109_TEVC_2018_2878221
crossref_primary_10_1109_TCC_2021_3122445
crossref_primary_10_1016_j_swevo_2016_06_006
crossref_primary_10_1016_j_asoc_2021_107991
crossref_primary_10_1007_s11042_017_5466_3
crossref_primary_10_1109_JSEN_2022_3203127
crossref_primary_10_3390_s151024996
crossref_primary_10_1109_TFUZZ_2013_2276863
crossref_primary_10_1109_TCYB_2025_3587025
crossref_primary_10_4028_www_scientific_net_AMR_605_607_2149
crossref_primary_10_1016_j_engappai_2018_03_015
crossref_primary_10_1109_JSYST_2018_2795255
crossref_primary_10_1109_ACCESS_2022_3233786
crossref_primary_10_1016_j_swevo_2021_100875
crossref_primary_10_1007_s40747_020_00138_3
crossref_primary_10_1007_s11721_011_0059_7
crossref_primary_10_3390_s20164480
crossref_primary_10_1109_TEVC_2017_2667713
crossref_primary_10_1155_2016_6051046
crossref_primary_10_1109_TIE_2019_2896235
crossref_primary_10_1007_s11424_019_8176_2
crossref_primary_10_1080_00207543_2010_507608
crossref_primary_10_1080_00207160_2015_1071359
crossref_primary_10_1117_1_JMI_9_5_055001
crossref_primary_10_1109_TIE_2019_2901644
crossref_primary_10_1016_j_ins_2017_12_047
crossref_primary_10_1016_j_plrev_2024_09_014
crossref_primary_10_1109_ACCESS_2019_2928012
crossref_primary_10_1016_j_eswa_2015_11_026
crossref_primary_10_3390_s18041020
crossref_primary_10_1007_s10489_021_02424_0
crossref_primary_10_1016_j_eswa_2012_10_011
crossref_primary_10_1016_j_jda_2011_06_002
crossref_primary_10_1155_2015_713043
crossref_primary_10_1109_ACCESS_2019_2934889
crossref_primary_10_3390_a14100295
crossref_primary_10_1109_JSEN_2022_3150065
crossref_primary_10_1039_c2ib00133k
crossref_primary_10_1007_s11704_013_2302_4
crossref_primary_10_1080_00207721_2023_2293687
crossref_primary_10_1049_iet_wss_2011_0128
crossref_primary_10_1016_j_eswa_2018_09_045
crossref_primary_10_4018_ijncr_2014070102
crossref_primary_10_4018_IJSIR_2017100101
crossref_primary_10_1016_j_tcs_2014_06_035
crossref_primary_10_1145_2492248_2492271
crossref_primary_10_1016_j_apm_2020_05_009
Cites_doi 10.1109/TSMCC.2004.841903
10.1016/j.cor.2006.12.017
10.1016/j.tcs.2005.05.020
10.1007/s11009-007-9047-1
10.1287/opre.21.2.498
10.1016/S0167-739X(00)00044-3
10.1145/1276958.1276964
10.1016/j.ipl.2007.06.016
10.1016/S0377-2217(99)00284-2
10.1007/s11721-007-0001-1
10.1007/978-3-540-74446-7_5
10.1109/CEC.2007.4424512
10.1109/3477.484436
10.1109/TEVC.2002.802444
10.1145/1068009.1068202
10.1109/MCI.2006.329691
10.1016/j.ipl.2007.08.013
10.1007/s11009-006-7291-4
10.1007/978-3-540-92695-5_12
10.1145/1276958.1277118
10.1016/j.jda.2004.02.001
10.1016/S0304-3975(01)00182-7
10.1016/S0304-3975(02)00137-8
10.1007/s11721-008-0023-3
10.1109/CEC.2007.4424800
10.1016/S0167-739X(00)00043-1
10.1023/B:ANOR.0000039526.52305.af
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2009.2016570
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 1092
ExternalDocumentID 2294849681
22159711
10_1109_TEVC_2009_2016570
5200345
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c385t-164a9a24d4637d4f13d90d9adf8595b30f5e809bbcd3c198542d44aed36e2d7f3
IEDL.DBID RIE
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270144100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 12:02:58 EST 2025
Thu Oct 02 09:48:17 EDT 2025
Sun Jun 29 12:25:00 EDT 2025
Mon Jul 21 09:13:57 EDT 2025
Sat Nov 29 03:13:45 EST 2025
Tue Nov 18 21:29:49 EST 2025
Tue Aug 26 16:47:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Insecta
Evolutionary algorithm
Travelling salesman problem
Combinatorial optimization
Formicoidea
heuristic algorithm
Swarm intelligence
Ant colony optimization (ACO)
Aculeata
Mathematical programming
Probabilistic approach
Complete graph
Pheromone
Social insect
Particle swarm optimization
Arthropoda
Heuristic method
Minimax method
Problem solving
runtime analysis
Visibility
Hymenoptera
Invertebrata
Algorithm analysis
traveling salesman problem (TSP)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-164a9a24d4637d4f13d90d9adf8595b30f5e809bbcd3c198542d44aed36e2d7f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 857428368
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_875018582
crossref_primary_10_1109_TEVC_2009_2016570
proquest_journals_857428368
pascalfrancis_primary_22159711
ieee_primary_5200345
proquest_miscellaneous_35034824
crossref_citationtrail_10_1109_TEVC_2009_2016570
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref10
ref2
zlochin (ref9) 2004; 131
ref16
ref19
wegener (ref32) 2005; 3580
neumann (ref18) 2006; 4288
ref24
ref23
ref25
ref20
lawler (ref26) 1985
dorigo (ref3) 2004
dorigo (ref1) 1991
ref22
ref21
ref28
ref27
witt (ref13) 2005; 3404
ref29
ref8
ref7
friedrich (ref17) 2007
ref4
ref6
ref5
References_xml – volume: 3580
  start-page: 589
  year: 2005
  ident: ref32
  article-title: simulated annealing beats metropolis in combinatorial optimization
  publication-title: Proc ICALP
– start-page: 1
  year: 1985
  ident: ref26
  publication-title: The Traveling Salesman Problem A Guided Tour of Combinatorial Optimization
– ident: ref15
  doi: 10.1109/TSMCC.2004.841903
– ident: ref19
  doi: 10.1016/j.cor.2006.12.017
– ident: ref5
  doi: 10.1016/j.tcs.2005.05.020
– year: 1991
  ident: ref1
  publication-title: The Ant System An Autocatalytic Optimizing Process
– ident: ref22
  doi: 10.1007/s11009-007-9047-1
– ident: ref30
  doi: 10.1287/opre.21.2.498
– ident: ref6
  doi: 10.1016/S0167-739X(00)00044-3
– ident: ref21
  doi: 10.1145/1276958.1276964
– ident: ref33
  doi: 10.1016/j.ipl.2007.06.016
– ident: ref31
  doi: 10.1016/S0377-2217(99)00284-2
– ident: ref29
  doi: 10.1007/s11721-007-0001-1
– ident: ref27
  doi: 10.1007/978-3-540-74446-7_5
– ident: ref20
  doi: 10.1109/CEC.2007.4424512
– volume: 4288
  start-page: 618
  year: 2006
  ident: ref18
  article-title: runtime analysis of a simple ant colony optimization algorithm
  publication-title: Proc 15th Int l Symp Algorithms and Computation (ISAAC)
– ident: ref2
  doi: 10.1109/3477.484436
– ident: ref7
  doi: 10.1109/TEVC.2002.802444
– ident: ref14
  doi: 10.1145/1068009.1068202
– ident: ref4
  doi: 10.1109/MCI.2006.329691
– ident: ref25
  doi: 10.1016/j.ipl.2007.08.013
– ident: ref8
  doi: 10.1007/s11009-006-7291-4
– ident: ref24
  doi: 10.1007/978-3-540-92695-5_12
– start-page: 797
  year: 2007
  ident: ref17
  article-title: approximating covering problems by randomized search heuristics using multiobjective models
  publication-title: Proc Genetic Evol Comput Conf (GECCO)
  doi: 10.1145/1276958.1277118
– ident: ref11
  doi: 10.1016/j.jda.2004.02.001
– ident: ref10
  doi: 10.1016/S0304-3975(01)00182-7
– ident: ref12
  doi: 10.1016/S0304-3975(02)00137-8
– volume: 3404
  start-page: 44
  year: 2005
  ident: ref13
  article-title: worst-case and average-case approximations by simple randomized search heuristic
  publication-title: Proc 10th Ann Symp Theoretical Aspects Comput Sci
– start-page: 153
  year: 2004
  ident: ref3
  publication-title: Ant Colony Optimization
– ident: ref23
  doi: 10.1007/s11721-008-0023-3
– ident: ref16
  doi: 10.1109/CEC.2007.4424800
– ident: ref28
  doi: 10.1016/S0167-739X(00)00043-1
– volume: 131
  start-page: 373
  year: 2004
  ident: ref9
  article-title: model-based search for combinatorial optimization: a critical survey
  publication-title: Ann Oper Res
  doi: 10.1023/B:ANOR.0000039526.52305.af
SSID ssj0014519
Score 2.2782192
Snippet Ant colony optimization (ACO) is a relatively new random heuristic approach for solving optimization problems. The main application of the ACO algorithm lies...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1083
SubjectTerms Algorithm design and analysis
Algorithmics. Computability. Computer arithmetics
Algorithms
Ant colony optimization
Ant colony optimization (ACO)
Applied sciences
Artificial intelligence
Benchmarking
Biological system modeling
Colonies
Combinatorial analysis
Computer science; control theory; systems
Evolution (biology)
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Flows in networks. Combinatorial problems
Graphs
heuristic algorithm
Heuristic algorithms
Learning and adaptive systems
Logistics
Operational research and scientific management
Operational research. Management science
Optimization
Particle swarm optimization
Partitioning algorithms
Runtime
runtime analysis
Theoretical computing
Traveling salesman problem
traveling salesman problem (TSP)
Traveling salesman problems
Title Runtime Analysis of an Ant Colony Optimization Algorithm for TSP Instances
URI https://ieeexplore.ieee.org/document/5200345
https://www.proquest.com/docview/857428368
https://www.proquest.com/docview/35034824
https://www.proquest.com/docview/875018582
Volume 13
WOSCitedRecordID wos000270144100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tAeylcrUgr1oSfULY7txPYRrUDQA0XtUu0tcmIHkNik2s1W6r-vx_FGVKVIvSXyRHI8HnvsmXkP4AOTCPlR4417Zkei5N7mMDOHM2uY8tOapjaQTcirKzWd6us1-DjUwjjnQvKZ-4SPIZZv22qJV2UnCBHERbYO61Lmfa3WEDFAmJQ-mV57j1FNYwQzpfpkcvZ93CNTMizeQV7iR3tQIFXBlEiz8KNS93QWf63MYbs53_q_jm7Dq-hWktN-HuzAmmt2YWtF2UCiBe_Cy0f4g3vw-SsSRcwcWUGTkLYmpvGvHRn7VbH5Rb74JWUWazXJ6cNtO7_v7mbEu7pk8u2aXAbv0q81r-Hm_GwyvhhFcoVRxVXWjfwxyWjDhBU5l1bUKbeaWm1sjYhnJad15hTVZVlZXqVaZYJZIYyzPHfMypq_gY2mbdw-kNwaJzJaKp0aISpXyjz38sJZgVg8IgG6Gu6iisjjSIDxUIQTCNUFaggJMXURNZTA8fDJjx524znhPVTBIBhHP4GjP3Q6tDPv5miZpgkcrJRcRMtdFCqTiEGXqwTeD63e5DCOYhrXLhcFzyhCAvn_Iv-Q8IdA6h0hxd4-3bUDeBGiUiEp8B1sdPOlO4TN6md3v5gfhYn9G4-z86g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcKLRFDYXWB06IpY4fiX2sVq1aKEsFC9pb5MQOVOom1W4WiX-Px_FGRTwkbok8kRyPxx57Zr4P4CXLEfKjxht3aUei5N7mMDOHM2uY8tOapjaQTeSTiZrN9OUGvB5qYZxzIfnMvcHHEMu3bbXCq7IjhAjiQt6Bu1IIRvtqrSFmgEApfTq99j6jmsUYZkr10fTky7jHpmRYvoPMxLd2oUCrgkmRZunHpe4JLX5bm8OGc7r1f119DI-iY0mO-5nwBDZcsw1ba9IGEm14Gx7eQiDcgbcfkSpi7sganIS0NTGNf-3I2K-LzQ_ywS8q81itSY6vv7aLq-7bnHhnl0w_XZLz4F_61WYXPp-eTMdno0ivMKq4kt3IH5SMNkxYkfHcijrlVlOrja0R86zktJZOUV2WleVVqpUUzAphnOWZYzav-VPYbNrG7QHJrHFC0lLp1AhRuTLPMi8vnBWIxiMSoOvhLqqIPY4UGNdFOINQXaCGkBJTF1FDCbwaPrnpgTf-JbyDKhgE4-gncPCLTod25h0dnadpAvtrJRfRdpeFkjmi0GUqgcOh1RsdRlJM49rVsuCSIiiQ_y_yFwl_DKTeFVLs2Z-7dgj3z6bvL4qL88m7fXgQYlQhRfA5bHaLlXsB96rv3dVycRAm-U9dKfbv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runtime+Analysis+of+an+Ant+Colony+Optimization+Algorithm+for+TSP+Instances&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhou%2C+Y&rft.date=2009-10-01&rft.issn=1089-778X&rft.volume=13&rft.issue=5&rft.spage=1083&rft.epage=1092&rft_id=info:doi/10.1109%2FTEVC.2009.2016570&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon