Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation
The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton–Raphson (FA-NR) algorithm, can achieve the same accuracy in less time....
Saved in:
| Published in: | Optics and lasers in engineering Vol. 71; pp. 9 - 19 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2015
|
| Subjects: | |
| ISSN: | 0143-8166, 1873-0302 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton–Raphson (FA-NR) algorithm, can achieve the same accuracy in less time. However, there are no clear results regarding the noise robustness of IC-GN algorithm and the computational efficiency is still in need of further improvements. In this paper, a theoretical model of the IC-GN algorithm was derived based on the sum of squared differences correlation criterion and linear interpolation. The model indicates that the IC-GN algorithm has better noise robustness than the FA-NR algorithm, and shows no noise-induced bias if the gray gradient operator is chosen properly. Both numerical simulations and experiments show good agreements with the theoretical predictions. Furthermore, a seed point-based parallel method is proposed to improve the calculation speed. Compared with the recently proposed path-independent method, our model is feasible and practical, and it can maximize the computing speed using an improved initial guess. Moreover, we compared the computational efficiency of our method with that of the reliability-guided method using a four-point bending experiment, and the results show that the computational efficiency is greatly improved. This proposed parallel IC-GN algorithm has good noise robustness and is expected to be a practical option for real-time DIC.
•A theoretical model of the IC-GN algorithm is derived in terms of noise.•The noise robustness of IC-GN algorithm is compared with that of FA-NR algorithm.•IC-GN algorithm has better noise robustness than FA-NR algorithm.•IC-GN algorithm shows no noise-induced bias when proper gradient operator is used.•We propose a seed point-based parallel method for parallel computation. |
|---|---|
| AbstractList | The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton–Raphson (FA-NR) algorithm, can achieve the same accuracy in less time. However, there are no clear results regarding the noise robustness of IC-GN algorithm and the computational efficiency is still in need of further improvements. In this paper, a theoretical model of the IC-GN algorithm was derived based on the sum of squared differences correlation criterion and linear interpolation. The model indicates that the IC-GN algorithm has better noise robustness than the FA-NR algorithm, and shows no noise-induced bias if the gray gradient operator is chosen properly. Both numerical simulations and experiments show good agreements with the theoretical predictions. Furthermore, a seed point-based parallel method is proposed to improve the calculation speed. Compared with the recently proposed path-independent method, our model is feasible and practical, and it can maximize the computing speed using an improved initial guess. Moreover, we compared the computational efficiency of our method with that of the reliability-guided method using a four-point bending experiment, and the results show that the computational efficiency is greatly improved. This proposed parallel IC-GN algorithm has good noise robustness and is expected to be a practical option for real-time DIC.
•A theoretical model of the IC-GN algorithm is derived in terms of noise.•The noise robustness of IC-GN algorithm is compared with that of FA-NR algorithm.•IC-GN algorithm has better noise robustness than FA-NR algorithm.•IC-GN algorithm shows no noise-induced bias when proper gradient operator is used.•We propose a seed point-based parallel method for parallel computation. |
| Author | Dai, Xiangjun Shao, Xinxing He, Xiaoyuan |
| Author_xml | – sequence: 1 givenname: Xinxing surname: Shao fullname: Shao, Xinxing – sequence: 2 givenname: Xiangjun surname: Dai fullname: Dai, Xiangjun – sequence: 3 givenname: Xiaoyuan surname: He fullname: He, Xiaoyuan email: mmhxy@seu.edu.cn |
| BookMark | eNqNkM1OAjEUhRuDiYA-g32BGdvp_LFwQYiiCcEN-6bTXqCkTCdtwZi48B18Q5_EjhgXbnR1F_d8J_nOCA1a2wJC15SklNDyZpfaLhjhod2kGaFFSlhKSHGGhrSuWEIYyQZoSGjOkpqW5QUaeb8jkcwpHaLXpdUesLPNwYcWvMeiVbgTThgDBku77w5BBG1bbNc4bAHr9gguIv3Let2_hMFzcfD-4-19Cc8hZoXZWKfDdh_jWOmNDjGj92LTc86B-aq8ROdrYTxcfd8xWt3frWYPyeJp_jibLhLJ6iIkNJ9MhMhzYLJSmahqlkMNRNZ1UTGZybJhmWoEhaIhGch1dFN1Q9kkV4Ipysbo9lQrnfXewZpLfXIKTmjDKeH9knzHf5bk_ZKcMB6XjHz1i-9cdHEv_yCnJxKi3VGD415qaCUo7UAGrqz-s-MTAXKbIA |
| CitedBy_id | crossref_primary_10_1007_s11340_024_01078_6 crossref_primary_10_1016_j_mechmachtheory_2017_07_011 crossref_primary_10_3390_s24196460 crossref_primary_10_1016_j_measurement_2023_112567 crossref_primary_10_3390_photonics9030167 crossref_primary_10_1016_j_micron_2019_02_012 crossref_primary_10_1007_s11665_024_10071_y crossref_primary_10_1007_s11340_017_0294_y crossref_primary_10_1016_j_optlaseng_2017_06_002 crossref_primary_10_1016_j_optlaseng_2023_107879 crossref_primary_10_1016_j_jneumeth_2016_10_011 crossref_primary_10_1007_s11431_017_9125_7 crossref_primary_10_1007_s11340_016_0180_z crossref_primary_10_1016_j_ymssp_2024_111131 crossref_primary_10_1016_j_measurement_2020_108618 crossref_primary_10_1117_1_OE_61_7_070901 crossref_primary_10_1364_AO_511691 crossref_primary_10_3390_app11010053 crossref_primary_10_1364_AO_451341 crossref_primary_10_1016_j_optlaseng_2019_04_017 crossref_primary_10_1016_j_measurement_2021_109658 crossref_primary_10_1364_AO_550230 crossref_primary_10_1088_1361_6501_ac7a06 crossref_primary_10_1016_j_optlaseng_2021_106812 crossref_primary_10_1016_j_optlaseng_2019_03_023 crossref_primary_10_1016_j_optlaseng_2021_106930 crossref_primary_10_1016_j_culher_2022_11_007 crossref_primary_10_3390_mi13122156 crossref_primary_10_1364_AO_58_003962 crossref_primary_10_1007_s11340_021_00717_6 crossref_primary_10_1016_j_engfailanal_2024_108356 crossref_primary_10_1016_j_optlaseng_2021_106918 crossref_primary_10_1016_j_optlastec_2021_107792 crossref_primary_10_1088_0957_0233_27_12_125010 crossref_primary_10_1016_j_measurement_2023_114088 crossref_primary_10_1007_s11340_024_01079_5 crossref_primary_10_1016_j_tust_2019_103039 crossref_primary_10_1364_AO_57_000884 crossref_primary_10_1007_s10409_024_24494_x crossref_primary_10_1364_AO_488797 crossref_primary_10_1088_0957_0233_26_9_095201 crossref_primary_10_1364_AO_554144 crossref_primary_10_1016_j_cmpb_2016_04_014 crossref_primary_10_1016_j_optlaseng_2020_106323 crossref_primary_10_1007_s11431_017_9168_0 crossref_primary_10_1088_0957_0233_27_6_065007 crossref_primary_10_1088_2631_8695_adebde crossref_primary_10_1016_j_optlaseng_2018_05_010 crossref_primary_10_1016_j_actbio_2020_02_014 crossref_primary_10_1007_s11340_024_01087_5 crossref_primary_10_1016_j_ymssp_2022_109273 crossref_primary_10_1016_j_engfailanal_2024_108802 crossref_primary_10_1007_s10409_021_01102_1 crossref_primary_10_1007_s11340_022_00826_w crossref_primary_10_1108_ILT_11_2019_0496 crossref_primary_10_1364_AO_505326 crossref_primary_10_1088_1757_899X_1306_1_012037 crossref_primary_10_1364_AO_58_006535 crossref_primary_10_1016_j_optlaseng_2018_03_021 crossref_primary_10_1088_1757_899X_1306_1_012038 crossref_primary_10_1016_j_optlaseng_2018_05_016 crossref_primary_10_1088_1361_6501_aaab02 crossref_primary_10_1007_s11340_021_00714_9 crossref_primary_10_1016_j_optlaseng_2019_105964 crossref_primary_10_1364_AO_55_000696 crossref_primary_10_1109_ACCESS_2024_3398786 crossref_primary_10_1007_s11340_025_01225_7 crossref_primary_10_1016_j_optlastec_2018_04_024 crossref_primary_10_1016_j_optlaseng_2018_07_013 crossref_primary_10_1016_j_measurement_2022_112366 crossref_primary_10_1063_1_5050187 crossref_primary_10_1155_2022_1098337 crossref_primary_10_1016_j_optlaseng_2023_107954 crossref_primary_10_1364_AO_387678 crossref_primary_10_1016_j_optlaseng_2020_106189 crossref_primary_10_1016_j_compgeo_2023_106027 crossref_primary_10_1016_j_optlaseng_2020_106100 crossref_primary_10_1364_AO_397655 crossref_primary_10_2478_msr_2020_0025 crossref_primary_10_3390_designs5010015 crossref_primary_10_1016_j_optlaseng_2016_09_010 crossref_primary_10_1109_TII_2023_3342433 crossref_primary_10_1088_1361_6501_ad976a crossref_primary_10_1109_JSEN_2023_3317826 crossref_primary_10_1007_s42401_020_00048_9 crossref_primary_10_1117_1_OE_63_2_024105 crossref_primary_10_1016_j_optlaseng_2019_04_023 crossref_primary_10_1007_s11340_017_0265_3 crossref_primary_10_1016_j_istruc_2025_109306 crossref_primary_10_1016_j_engfailanal_2025_109962 crossref_primary_10_3390_ma15186281 crossref_primary_10_1016_j_optlaseng_2023_107732 crossref_primary_10_1016_j_optlaseng_2022_107012 crossref_primary_10_1088_1361_6501_aac55b crossref_primary_10_3390_s23083834 crossref_primary_10_1016_j_engstruct_2022_114282 crossref_primary_10_1364_AO_423350 crossref_primary_10_1109_TIM_2021_3065436 crossref_primary_10_1016_j_optlaseng_2018_12_011 crossref_primary_10_1016_j_parco_2021_102824 crossref_primary_10_1007_s10409_025_24882_x crossref_primary_10_1002_eng2_12038 crossref_primary_10_1007_s11340_022_00876_0 crossref_primary_10_1111_ffe_14374 crossref_primary_10_1364_AO_455564 crossref_primary_10_1016_j_conbuildmat_2020_121305 crossref_primary_10_1016_j_optlaseng_2020_106097 crossref_primary_10_1109_TIE_2023_3335326 crossref_primary_10_1016_j_optlaseng_2017_09_013 crossref_primary_10_1016_j_optlastec_2024_111541 crossref_primary_10_1111_str_12471 crossref_primary_10_1016_j_optlaseng_2020_106379 crossref_primary_10_1016_j_optlaseng_2018_10_012 crossref_primary_10_1088_1361_6501_aa7a6e crossref_primary_10_1155_2018_5240219 crossref_primary_10_3390_app15052868 crossref_primary_10_1016_j_optlaseng_2016_05_019 crossref_primary_10_1016_j_optlaseng_2020_106136 |
| Cites_doi | 10.1109/TSP.2012.2211591 10.1007/BF02410987 10.1364/OL.16.000829 10.1088/0957-0233/17/6/045 10.1007/BF02326485 10.1364/OL.36.003070 10.1023/B:VISI.0000011205.11775.fd 10.1007/BF02321405 10.1364/OE.16.007037 10.1088/0957-0233/20/6/062001 10.1117/1.2168411 10.1007/s11340-006-9005-9 10.1111/j.1475-1305.2008.00592.x 10.1007/BF01420984 10.1016/0262-8856(83)90064-1 10.1088/0022-3735/14/11/012 10.1016/j.optlaseng.2011.10.005 10.1016/j.optlaseng.2012.12.009 10.1016/j.optlaseng.2014.05.013 10.1117/1.601966 10.1117/1.1314593 10.1016/j.optlaseng.2014.06.011 10.1364/AO.51.007674 10.1364/OL.36.000763 10.1016/j.optlaseng.2012.06.017 10.1007/s11340-013-9717-6 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2015.03.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-0302 |
| EndPage | 19 |
| ExternalDocumentID | 10_1016_j_optlaseng_2015_03_005 S0143816615000445 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c385t-1499aa44e3c7d2a7834e8e0c88573c2c6b32dba1e5b02ecf016d8b1394da3d13 |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354341600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Sat Nov 29 01:41:08 EST 2025 Tue Nov 18 22:44:25 EST 2025 Fri Feb 23 02:23:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parallel computation Noise robustness Inverse compositional Gauss–Newton algorithm Digital image correlation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c385t-1499aa44e3c7d2a7834e8e0c88573c2c6b32dba1e5b02ecf016d8b1394da3d13 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_optlaseng_2015_03_005 crossref_primary_10_1016_j_optlaseng_2015_03_005 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2015_03_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sutton, Wolters, Peters, Ranson, McNeill (bib3) 1983; 1 Schreier, Braasch, Sutton (bib8) 2000; 39 Zhou, Chen (bib25) 2012; 50 Luu, Wang, Vo, Hoang, Ma (bib9) 2011; 36 Yoneyama, Kitagawa, Kitamura, Kikuta (bib14) 2006; 45 Zhou, Pan, Chen (bib27) 2012; 51 Pan, Hui-Min, Bo-Qin, Fu-Long (bib7) 2006; 17 Baker, Matthews (bib18) 2004; 56 Yamaguchi (bib4) 1981; 14 Sutton, Orteu, Schreier (bib1) 2009 Barron, Fleet, Beauchemin (bib24) 1994; 12 Tong (bib22) 2011; 36 Pan, Qian, Xie, Asundi (bib2) 2009; 20 Gao, Cheng, Su, Xu, Zhang, Zhang (bib23) 2015; 65 Davis, Freeman (bib5) 1998; 37 Lu, Cary (bib12) 2000; 40 Zhao, Zeng, Lei, Ma (bib26) 2012; 50 Pan, Xie, Wang, Qian, Wang (bib10) 2008; 16 Wang, Li, Tong, Ruan (bib16) 2007; 47 Bruck, McNeill, Sutton, Peters Iii (bib6) 1989; 29 Lava, Van Paepegem, Coppieters, De Baere, Wang, Debruyne (bib13) 2013; 51 Schreier, Sutton (bib11) 2002; 42 Réfrégier (bib19) 1991; 16 Wang, Sutton, Bruck, Schreier (bib15) 2009; 45 Kim, Lee, Ye (bib20) 2012; 60 Pan, Li, Tong (bib17) 2013; 53 Jiang, Kemao, Miao, Yang, Tang (bib21) 2015; 65 Davis (10.1016/j.optlaseng.2015.03.005_bib5) 1998; 37 Luu (10.1016/j.optlaseng.2015.03.005_bib9) 2011; 36 Réfrégier (10.1016/j.optlaseng.2015.03.005_bib19) 1991; 16 Zhou (10.1016/j.optlaseng.2015.03.005_bib27) 2012; 51 Sutton (10.1016/j.optlaseng.2015.03.005_bib1) 2009 Kim (10.1016/j.optlaseng.2015.03.005_bib20) 2012; 60 Pan (10.1016/j.optlaseng.2015.03.005_bib7) 2006; 17 Bruck (10.1016/j.optlaseng.2015.03.005_bib6) 1989; 29 Sutton (10.1016/j.optlaseng.2015.03.005_bib3) 1983; 1 Pan (10.1016/j.optlaseng.2015.03.005_bib2) 2009; 20 Zhao (10.1016/j.optlaseng.2015.03.005_bib26) 2012; 50 Zhou (10.1016/j.optlaseng.2015.03.005_bib25) 2012; 50 Gao (10.1016/j.optlaseng.2015.03.005_bib23) 2015; 65 Yoneyama (10.1016/j.optlaseng.2015.03.005_bib14) 2006; 45 Wang (10.1016/j.optlaseng.2015.03.005_bib15) 2009; 45 Schreier (10.1016/j.optlaseng.2015.03.005_bib8) 2000; 39 Baker (10.1016/j.optlaseng.2015.03.005_bib18) 2004; 56 Barron (10.1016/j.optlaseng.2015.03.005_bib24) 1994; 12 Wang (10.1016/j.optlaseng.2015.03.005_bib16) 2007; 47 Lu (10.1016/j.optlaseng.2015.03.005_bib12) 2000; 40 Pan (10.1016/j.optlaseng.2015.03.005_bib17) 2013; 53 Lava (10.1016/j.optlaseng.2015.03.005_bib13) 2013; 51 Yamaguchi (10.1016/j.optlaseng.2015.03.005_bib4) 1981; 14 Jiang (10.1016/j.optlaseng.2015.03.005_bib21) 2015; 65 Pan (10.1016/j.optlaseng.2015.03.005_bib10) 2008; 16 Schreier (10.1016/j.optlaseng.2015.03.005_bib11) 2002; 42 Tong (10.1016/j.optlaseng.2015.03.005_bib22) 2011; 36 |
| References_xml | – volume: 37 start-page: 1290 year: 1998 end-page: 1298 ident: bib5 article-title: Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching publication-title: Opt Eng – volume: 56 start-page: 221 year: 2004 end-page: 255 ident: bib18 article-title: Lucas-kanade 20 years on: a unifying framework publication-title: International journal of computer vision – volume: 39 start-page: 2915 year: 2000 end-page: 2921 ident: bib8 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng – volume: 14 start-page: 1270 year: 1981 end-page: 1273 ident: bib4 article-title: A laser-speckle strain gauge publication-title: J Phys E: Sci Instrum – volume: 17 start-page: 1615 year: 2006 end-page: 1621 ident: bib7 article-title: Performance of sub-pixel registration algorithms in digital image correlation publication-title: Meas Sci Technol – volume: 45 start-page: 023602 year: 2006 ident: bib14 article-title: Lens distortion correction for digital image correlation by measuring rigid body displacement publication-title: Opt Eng – volume: 53 start-page: 1277 year: 2013 end-page: 1289 ident: bib17 article-title: Fast, robust and accurate digital image correlation calculation without redundant computations publication-title: Exp Mech – volume: 65 start-page: 73 year: 2015 end-page: 80 ident: bib23 article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement publication-title: Opt Lasers Eng – volume: 42 start-page: 303 year: 2002 end-page: 310 ident: bib11 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech – volume: 29 start-page: 261 year: 1989 end-page: 267 ident: bib6 article-title: Digital image correlation using Newton–Raphson method of partial differential correction publication-title: Exp Mech – volume: 12 start-page: 43 year: 1994 end-page: 77 ident: bib24 article-title: Systems and experiment performance of optical flow techniques publication-title: Int J Comput Vis – volume: 65 start-page: 93 year: 2015 end-page: 102 ident: bib21 article-title: Path-independent digital image correlation with high accuracy, speed and robustness publication-title: Opt Lasers Eng – volume: 47 start-page: 701 year: 2007 end-page: 707 ident: bib16 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech – volume: 1 start-page: 133 year: 1983 end-page: 139 ident: bib3 article-title: Determination of displacements using an improved digital correlation method publication-title: Image Vis Comput – volume: 16 start-page: 829 year: 1991 end-page: 831 ident: bib19 article-title: Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency publication-title: Opt Lett – volume: 36 start-page: 763 year: 2011 end-page: 765 ident: bib22 article-title: Subpixel image registration with reduced bias publication-title: Opt Lett – volume: 40 start-page: 393 year: 2000 end-page: 400 ident: bib12 article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient publication-title: Exp Mech – volume: 16 start-page: 7037 year: 2008 end-page: 7048 ident: bib10 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express – volume: 50 start-page: 1789 year: 2012 end-page: 1797 ident: bib25 article-title: Propagation function for accurate initialization and efficiency enhancement of digital image correlation publication-title: Opt Lasers Eng – volume: 50 start-page: 473 year: 2012 end-page: 490 ident: bib26 article-title: Initial guess by improved population-based intelligent algorithms for large inter-frame deformation measurement using digital image correlation publication-title: Opt Lasers Eng – year: 2009 ident: bib1 publication-title: Image correlation for shape, motion and deformation measurements – volume: 45 start-page: 160 year: 2009 end-page: 178 ident: bib15 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain – volume: 36 start-page: 3070 year: 2011 end-page: 3072 ident: bib9 article-title: Accuracy enhancement of digital image correlation with B-spline interpolation publication-title: Opt Lett – volume: 60 start-page: 5799 year: 2012 end-page: 5809 ident: bib20 article-title: Improving noise robustness in subspace-based joint sparse recovery publication-title: IEEE Trans Signal Process – volume: 51 start-page: 7674 year: 2012 end-page: 7683 ident: bib27 article-title: Large deformation measurement using digital image correlation: a fully automated approach publication-title: Appl Opt – volume: 51 start-page: 576 year: 2013 end-page: 584 ident: bib13 article-title: Impact of lens distortions on strain measurements obtained with 2D digital image correlation publication-title: Opt Lasers Eng – volume: 20 start-page: 062001 year: 2009 ident: bib2 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Technol – volume: 60 start-page: 5799 year: 2012 ident: 10.1016/j.optlaseng.2015.03.005_bib20 article-title: Improving noise robustness in subspace-based joint sparse recovery publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2012.2211591 – volume: 42 start-page: 303 year: 2002 ident: 10.1016/j.optlaseng.2015.03.005_bib11 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech doi: 10.1007/BF02410987 – volume: 16 start-page: 829 year: 1991 ident: 10.1016/j.optlaseng.2015.03.005_bib19 article-title: Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency publication-title: Opt Lett doi: 10.1364/OL.16.000829 – volume: 17 start-page: 1615 year: 2006 ident: 10.1016/j.optlaseng.2015.03.005_bib7 article-title: Performance of sub-pixel registration algorithms in digital image correlation publication-title: Meas Sci Technol doi: 10.1088/0957-0233/17/6/045 – volume: 40 start-page: 393 year: 2000 ident: 10.1016/j.optlaseng.2015.03.005_bib12 article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient publication-title: Exp Mech doi: 10.1007/BF02326485 – volume: 36 start-page: 3070 year: 2011 ident: 10.1016/j.optlaseng.2015.03.005_bib9 article-title: Accuracy enhancement of digital image correlation with B-spline interpolation publication-title: Opt Lett doi: 10.1364/OL.36.003070 – volume: 56 start-page: 221 year: 2004 ident: 10.1016/j.optlaseng.2015.03.005_bib18 article-title: Lucas-kanade 20 years on: a unifying framework publication-title: International journal of computer vision doi: 10.1023/B:VISI.0000011205.11775.fd – volume: 29 start-page: 261 year: 1989 ident: 10.1016/j.optlaseng.2015.03.005_bib6 article-title: Digital image correlation using Newton–Raphson method of partial differential correction publication-title: Exp Mech doi: 10.1007/BF02321405 – volume: 16 start-page: 7037 year: 2008 ident: 10.1016/j.optlaseng.2015.03.005_bib10 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express doi: 10.1364/OE.16.007037 – volume: 20 start-page: 062001 year: 2009 ident: 10.1016/j.optlaseng.2015.03.005_bib2 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Technol doi: 10.1088/0957-0233/20/6/062001 – volume: 45 start-page: 023602 year: 2006 ident: 10.1016/j.optlaseng.2015.03.005_bib14 article-title: Lens distortion correction for digital image correlation by measuring rigid body displacement publication-title: Opt Eng doi: 10.1117/1.2168411 – volume: 47 start-page: 701 year: 2007 ident: 10.1016/j.optlaseng.2015.03.005_bib16 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech doi: 10.1007/s11340-006-9005-9 – year: 2009 ident: 10.1016/j.optlaseng.2015.03.005_bib1 – volume: 45 start-page: 160 year: 2009 ident: 10.1016/j.optlaseng.2015.03.005_bib15 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain doi: 10.1111/j.1475-1305.2008.00592.x – volume: 12 start-page: 43 year: 1994 ident: 10.1016/j.optlaseng.2015.03.005_bib24 article-title: Systems and experiment performance of optical flow techniques publication-title: Int J Comput Vis doi: 10.1007/BF01420984 – volume: 1 start-page: 133 year: 1983 ident: 10.1016/j.optlaseng.2015.03.005_bib3 article-title: Determination of displacements using an improved digital correlation method publication-title: Image Vis Comput doi: 10.1016/0262-8856(83)90064-1 – volume: 14 start-page: 1270 year: 1981 ident: 10.1016/j.optlaseng.2015.03.005_bib4 article-title: A laser-speckle strain gauge publication-title: J Phys E: Sci Instrum doi: 10.1088/0022-3735/14/11/012 – volume: 50 start-page: 473 year: 2012 ident: 10.1016/j.optlaseng.2015.03.005_bib26 article-title: Initial guess by improved population-based intelligent algorithms for large inter-frame deformation measurement using digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2011.10.005 – volume: 51 start-page: 576 year: 2013 ident: 10.1016/j.optlaseng.2015.03.005_bib13 article-title: Impact of lens distortions on strain measurements obtained with 2D digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2012.12.009 – volume: 65 start-page: 73 year: 2015 ident: 10.1016/j.optlaseng.2015.03.005_bib23 article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.05.013 – volume: 37 start-page: 1290 year: 1998 ident: 10.1016/j.optlaseng.2015.03.005_bib5 article-title: Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching publication-title: Opt Eng doi: 10.1117/1.601966 – volume: 39 start-page: 2915 year: 2000 ident: 10.1016/j.optlaseng.2015.03.005_bib8 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng doi: 10.1117/1.1314593 – volume: 65 start-page: 93 year: 2015 ident: 10.1016/j.optlaseng.2015.03.005_bib21 article-title: Path-independent digital image correlation with high accuracy, speed and robustness publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.06.011 – volume: 51 start-page: 7674 year: 2012 ident: 10.1016/j.optlaseng.2015.03.005_bib27 article-title: Large deformation measurement using digital image correlation: a fully automated approach publication-title: Appl Opt doi: 10.1364/AO.51.007674 – volume: 36 start-page: 763 year: 2011 ident: 10.1016/j.optlaseng.2015.03.005_bib22 article-title: Subpixel image registration with reduced bias publication-title: Opt Lett doi: 10.1364/OL.36.000763 – volume: 50 start-page: 1789 year: 2012 ident: 10.1016/j.optlaseng.2015.03.005_bib25 article-title: Propagation function for accurate initialization and efficiency enhancement of digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2012.06.017 – volume: 53 start-page: 1277 year: 2013 ident: 10.1016/j.optlaseng.2015.03.005_bib17 article-title: Fast, robust and accurate digital image correlation calculation without redundant computations publication-title: Exp Mech doi: 10.1007/s11340-013-9717-6 |
| SSID | ssj0016411 |
| Score | 2.4818377 |
| Snippet | The inverse compositional Gauss–Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9 |
| SubjectTerms | Digital image correlation Inverse compositional Gauss–Newton algorithm Noise robustness Parallel computation |
| Title | Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2015.03.005 |
| Volume | 71 |
| WOSCitedRecordID | wos000354341600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLkhwQLCwYvmTD9xQUBPHjcNtBQsLQoVDhXqLHMftpsomVZOsisSBd-AReDOehPFPnFSstCDEJarcuGnyfRmPx59nEHoGExzOCA89mHgJL2SUeYyF4MgtopTHTDKpd7l-_hBNp2w-jz-NRj-6vTAXRVSWbLuN1_8VamgDsNXW2b-A2_0oNMBnAB2OADsc_wj4aZXXSjWYtnWj7ZhOBcA3qmhKoSXkbeP8ROV25qWSZkj9lZVwAW5veVvXnRSCgC1U-Td4saw2eXN2rkW0-VJVHHmenyvdj1BlPooeZ-vwfly7PNDgp6vdwipHSZ8E0UV4zrgO2s7zcjtofm2qZc-BxMtV64h8Km1r9aW19LaRC5863ZwNp3Vbanr9kolwEk8tZpoBylhlFhEPrNGO2TaVW6zdjQcDuDHBvw0NJkqxelGtG3W_5VLp-qjJcEv70dBpFJXsTa-q-lQve9NraD-IaAymc__43cn8vVusmoS-KXtp__mOjPDSy13uBA0cm9kddNvOSPCxYdJdNJLlAbo1yFN5gG5onbCo76Gvml24ZxcGZHHHLjxgF64WGNiFLbvwDruwZtfPb98Nr7DjFZyOLa-w5hUe8Oo-mr05mb069WwBD08QRhsPZt8x52EoiYiygKuaLvDyjwVjNCIiEJOUBFnKfUnTcSDFAp5YxlKYk4QZJ5lPDtFeWZXyAcILEnFB5YT6aRAKxjm4dpkMwQDFYRCl5AhNugeaCJvcXtVYKZJOxbhKHBKJQiIZkwSQOEJj13Ft8rtc3eVlh1hi3VTjfiZAtas6P_yXzo_Qzf49eoz2mk0rn6Dr4qLJ681TS8tfMPjEkw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+robustness+and+parallel+computation+of+the+inverse+compositional+Gauss%E2%80%93Newton+algorithm+in+digital+image+correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Shao%2C+Xinxing&rft.au=Dai%2C+Xiangjun&rft.au=He%2C+Xiaoyuan&rft.date=2015-08-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=71&rft.spage=9&rft.epage=19&rft_id=info:doi/10.1016%2Fj.optlaseng.2015.03.005&rft.externalDocID=S0143816615000445 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |