Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation

The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton–Raphson (FA-NR) algorithm, can achieve the same accuracy in less time....

Full description

Saved in:
Bibliographic Details
Published in:Optics and lasers in engineering Vol. 71; pp. 9 - 19
Main Authors: Shao, Xinxing, Dai, Xiangjun, He, Xiaoyuan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2015
Subjects:
ISSN:0143-8166, 1873-0302
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton–Raphson (FA-NR) algorithm, can achieve the same accuracy in less time. However, there are no clear results regarding the noise robustness of IC-GN algorithm and the computational efficiency is still in need of further improvements. In this paper, a theoretical model of the IC-GN algorithm was derived based on the sum of squared differences correlation criterion and linear interpolation. The model indicates that the IC-GN algorithm has better noise robustness than the FA-NR algorithm, and shows no noise-induced bias if the gray gradient operator is chosen properly. Both numerical simulations and experiments show good agreements with the theoretical predictions. Furthermore, a seed point-based parallel method is proposed to improve the calculation speed. Compared with the recently proposed path-independent method, our model is feasible and practical, and it can maximize the computing speed using an improved initial guess. Moreover, we compared the computational efficiency of our method with that of the reliability-guided method using a four-point bending experiment, and the results show that the computational efficiency is greatly improved. This proposed parallel IC-GN algorithm has good noise robustness and is expected to be a practical option for real-time DIC. •A theoretical model of the IC-GN algorithm is derived in terms of noise.•The noise robustness of IC-GN algorithm is compared with that of FA-NR algorithm.•IC-GN algorithm has better noise robustness than FA-NR algorithm.•IC-GN algorithm shows no noise-induced bias when proper gradient operator is used.•We propose a seed point-based parallel method for parallel computation.
AbstractList The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton–Raphson (FA-NR) algorithm, can achieve the same accuracy in less time. However, there are no clear results regarding the noise robustness of IC-GN algorithm and the computational efficiency is still in need of further improvements. In this paper, a theoretical model of the IC-GN algorithm was derived based on the sum of squared differences correlation criterion and linear interpolation. The model indicates that the IC-GN algorithm has better noise robustness than the FA-NR algorithm, and shows no noise-induced bias if the gray gradient operator is chosen properly. Both numerical simulations and experiments show good agreements with the theoretical predictions. Furthermore, a seed point-based parallel method is proposed to improve the calculation speed. Compared with the recently proposed path-independent method, our model is feasible and practical, and it can maximize the computing speed using an improved initial guess. Moreover, we compared the computational efficiency of our method with that of the reliability-guided method using a four-point bending experiment, and the results show that the computational efficiency is greatly improved. This proposed parallel IC-GN algorithm has good noise robustness and is expected to be a practical option for real-time DIC. •A theoretical model of the IC-GN algorithm is derived in terms of noise.•The noise robustness of IC-GN algorithm is compared with that of FA-NR algorithm.•IC-GN algorithm has better noise robustness than FA-NR algorithm.•IC-GN algorithm shows no noise-induced bias when proper gradient operator is used.•We propose a seed point-based parallel method for parallel computation.
Author Dai, Xiangjun
Shao, Xinxing
He, Xiaoyuan
Author_xml – sequence: 1
  givenname: Xinxing
  surname: Shao
  fullname: Shao, Xinxing
– sequence: 2
  givenname: Xiangjun
  surname: Dai
  fullname: Dai, Xiangjun
– sequence: 3
  givenname: Xiaoyuan
  surname: He
  fullname: He, Xiaoyuan
  email: mmhxy@seu.edu.cn
BookMark eNqNkM1OAjEUhRuDiYA-g32BGdvp_LFwQYiiCcEN-6bTXqCkTCdtwZi48B18Q5_EjhgXbnR1F_d8J_nOCA1a2wJC15SklNDyZpfaLhjhod2kGaFFSlhKSHGGhrSuWEIYyQZoSGjOkpqW5QUaeb8jkcwpHaLXpdUesLPNwYcWvMeiVbgTThgDBku77w5BBG1bbNc4bAHr9gguIv3Let2_hMFzcfD-4-19Cc8hZoXZWKfDdh_jWOmNDjGj92LTc86B-aq8ROdrYTxcfd8xWt3frWYPyeJp_jibLhLJ6iIkNJ9MhMhzYLJSmahqlkMNRNZ1UTGZybJhmWoEhaIhGch1dFN1Q9kkV4Ipysbo9lQrnfXewZpLfXIKTmjDKeH9knzHf5bk_ZKcMB6XjHz1i-9cdHEv_yCnJxKi3VGD415qaCUo7UAGrqz-s-MTAXKbIA
CitedBy_id crossref_primary_10_1007_s11340_024_01078_6
crossref_primary_10_1016_j_mechmachtheory_2017_07_011
crossref_primary_10_3390_s24196460
crossref_primary_10_1016_j_measurement_2023_112567
crossref_primary_10_3390_photonics9030167
crossref_primary_10_1016_j_micron_2019_02_012
crossref_primary_10_1007_s11665_024_10071_y
crossref_primary_10_1007_s11340_017_0294_y
crossref_primary_10_1016_j_optlaseng_2017_06_002
crossref_primary_10_1016_j_optlaseng_2023_107879
crossref_primary_10_1016_j_jneumeth_2016_10_011
crossref_primary_10_1007_s11431_017_9125_7
crossref_primary_10_1007_s11340_016_0180_z
crossref_primary_10_1016_j_ymssp_2024_111131
crossref_primary_10_1016_j_measurement_2020_108618
crossref_primary_10_1117_1_OE_61_7_070901
crossref_primary_10_1364_AO_511691
crossref_primary_10_3390_app11010053
crossref_primary_10_1364_AO_451341
crossref_primary_10_1016_j_optlaseng_2019_04_017
crossref_primary_10_1016_j_measurement_2021_109658
crossref_primary_10_1364_AO_550230
crossref_primary_10_1088_1361_6501_ac7a06
crossref_primary_10_1016_j_optlaseng_2021_106812
crossref_primary_10_1016_j_optlaseng_2019_03_023
crossref_primary_10_1016_j_optlaseng_2021_106930
crossref_primary_10_1016_j_culher_2022_11_007
crossref_primary_10_3390_mi13122156
crossref_primary_10_1364_AO_58_003962
crossref_primary_10_1007_s11340_021_00717_6
crossref_primary_10_1016_j_engfailanal_2024_108356
crossref_primary_10_1016_j_optlaseng_2021_106918
crossref_primary_10_1016_j_optlastec_2021_107792
crossref_primary_10_1088_0957_0233_27_12_125010
crossref_primary_10_1016_j_measurement_2023_114088
crossref_primary_10_1007_s11340_024_01079_5
crossref_primary_10_1016_j_tust_2019_103039
crossref_primary_10_1364_AO_57_000884
crossref_primary_10_1007_s10409_024_24494_x
crossref_primary_10_1364_AO_488797
crossref_primary_10_1088_0957_0233_26_9_095201
crossref_primary_10_1364_AO_554144
crossref_primary_10_1016_j_cmpb_2016_04_014
crossref_primary_10_1016_j_optlaseng_2020_106323
crossref_primary_10_1007_s11431_017_9168_0
crossref_primary_10_1088_0957_0233_27_6_065007
crossref_primary_10_1088_2631_8695_adebde
crossref_primary_10_1016_j_optlaseng_2018_05_010
crossref_primary_10_1016_j_actbio_2020_02_014
crossref_primary_10_1007_s11340_024_01087_5
crossref_primary_10_1016_j_ymssp_2022_109273
crossref_primary_10_1016_j_engfailanal_2024_108802
crossref_primary_10_1007_s10409_021_01102_1
crossref_primary_10_1007_s11340_022_00826_w
crossref_primary_10_1108_ILT_11_2019_0496
crossref_primary_10_1364_AO_505326
crossref_primary_10_1088_1757_899X_1306_1_012037
crossref_primary_10_1364_AO_58_006535
crossref_primary_10_1016_j_optlaseng_2018_03_021
crossref_primary_10_1088_1757_899X_1306_1_012038
crossref_primary_10_1016_j_optlaseng_2018_05_016
crossref_primary_10_1088_1361_6501_aaab02
crossref_primary_10_1007_s11340_021_00714_9
crossref_primary_10_1016_j_optlaseng_2019_105964
crossref_primary_10_1364_AO_55_000696
crossref_primary_10_1109_ACCESS_2024_3398786
crossref_primary_10_1007_s11340_025_01225_7
crossref_primary_10_1016_j_optlastec_2018_04_024
crossref_primary_10_1016_j_optlaseng_2018_07_013
crossref_primary_10_1016_j_measurement_2022_112366
crossref_primary_10_1063_1_5050187
crossref_primary_10_1155_2022_1098337
crossref_primary_10_1016_j_optlaseng_2023_107954
crossref_primary_10_1364_AO_387678
crossref_primary_10_1016_j_optlaseng_2020_106189
crossref_primary_10_1016_j_compgeo_2023_106027
crossref_primary_10_1016_j_optlaseng_2020_106100
crossref_primary_10_1364_AO_397655
crossref_primary_10_2478_msr_2020_0025
crossref_primary_10_3390_designs5010015
crossref_primary_10_1016_j_optlaseng_2016_09_010
crossref_primary_10_1109_TII_2023_3342433
crossref_primary_10_1088_1361_6501_ad976a
crossref_primary_10_1109_JSEN_2023_3317826
crossref_primary_10_1007_s42401_020_00048_9
crossref_primary_10_1117_1_OE_63_2_024105
crossref_primary_10_1016_j_optlaseng_2019_04_023
crossref_primary_10_1007_s11340_017_0265_3
crossref_primary_10_1016_j_istruc_2025_109306
crossref_primary_10_1016_j_engfailanal_2025_109962
crossref_primary_10_3390_ma15186281
crossref_primary_10_1016_j_optlaseng_2023_107732
crossref_primary_10_1016_j_optlaseng_2022_107012
crossref_primary_10_1088_1361_6501_aac55b
crossref_primary_10_3390_s23083834
crossref_primary_10_1016_j_engstruct_2022_114282
crossref_primary_10_1364_AO_423350
crossref_primary_10_1109_TIM_2021_3065436
crossref_primary_10_1016_j_optlaseng_2018_12_011
crossref_primary_10_1016_j_parco_2021_102824
crossref_primary_10_1007_s10409_025_24882_x
crossref_primary_10_1002_eng2_12038
crossref_primary_10_1007_s11340_022_00876_0
crossref_primary_10_1111_ffe_14374
crossref_primary_10_1364_AO_455564
crossref_primary_10_1016_j_conbuildmat_2020_121305
crossref_primary_10_1016_j_optlaseng_2020_106097
crossref_primary_10_1109_TIE_2023_3335326
crossref_primary_10_1016_j_optlaseng_2017_09_013
crossref_primary_10_1016_j_optlastec_2024_111541
crossref_primary_10_1111_str_12471
crossref_primary_10_1016_j_optlaseng_2020_106379
crossref_primary_10_1016_j_optlaseng_2018_10_012
crossref_primary_10_1088_1361_6501_aa7a6e
crossref_primary_10_1155_2018_5240219
crossref_primary_10_3390_app15052868
crossref_primary_10_1016_j_optlaseng_2016_05_019
crossref_primary_10_1016_j_optlaseng_2020_106136
Cites_doi 10.1109/TSP.2012.2211591
10.1007/BF02410987
10.1364/OL.16.000829
10.1088/0957-0233/17/6/045
10.1007/BF02326485
10.1364/OL.36.003070
10.1023/B:VISI.0000011205.11775.fd
10.1007/BF02321405
10.1364/OE.16.007037
10.1088/0957-0233/20/6/062001
10.1117/1.2168411
10.1007/s11340-006-9005-9
10.1111/j.1475-1305.2008.00592.x
10.1007/BF01420984
10.1016/0262-8856(83)90064-1
10.1088/0022-3735/14/11/012
10.1016/j.optlaseng.2011.10.005
10.1016/j.optlaseng.2012.12.009
10.1016/j.optlaseng.2014.05.013
10.1117/1.601966
10.1117/1.1314593
10.1016/j.optlaseng.2014.06.011
10.1364/AO.51.007674
10.1364/OL.36.000763
10.1016/j.optlaseng.2012.06.017
10.1007/s11340-013-9717-6
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2015.03.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
EndPage 19
ExternalDocumentID 10_1016_j_optlaseng_2015_03_005
S0143816615000445
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c385t-1499aa44e3c7d2a7834e8e0c88573c2c6b32dba1e5b02ecf016d8b1394da3d13
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354341600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Nov 29 01:41:08 EST 2025
Tue Nov 18 22:44:25 EST 2025
Fri Feb 23 02:23:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel computation
Noise robustness
Inverse compositional Gauss–Newton algorithm
Digital image correlation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-1499aa44e3c7d2a7834e8e0c88573c2c6b32dba1e5b02ecf016d8b1394da3d13
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_optlaseng_2015_03_005
crossref_primary_10_1016_j_optlaseng_2015_03_005
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2015_03_005
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Optics and lasers in engineering
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sutton, Wolters, Peters, Ranson, McNeill (bib3) 1983; 1
Schreier, Braasch, Sutton (bib8) 2000; 39
Zhou, Chen (bib25) 2012; 50
Luu, Wang, Vo, Hoang, Ma (bib9) 2011; 36
Yoneyama, Kitagawa, Kitamura, Kikuta (bib14) 2006; 45
Zhou, Pan, Chen (bib27) 2012; 51
Pan, Hui-Min, Bo-Qin, Fu-Long (bib7) 2006; 17
Baker, Matthews (bib18) 2004; 56
Yamaguchi (bib4) 1981; 14
Sutton, Orteu, Schreier (bib1) 2009
Barron, Fleet, Beauchemin (bib24) 1994; 12
Tong (bib22) 2011; 36
Pan, Qian, Xie, Asundi (bib2) 2009; 20
Gao, Cheng, Su, Xu, Zhang, Zhang (bib23) 2015; 65
Davis, Freeman (bib5) 1998; 37
Lu, Cary (bib12) 2000; 40
Zhao, Zeng, Lei, Ma (bib26) 2012; 50
Pan, Xie, Wang, Qian, Wang (bib10) 2008; 16
Wang, Li, Tong, Ruan (bib16) 2007; 47
Bruck, McNeill, Sutton, Peters Iii (bib6) 1989; 29
Lava, Van Paepegem, Coppieters, De Baere, Wang, Debruyne (bib13) 2013; 51
Schreier, Sutton (bib11) 2002; 42
Réfrégier (bib19) 1991; 16
Wang, Sutton, Bruck, Schreier (bib15) 2009; 45
Kim, Lee, Ye (bib20) 2012; 60
Pan, Li, Tong (bib17) 2013; 53
Jiang, Kemao, Miao, Yang, Tang (bib21) 2015; 65
Davis (10.1016/j.optlaseng.2015.03.005_bib5) 1998; 37
Luu (10.1016/j.optlaseng.2015.03.005_bib9) 2011; 36
Réfrégier (10.1016/j.optlaseng.2015.03.005_bib19) 1991; 16
Zhou (10.1016/j.optlaseng.2015.03.005_bib27) 2012; 51
Sutton (10.1016/j.optlaseng.2015.03.005_bib1) 2009
Kim (10.1016/j.optlaseng.2015.03.005_bib20) 2012; 60
Pan (10.1016/j.optlaseng.2015.03.005_bib7) 2006; 17
Bruck (10.1016/j.optlaseng.2015.03.005_bib6) 1989; 29
Sutton (10.1016/j.optlaseng.2015.03.005_bib3) 1983; 1
Pan (10.1016/j.optlaseng.2015.03.005_bib2) 2009; 20
Zhao (10.1016/j.optlaseng.2015.03.005_bib26) 2012; 50
Zhou (10.1016/j.optlaseng.2015.03.005_bib25) 2012; 50
Gao (10.1016/j.optlaseng.2015.03.005_bib23) 2015; 65
Yoneyama (10.1016/j.optlaseng.2015.03.005_bib14) 2006; 45
Wang (10.1016/j.optlaseng.2015.03.005_bib15) 2009; 45
Schreier (10.1016/j.optlaseng.2015.03.005_bib8) 2000; 39
Baker (10.1016/j.optlaseng.2015.03.005_bib18) 2004; 56
Barron (10.1016/j.optlaseng.2015.03.005_bib24) 1994; 12
Wang (10.1016/j.optlaseng.2015.03.005_bib16) 2007; 47
Lu (10.1016/j.optlaseng.2015.03.005_bib12) 2000; 40
Pan (10.1016/j.optlaseng.2015.03.005_bib17) 2013; 53
Lava (10.1016/j.optlaseng.2015.03.005_bib13) 2013; 51
Yamaguchi (10.1016/j.optlaseng.2015.03.005_bib4) 1981; 14
Jiang (10.1016/j.optlaseng.2015.03.005_bib21) 2015; 65
Pan (10.1016/j.optlaseng.2015.03.005_bib10) 2008; 16
Schreier (10.1016/j.optlaseng.2015.03.005_bib11) 2002; 42
Tong (10.1016/j.optlaseng.2015.03.005_bib22) 2011; 36
References_xml – volume: 37
  start-page: 1290
  year: 1998
  end-page: 1298
  ident: bib5
  article-title: Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching
  publication-title: Opt Eng
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: bib18
  article-title: Lucas-kanade 20 years on: a unifying framework
  publication-title: International journal of computer vision
– volume: 39
  start-page: 2915
  year: 2000
  end-page: 2921
  ident: bib8
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
– volume: 14
  start-page: 1270
  year: 1981
  end-page: 1273
  ident: bib4
  article-title: A laser-speckle strain gauge
  publication-title: J Phys E: Sci Instrum
– volume: 17
  start-page: 1615
  year: 2006
  end-page: 1621
  ident: bib7
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
– volume: 45
  start-page: 023602
  year: 2006
  ident: bib14
  article-title: Lens distortion correction for digital image correlation by measuring rigid body displacement
  publication-title: Opt Eng
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: bib17
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
– volume: 65
  start-page: 73
  year: 2015
  end-page: 80
  ident: bib23
  article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement
  publication-title: Opt Lasers Eng
– volume: 42
  start-page: 303
  year: 2002
  end-page: 310
  ident: bib11
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
– volume: 29
  start-page: 261
  year: 1989
  end-page: 267
  ident: bib6
  article-title: Digital image correlation using Newton–Raphson method of partial differential correction
  publication-title: Exp Mech
– volume: 12
  start-page: 43
  year: 1994
  end-page: 77
  ident: bib24
  article-title: Systems and experiment performance of optical flow techniques
  publication-title: Int J Comput Vis
– volume: 65
  start-page: 93
  year: 2015
  end-page: 102
  ident: bib21
  article-title: Path-independent digital image correlation with high accuracy, speed and robustness
  publication-title: Opt Lasers Eng
– volume: 47
  start-page: 701
  year: 2007
  end-page: 707
  ident: bib16
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
– volume: 1
  start-page: 133
  year: 1983
  end-page: 139
  ident: bib3
  article-title: Determination of displacements using an improved digital correlation method
  publication-title: Image Vis Comput
– volume: 16
  start-page: 829
  year: 1991
  end-page: 831
  ident: bib19
  article-title: Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency
  publication-title: Opt Lett
– volume: 36
  start-page: 763
  year: 2011
  end-page: 765
  ident: bib22
  article-title: Subpixel image registration with reduced bias
  publication-title: Opt Lett
– volume: 40
  start-page: 393
  year: 2000
  end-page: 400
  ident: bib12
  article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient
  publication-title: Exp Mech
– volume: 16
  start-page: 7037
  year: 2008
  end-page: 7048
  ident: bib10
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
– volume: 50
  start-page: 1789
  year: 2012
  end-page: 1797
  ident: bib25
  article-title: Propagation function for accurate initialization and efficiency enhancement of digital image correlation
  publication-title: Opt Lasers Eng
– volume: 50
  start-page: 473
  year: 2012
  end-page: 490
  ident: bib26
  article-title: Initial guess by improved population-based intelligent algorithms for large inter-frame deformation measurement using digital image correlation
  publication-title: Opt Lasers Eng
– year: 2009
  ident: bib1
  publication-title: Image correlation for shape, motion and deformation measurements
– volume: 45
  start-page: 160
  year: 2009
  end-page: 178
  ident: bib15
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
– volume: 36
  start-page: 3070
  year: 2011
  end-page: 3072
  ident: bib9
  article-title: Accuracy enhancement of digital image correlation with B-spline interpolation
  publication-title: Opt Lett
– volume: 60
  start-page: 5799
  year: 2012
  end-page: 5809
  ident: bib20
  article-title: Improving noise robustness in subspace-based joint sparse recovery
  publication-title: IEEE Trans Signal Process
– volume: 51
  start-page: 7674
  year: 2012
  end-page: 7683
  ident: bib27
  article-title: Large deformation measurement using digital image correlation: a fully automated approach
  publication-title: Appl Opt
– volume: 51
  start-page: 576
  year: 2013
  end-page: 584
  ident: bib13
  article-title: Impact of lens distortions on strain measurements obtained with 2D digital image correlation
  publication-title: Opt Lasers Eng
– volume: 20
  start-page: 062001
  year: 2009
  ident: bib2
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
– volume: 60
  start-page: 5799
  year: 2012
  ident: 10.1016/j.optlaseng.2015.03.005_bib20
  article-title: Improving noise robustness in subspace-based joint sparse recovery
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2012.2211591
– volume: 42
  start-page: 303
  year: 2002
  ident: 10.1016/j.optlaseng.2015.03.005_bib11
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
  doi: 10.1007/BF02410987
– volume: 16
  start-page: 829
  year: 1991
  ident: 10.1016/j.optlaseng.2015.03.005_bib19
  article-title: Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency
  publication-title: Opt Lett
  doi: 10.1364/OL.16.000829
– volume: 17
  start-page: 1615
  year: 2006
  ident: 10.1016/j.optlaseng.2015.03.005_bib7
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/17/6/045
– volume: 40
  start-page: 393
  year: 2000
  ident: 10.1016/j.optlaseng.2015.03.005_bib12
  article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient
  publication-title: Exp Mech
  doi: 10.1007/BF02326485
– volume: 36
  start-page: 3070
  year: 2011
  ident: 10.1016/j.optlaseng.2015.03.005_bib9
  article-title: Accuracy enhancement of digital image correlation with B-spline interpolation
  publication-title: Opt Lett
  doi: 10.1364/OL.36.003070
– volume: 56
  start-page: 221
  year: 2004
  ident: 10.1016/j.optlaseng.2015.03.005_bib18
  article-title: Lucas-kanade 20 years on: a unifying framework
  publication-title: International journal of computer vision
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 29
  start-page: 261
  year: 1989
  ident: 10.1016/j.optlaseng.2015.03.005_bib6
  article-title: Digital image correlation using Newton–Raphson method of partial differential correction
  publication-title: Exp Mech
  doi: 10.1007/BF02321405
– volume: 16
  start-page: 7037
  year: 2008
  ident: 10.1016/j.optlaseng.2015.03.005_bib10
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– volume: 20
  start-page: 062001
  year: 2009
  ident: 10.1016/j.optlaseng.2015.03.005_bib2
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/20/6/062001
– volume: 45
  start-page: 023602
  year: 2006
  ident: 10.1016/j.optlaseng.2015.03.005_bib14
  article-title: Lens distortion correction for digital image correlation by measuring rigid body displacement
  publication-title: Opt Eng
  doi: 10.1117/1.2168411
– volume: 47
  start-page: 701
  year: 2007
  ident: 10.1016/j.optlaseng.2015.03.005_bib16
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9005-9
– year: 2009
  ident: 10.1016/j.optlaseng.2015.03.005_bib1
– volume: 45
  start-page: 160
  year: 2009
  ident: 10.1016/j.optlaseng.2015.03.005_bib15
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00592.x
– volume: 12
  start-page: 43
  year: 1994
  ident: 10.1016/j.optlaseng.2015.03.005_bib24
  article-title: Systems and experiment performance of optical flow techniques
  publication-title: Int J Comput Vis
  doi: 10.1007/BF01420984
– volume: 1
  start-page: 133
  year: 1983
  ident: 10.1016/j.optlaseng.2015.03.005_bib3
  article-title: Determination of displacements using an improved digital correlation method
  publication-title: Image Vis Comput
  doi: 10.1016/0262-8856(83)90064-1
– volume: 14
  start-page: 1270
  year: 1981
  ident: 10.1016/j.optlaseng.2015.03.005_bib4
  article-title: A laser-speckle strain gauge
  publication-title: J Phys E: Sci Instrum
  doi: 10.1088/0022-3735/14/11/012
– volume: 50
  start-page: 473
  year: 2012
  ident: 10.1016/j.optlaseng.2015.03.005_bib26
  article-title: Initial guess by improved population-based intelligent algorithms for large inter-frame deformation measurement using digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2011.10.005
– volume: 51
  start-page: 576
  year: 2013
  ident: 10.1016/j.optlaseng.2015.03.005_bib13
  article-title: Impact of lens distortions on strain measurements obtained with 2D digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2012.12.009
– volume: 65
  start-page: 73
  year: 2015
  ident: 10.1016/j.optlaseng.2015.03.005_bib23
  article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.05.013
– volume: 37
  start-page: 1290
  year: 1998
  ident: 10.1016/j.optlaseng.2015.03.005_bib5
  article-title: Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching
  publication-title: Opt Eng
  doi: 10.1117/1.601966
– volume: 39
  start-page: 2915
  year: 2000
  ident: 10.1016/j.optlaseng.2015.03.005_bib8
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– volume: 65
  start-page: 93
  year: 2015
  ident: 10.1016/j.optlaseng.2015.03.005_bib21
  article-title: Path-independent digital image correlation with high accuracy, speed and robustness
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.06.011
– volume: 51
  start-page: 7674
  year: 2012
  ident: 10.1016/j.optlaseng.2015.03.005_bib27
  article-title: Large deformation measurement using digital image correlation: a fully automated approach
  publication-title: Appl Opt
  doi: 10.1364/AO.51.007674
– volume: 36
  start-page: 763
  year: 2011
  ident: 10.1016/j.optlaseng.2015.03.005_bib22
  article-title: Subpixel image registration with reduced bias
  publication-title: Opt Lett
  doi: 10.1364/OL.36.000763
– volume: 50
  start-page: 1789
  year: 2012
  ident: 10.1016/j.optlaseng.2015.03.005_bib25
  article-title: Propagation function for accurate initialization and efficiency enhancement of digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2012.06.017
– volume: 53
  start-page: 1277
  year: 2013
  ident: 10.1016/j.optlaseng.2015.03.005_bib17
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
SSID ssj0016411
Score 2.4818377
Snippet The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Digital image correlation
Inverse compositional Gauss–Newton algorithm
Noise robustness
Parallel computation
Title Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation
URI https://dx.doi.org/10.1016/j.optlaseng.2015.03.005
Volume 71
WOSCitedRecordID wos000354341600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLkhwQLCwYvmTD9xQUBPHjcNtBQsLQoVDhXqLHMftpsomVZOsisSBd-AReDOehPFPnFSstCDEJarcuGnyfRmPx59nEHoGExzOCA89mHgJL2SUeYyF4MgtopTHTDKpd7l-_hBNp2w-jz-NRj-6vTAXRVSWbLuN1_8VamgDsNXW2b-A2_0oNMBnAB2OADsc_wj4aZXXSjWYtnWj7ZhOBcA3qmhKoSXkbeP8ROV25qWSZkj9lZVwAW5veVvXnRSCgC1U-Td4saw2eXN2rkW0-VJVHHmenyvdj1BlPooeZ-vwfly7PNDgp6vdwipHSZ8E0UV4zrgO2s7zcjtofm2qZc-BxMtV64h8Km1r9aW19LaRC5863ZwNp3Vbanr9kolwEk8tZpoBylhlFhEPrNGO2TaVW6zdjQcDuDHBvw0NJkqxelGtG3W_5VLp-qjJcEv70dBpFJXsTa-q-lQve9NraD-IaAymc__43cn8vVusmoS-KXtp__mOjPDSy13uBA0cm9kddNvOSPCxYdJdNJLlAbo1yFN5gG5onbCo76Gvml24ZxcGZHHHLjxgF64WGNiFLbvwDruwZtfPb98Nr7DjFZyOLa-w5hUe8Oo-mr05mb069WwBD08QRhsPZt8x52EoiYiygKuaLvDyjwVjNCIiEJOUBFnKfUnTcSDFAp5YxlKYk4QZJ5lPDtFeWZXyAcILEnFB5YT6aRAKxjm4dpkMwQDFYRCl5AhNugeaCJvcXtVYKZJOxbhKHBKJQiIZkwSQOEJj13Ft8rtc3eVlh1hi3VTjfiZAtas6P_yXzo_Qzf49eoz2mk0rn6Dr4qLJ681TS8tfMPjEkw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+robustness+and+parallel+computation+of+the+inverse+compositional+Gauss%E2%80%93Newton+algorithm+in+digital+image+correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Shao%2C+Xinxing&rft.au=Dai%2C+Xiangjun&rft.au=He%2C+Xiaoyuan&rft.date=2015-08-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=71&rft.spage=9&rft.epage=19&rft_id=info:doi/10.1016%2Fj.optlaseng.2015.03.005&rft.externalDocID=S0143816615000445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon