Filling gaps of cartographic polylines by using an encoder-decoder model

Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausib...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of geographical information science : IJGIS Ročník 36; číslo 11; s. 2296 - 2321
Hlavní autori: Yu, Wenhao, Chen, Yujie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 02.11.2022
Taylor & Francis LLC
Predmet:
ISSN:1365-8816, 1362-3087, 1365-8824
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausible and context-aware details. In this paper, we propose an effective framework for vector-structured polyline completion using a generative model. The model is trained to generate the contents of missing polylines of different sizes and shapes conditioned on the contexts. Specifically, the generator can compute the content of the entire polyline sample globally and produce a plausible prediction for local gaps. The proposed model was applied to contour data for validation. The experiments generated gaps of random sizes at random locations along with the polyline samples. Qualitative and quantitative evaluations show that our model can fill missing points with high perceptual quality and adaptively handle a range of gaps. In addition to the simulation experiment, two case studies with map vectorization and trajectory filling illustrate the application prospects of our model.
AbstractList Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausible and context-aware details. In this paper, we propose an effective framework for vector-structured polyline completion using a generative model. The model is trained to generate the contents of missing polylines of different sizes and shapes conditioned on the contexts. Specifically, the generator can compute the content of the entire polyline sample globally and produce a plausible prediction for local gaps. The proposed model was applied to contour data for validation. The experiments generated gaps of random sizes at random locations along with the polyline samples. Qualitative and quantitative evaluations show that our model can fill missing points with high perceptual quality and adaptively handle a range of gaps. In addition to the simulation experiment, two case studies with map vectorization and trajectory filling illustrate the application prospects of our model.
Author Yu, Wenhao
Chen, Yujie
Author_xml – sequence: 1
  givenname: Wenhao
  orcidid: 0000-0003-1521-2674
  surname: Yu
  fullname: Yu, Wenhao
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences
– sequence: 2
  givenname: Yujie
  surname: Chen
  fullname: Chen, Yujie
  organization: School of Geography and Information Engineering, China University of Geosciences
BookMark eNqFUE1LAzEQDVLBqv0JQsDz1nzsR8SLUqwVCl70HLL5qJE0WZMtsv_ebFsvHvTy3jDz3gzzzsHEB68BuMJojhFDN5jWFWO4nhNESIaqQrQ-AdPcJwVFrJns66oYRWdglpJtEaHslrGmmoLV0jpn_QZuRJdgMFCK2IdNFN27lbALbshTnWA7wF0adcJD7WVQOhZK7xluM7pLcGqES3p25Avwtnx8XayK9cvT8-JhXUjKqr7A1GClsKZUEtVSTbA0sjY1RqVioqlk2ZR1iQxpTZv_ErWsW0Y0lopSrduSXoDrw94uhs-dTj3_CLvo80lOGopw0-Q7WXV3UMkYUoracGl70dvg-yis4xjxMT3-kx4f0-PH9LK7-uXuot2KOPzruz_4rDchbsVXiE7xXgwuRBOFlzZx-veKb0UgiDE
CitedBy_id crossref_primary_10_1080_10106049_2024_2413549
crossref_primary_10_1145_3653070
crossref_primary_10_1080_15230406_2023_2295943
crossref_primary_10_1111_tgis_70039
crossref_primary_10_1111_tgis_12965
crossref_primary_10_1016_j_ipm_2024_103808
crossref_primary_10_1080_13658816_2025_2497810
crossref_primary_10_1016_j_jag_2025_104368
Cites_doi 10.1029/2005RG000183
10.1080/10106049.2021.1878288
10.1080/01431161.2016.1266104
10.1080/13658816.2019.1593422
10.1007/s10745-010-9361-z
10.1007/s11063-019-10163-0
10.3390/ijgi5110217
10.1080/13658816.2017.1290251
10.1007/3-540-45868-9_22
10.3390/ijgi6010024
10.1080/13658816.2019.1599122
10.1145/3072959.3073659
10.1080/13658816.2019.1684500
10.1080/136588197242419
10.1109/CVPR.2018.00577
10.1109/CVPR.2017.434
10.3390/ijgi8090380
10.1109/LGRS.2018.2870880
10.1080/13658816.2019.1610965
10.3390/ijgi9050338
10.1109/CVPR.2017.624
10.1080/13658816.2020.1772479
10.1016/j.apgeog.2020.102246
10.1109/CVPR.2016.278
10.1109/ACCESS.2019.2908232
10.1016/j.compenvurbsys.2008.06.004
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/13658816.2022.2055036
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1362-3087
1365-8824
EndPage 2321
ExternalDocumentID 10_1080_13658816_2022_2055036
2055036
Genre Research Article
GroupedDBID -~X
..I
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACHQT
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBO
EBS
EDO
EMK
EPL
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MM-
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZCA
ZGOLN
~02
~S~
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-13f1dd1e33c2db3e21cfc6f6104d8a75c474640f2bfb588a6c6b82e1cd33eeb43
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776552500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8816
IngestDate Sun Oct 05 00:07:04 EDT 2025
Tue Nov 18 21:05:14 EST 2025
Sat Nov 29 06:05:15 EST 2025
Mon Oct 20 23:47:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-13f1dd1e33c2db3e21cfc6f6104d8a75c474640f2bfb588a6c6b82e1cd33eeb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1521-2674
OpenAccessLink https://figshare.com/articles/journal_contribution/Filling_gaps_of_cartographic_polylines_by_using_an_encoder_decoder_model/19480989
PQID 2730177385
PQPubID 53147
PageCount 26
ParticipantIDs proquest_journals_2730177385
crossref_citationtrail_10_1080_13658816_2022_2055036
crossref_primary_10_1080_13658816_2022_2055036
informaworld_taylorfrancis_310_1080_13658816_2022_2055036
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of geographical information science : IJGIS
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0010
Vincent P. (CIT0031) 2008; 2008
CIT0012
Jenks G. (CIT0017) 1967; 7
Rojas D. (CIT0029) 2020
Zhao L. (CIT0040) 2012
CIT0014
CIT0036
Zhao P. (CIT0041) 2021
CIT0035
CIT0016
CIT0015
CIT0037
Bauer C. (CIT0002) 2013
Lou S. (CIT0021) 2018; 2018
CIT0019
Ge Y. (CIT0009) 2019
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
Wang Z. (CIT0033) 2020
Xie J. (CIT0034) 2012; 1
Zhang Z. (CIT0039) 2001
Vincent P. (CIT0032) 2010; 11
Zakaria W. (CIT0038) 2019
CIT0003
Hui H. (CIT0013) 2000
Li W. (CIT0018) 2020; 20
CIT0025
CIT0024
CIT0005
Goodfellow I. (CIT0011) 2016
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0008
  doi: 10.1029/2005RG000183
– ident: CIT0006
  doi: 10.1080/10106049.2021.1878288
– ident: CIT0025
  doi: 10.1080/01431161.2016.1266104
– volume-title: In: Proceedings of
  year: 2020
  ident: CIT0033
– ident: CIT0001
  doi: 10.1080/13658816.2019.1593422
– year: 2019
  ident: CIT0009
  publication-title: Geomatics & Spatial Information Technology
– volume: 7
  start-page: 186
  year: 1967
  ident: CIT0017
  publication-title: International Yearbook of Cartography
– ident: CIT0027
  doi: 10.1007/s10745-010-9361-z
– ident: CIT0007
  doi: 10.1007/s11063-019-10163-0
– ident: CIT0026
  doi: 10.3390/ijgi5110217
– ident: CIT0012
  doi: 10.1080/13658816.2017.1290251
– ident: CIT0003
  doi: 10.1007/3-540-45868-9_22
– ident: CIT0022
  doi: 10.3390/ijgi6010024
– ident: CIT0042
  doi: 10.1080/13658816.2019.1599122
– ident: CIT0014
  doi: 10.1145/3072959.3073659
– year: 2021
  ident: CIT0041
  publication-title: International Journal of Geographical Information Science
– year: 2001
  ident: CIT0039
  publication-title: Journal of Institute of Surveying and Mapping
– ident: CIT0016
  doi: 10.1080/13658816.2019.1684500
– ident: CIT0010
  doi: 10.1080/136588197242419
– volume: 1
  start-page: 341
  year: 2012
  ident: CIT0034
  publication-title: Advances in Neural Information Processing Systems
– year: 2000
  ident: CIT0013
  publication-title: Journal of Tongji University
– volume: 20
  start-page: 71
  issue: 20
  year: 2020
  ident: CIT0018
  publication-title: Journal of Spatial Information Science
– ident: CIT0036
  doi: 10.1109/CVPR.2018.00577
– ident: CIT0035
  doi: 10.1109/CVPR.2017.434
– ident: CIT0015
  doi: 10.3390/ijgi8090380
– volume: 2018
  start-page: 1
  year: 2018
  ident: CIT0021
  publication-title: IAPR Workshop on Pattern Recognition in Remote Sensing
– ident: CIT0005
  doi: 10.1109/LGRS.2018.2870880
– volume-title: IEEE international conference on automation & logistics
  year: 2012
  ident: CIT0040
– ident: CIT0030
  doi: 10.1080/13658816.2019.1610965
– ident: CIT0004
  doi: 10.3390/ijgi9050338
– volume-title: In: Proceedings of
  year: 2020
  ident: CIT0029
– volume: 2008
  start-page: 1096
  volume-title: In: Proceedings of
  year: 2008
  ident: CIT0031
– volume-title: In:
  year: 2019
  ident: CIT0038
– ident: CIT0020
  doi: 10.1109/CVPR.2017.624
– ident: CIT0037
  doi: 10.1080/13658816.2020.1772479
– ident: CIT0024
  doi: 10.1016/j.apgeog.2020.102246
– volume-title: In: Proceedings of International conference on advances in mobile computing & multimedia
  year: 2013
  ident: CIT0002
– volume-title: Deep learning
  year: 2016
  ident: CIT0011
– ident: CIT0028
  doi: 10.1109/CVPR.2016.278
– ident: CIT0019
  doi: 10.1109/ACCESS.2019.2908232
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: CIT0032
  publication-title: Journal of Machine Learning Research
– ident: CIT0023
  doi: 10.1016/j.compenvurbsys.2008.06.004
SSID ssib023898875
ssj0001015
ssib000159086
Score 2.4133542
Snippet Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data),...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2296
SubjectTerms cartographic polylines
Cartography
Coders
Deep learning
encoder-decoder model
Filling gap
Missing data
Spatial data
spatial data quality
Vector processing (computers)
Title Filling gaps of cartographic polylines by using an encoder-decoder model
URI https://www.tandfonline.com/doi/abs/10.1080/13658816.2022.2055036
https://www.proquest.com/docview/2730177385
Volume 36
WOSCitedRecordID wos000776552500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBL34Lc4vcvBaXZu2aY4ilp2Gh4m7hXzOwdjGOoX99-al6dwQ2UFPpZQk5OUl79fw3u-H0F1HMioLkUfMKBqlLiBFMtYyyoiVKUlobnTHi03QXq8YDNhLyCasQlol_EPbmijCn9WwuYWsmoy4B8jMKooYEgwSqKVyIJsA6bZD9uDj_fJtDcCApvcq4Lr4xNyu-gbIziGzpjILumxqfH4bZSN6bXCb_jjLfYAqD_9hakfoIKBT_Fi70zHaMZMTtBeE0t-Xp6hbjjyJNx6KWYWnFivnevXXkcKz6XgJg1ZYLjFk1A-xmGCgytRmHmnjn9iL75yh1_K5_9SNghhDpEiRgWS9jbWODSEq0ZKYJFZW5dahr1QXgmYqpWmedmwirXRTELnKZZGYWGlCjHHrfo5ak-nEXCCsKSso1Q45CZHmkjGVE-Cpt5nrkxHSRmljZK4CUzkIZox5HAhNGzNxMBMPZmqj-1WzWU3Vsa0BW19BvvB3JLYWNOFkS9vrZrl52PUVT-C4pMAPdPmHrq_QPrz6gsfkGrUW8w9zg3bV52JUzW-9f38Bj8Xwuw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTfDitxFF7cHrlK1bux6NkWBEThi5NesXkhAggCb89_Z1G0KM8aCnHZq26ev7WvPe74fQdUNyJtOMBtwoFsQuIAUy1DJIiJUxiRg1uuHJJlink_Z6fLUXBsoq4R_a5kAR3leDccNjdFkSdwulWWkaQoVBBM1ULssmdBNtJS7WQllft_m6ksIAq_cy5LoIxZ1dfaXITiWTsjcL1iy7fH7aZi1-raGbfvPmPkQ19_7jcPtot0hQ8V2uUQdow4wOUbXgSn9bHKFWc-BxvHE_m8zw2GLltC8fHSg8GQ8XsOsMywWGovo-zkYY0DK1mQba-C_2_DvH6KX50L1vBQUfQ6BImgBrvQ21Dg0hKtKSmChUVlHrErBYpxlLVMxiGjdsJK10R8ioojKNTKg0Ica4qz9BldF4ZE4R1oynjGmXPGVZTCXnihKAqreJW5MTUkNxKWWhCrBy4MwYirDANC3FJEBMohBTDd0sp01ytI7fJvDVKxRz_0xic04TQX6ZWy_vWxSGPxMReEwGEEFnf1j6ClVb3ee2aD92ns7RDgz5_seojirz6bu5QNvqYz6YTS-9sn8CysT03A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA5uqBd3cTcHr9Vp0ybNUdQyogweFL2FZtOBYWaYjsL8e_PSVEdEPOiph5CEvLwt5b3vQ-ikJTmTeUkjbhSLUheQIhlrGWXEypQkjBrd8mQTrNPJn574XagmrEJZJbyhbQ0U4X01GPdQ26Yi7gwqs_I8hgKDBHqpXJJN6Cya9-BYTqXvi8epDAZIvT8irgtQ3JnVZ4bsNDJrWrNgzabJ56dtvoSvL-Cm35y5j1DF6j-cbQ2thPQUn9f6tI5mTH8DLQWm9JfJJmoXXY_ijZ_LYYUHFiune_VoV-HhoDeBTSssJxhK6p9x2ceAlanNKNLGf7Fn39lCD8XV_UU7CmwMkSJ5Bpz1NtY6NoSoREtiklhZRa1Lv1KdlyxTKUtp2rKJtNIdoaSKyjwxsdKEGOMufhvN9Qd9s4OwZjxnTLvUqSxTKjlXlABQvc3cmpyQXZQ2QhYqQJUDY0ZPxAHRtBGTADGJIKZddPoxbVhjdfw2gU_foBj7nyS2ZjQR5Je5B811i2D2lUjAXzIACNr7w9LHaPHushC3152bfbQMI775MTlAc-PRqzlEC-pt3K1GR17V3wG6CfOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Filling+gaps+of+cartographic+polylines+by+using+an+encoder%E2%80%93decoder+model&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Yu%2C+Wenhao&rft.au=Chen%2C+Yujie&rft.date=2022-11-02&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=36&rft.issue=11&rft.spage=2296&rft.epage=2321&rft_id=info:doi/10.1080%2F13658816.2022.2055036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13658816_2022_2055036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon