Filling gaps of cartographic polylines by using an encoder-decoder model
Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausib...
Uložené v:
| Vydané v: | International journal of geographical information science : IJGIS Ročník 36; číslo 11; s. 2296 - 2321 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
02.11.2022
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 1365-8816, 1362-3087, 1365-8824 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausible and context-aware details. In this paper, we propose an effective framework for vector-structured polyline completion using a generative model. The model is trained to generate the contents of missing polylines of different sizes and shapes conditioned on the contexts. Specifically, the generator can compute the content of the entire polyline sample globally and produce a plausible prediction for local gaps. The proposed model was applied to contour data for validation. The experiments generated gaps of random sizes at random locations along with the polyline samples. Qualitative and quantitative evaluations show that our model can fill missing points with high perceptual quality and adaptively handle a range of gaps. In addition to the simulation experiment, two case studies with map vectorization and trajectory filling illustrate the application prospects of our model. |
|---|---|
| AbstractList | Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausible and context-aware details. In this paper, we propose an effective framework for vector-structured polyline completion using a generative model. The model is trained to generate the contents of missing polylines of different sizes and shapes conditioned on the contexts. Specifically, the generator can compute the content of the entire polyline sample globally and produce a plausible prediction for local gaps. The proposed model was applied to contour data for validation. The experiments generated gaps of random sizes at random locations along with the polyline samples. Qualitative and quantitative evaluations show that our model can fill missing points with high perceptual quality and adaptively handle a range of gaps. In addition to the simulation experiment, two case studies with map vectorization and trajectory filling illustrate the application prospects of our model. |
| Author | Yu, Wenhao Chen, Yujie |
| Author_xml | – sequence: 1 givenname: Wenhao orcidid: 0000-0003-1521-2674 surname: Yu fullname: Yu, Wenhao organization: National Engineering Research Center for Geographic Information System, China University of Geosciences – sequence: 2 givenname: Yujie surname: Chen fullname: Chen, Yujie organization: School of Geography and Information Engineering, China University of Geosciences |
| BookMark | eNqFUE1LAzEQDVLBqv0JQsDz1nzsR8SLUqwVCl70HLL5qJE0WZMtsv_ebFsvHvTy3jDz3gzzzsHEB68BuMJojhFDN5jWFWO4nhNESIaqQrQ-AdPcJwVFrJns66oYRWdglpJtEaHslrGmmoLV0jpn_QZuRJdgMFCK2IdNFN27lbALbshTnWA7wF0adcJD7WVQOhZK7xluM7pLcGqES3p25Avwtnx8XayK9cvT8-JhXUjKqr7A1GClsKZUEtVSTbA0sjY1RqVioqlk2ZR1iQxpTZv_ErWsW0Y0lopSrduSXoDrw94uhs-dTj3_CLvo80lOGopw0-Q7WXV3UMkYUoracGl70dvg-yis4xjxMT3-kx4f0-PH9LK7-uXuot2KOPzruz_4rDchbsVXiE7xXgwuRBOFlzZx-veKb0UgiDE |
| CitedBy_id | crossref_primary_10_1080_10106049_2024_2413549 crossref_primary_10_1145_3653070 crossref_primary_10_1080_15230406_2023_2295943 crossref_primary_10_1111_tgis_70039 crossref_primary_10_1111_tgis_12965 crossref_primary_10_1016_j_ipm_2024_103808 crossref_primary_10_1080_13658816_2025_2497810 crossref_primary_10_1016_j_jag_2025_104368 |
| Cites_doi | 10.1029/2005RG000183 10.1080/10106049.2021.1878288 10.1080/01431161.2016.1266104 10.1080/13658816.2019.1593422 10.1007/s10745-010-9361-z 10.1007/s11063-019-10163-0 10.3390/ijgi5110217 10.1080/13658816.2017.1290251 10.1007/3-540-45868-9_22 10.3390/ijgi6010024 10.1080/13658816.2019.1599122 10.1145/3072959.3073659 10.1080/13658816.2019.1684500 10.1080/136588197242419 10.1109/CVPR.2018.00577 10.1109/CVPR.2017.434 10.3390/ijgi8090380 10.1109/LGRS.2018.2870880 10.1080/13658816.2019.1610965 10.3390/ijgi9050338 10.1109/CVPR.2017.624 10.1080/13658816.2020.1772479 10.1016/j.apgeog.2020.102246 10.1109/CVPR.2016.278 10.1109/ACCESS.2019.2908232 10.1016/j.compenvurbsys.2008.06.004 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/13658816.2022.2055036 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1362-3087 1365-8824 |
| EndPage | 2321 |
| ExternalDocumentID | 10_1080_13658816_2022_2055036 2055036 |
| Genre | Research Article |
| GroupedDBID | -~X ..I .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACHQT ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBO EBS EDO EMK EPL ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MM- NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TQWBC TTHFI TUROJ TUS TWF UT5 UU3 ZCA ZGOLN ~02 ~S~ AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c385t-13f1dd1e33c2db3e21cfc6f6104d8a75c474640f2bfb588a6c6b82e1cd33eeb43 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776552500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1365-8816 |
| IngestDate | Sun Oct 05 00:07:04 EDT 2025 Tue Nov 18 21:05:14 EST 2025 Sat Nov 29 06:05:15 EST 2025 Mon Oct 20 23:47:12 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-13f1dd1e33c2db3e21cfc6f6104d8a75c474640f2bfb588a6c6b82e1cd33eeb43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1521-2674 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Filling_gaps_of_cartographic_polylines_by_using_an_encoder_decoder_model/19480989 |
| PQID | 2730177385 |
| PQPubID | 53147 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2730177385 crossref_citationtrail_10_1080_13658816_2022_2055036 crossref_primary_10_1080_13658816_2022_2055036 informaworld_taylorfrancis_310_1080_13658816_2022_2055036 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-02 |
| PublicationDateYYYYMMDD | 2022-11-02 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of geographical information science : IJGIS |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | CIT0030 CIT0010 Vincent P. (CIT0031) 2008; 2008 CIT0012 Jenks G. (CIT0017) 1967; 7 Rojas D. (CIT0029) 2020 Zhao L. (CIT0040) 2012 CIT0014 CIT0036 Zhao P. (CIT0041) 2021 CIT0035 CIT0016 CIT0015 CIT0037 Bauer C. (CIT0002) 2013 Lou S. (CIT0021) 2018; 2018 CIT0019 Ge Y. (CIT0009) 2019 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 Wang Z. (CIT0033) 2020 Xie J. (CIT0034) 2012; 1 Zhang Z. (CIT0039) 2001 Vincent P. (CIT0032) 2010; 11 Zakaria W. (CIT0038) 2019 CIT0003 Hui H. (CIT0013) 2000 Li W. (CIT0018) 2020; 20 CIT0025 CIT0024 CIT0005 Goodfellow I. (CIT0011) 2016 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0008 |
| References_xml | – ident: CIT0008 doi: 10.1029/2005RG000183 – ident: CIT0006 doi: 10.1080/10106049.2021.1878288 – ident: CIT0025 doi: 10.1080/01431161.2016.1266104 – volume-title: In: Proceedings of year: 2020 ident: CIT0033 – ident: CIT0001 doi: 10.1080/13658816.2019.1593422 – year: 2019 ident: CIT0009 publication-title: Geomatics & Spatial Information Technology – volume: 7 start-page: 186 year: 1967 ident: CIT0017 publication-title: International Yearbook of Cartography – ident: CIT0027 doi: 10.1007/s10745-010-9361-z – ident: CIT0007 doi: 10.1007/s11063-019-10163-0 – ident: CIT0026 doi: 10.3390/ijgi5110217 – ident: CIT0012 doi: 10.1080/13658816.2017.1290251 – ident: CIT0003 doi: 10.1007/3-540-45868-9_22 – ident: CIT0022 doi: 10.3390/ijgi6010024 – ident: CIT0042 doi: 10.1080/13658816.2019.1599122 – ident: CIT0014 doi: 10.1145/3072959.3073659 – year: 2021 ident: CIT0041 publication-title: International Journal of Geographical Information Science – year: 2001 ident: CIT0039 publication-title: Journal of Institute of Surveying and Mapping – ident: CIT0016 doi: 10.1080/13658816.2019.1684500 – ident: CIT0010 doi: 10.1080/136588197242419 – volume: 1 start-page: 341 year: 2012 ident: CIT0034 publication-title: Advances in Neural Information Processing Systems – year: 2000 ident: CIT0013 publication-title: Journal of Tongji University – volume: 20 start-page: 71 issue: 20 year: 2020 ident: CIT0018 publication-title: Journal of Spatial Information Science – ident: CIT0036 doi: 10.1109/CVPR.2018.00577 – ident: CIT0035 doi: 10.1109/CVPR.2017.434 – ident: CIT0015 doi: 10.3390/ijgi8090380 – volume: 2018 start-page: 1 year: 2018 ident: CIT0021 publication-title: IAPR Workshop on Pattern Recognition in Remote Sensing – ident: CIT0005 doi: 10.1109/LGRS.2018.2870880 – volume-title: IEEE international conference on automation & logistics year: 2012 ident: CIT0040 – ident: CIT0030 doi: 10.1080/13658816.2019.1610965 – ident: CIT0004 doi: 10.3390/ijgi9050338 – volume-title: In: Proceedings of year: 2020 ident: CIT0029 – volume: 2008 start-page: 1096 volume-title: In: Proceedings of year: 2008 ident: CIT0031 – volume-title: In: year: 2019 ident: CIT0038 – ident: CIT0020 doi: 10.1109/CVPR.2017.624 – ident: CIT0037 doi: 10.1080/13658816.2020.1772479 – ident: CIT0024 doi: 10.1016/j.apgeog.2020.102246 – volume-title: In: Proceedings of International conference on advances in mobile computing & multimedia year: 2013 ident: CIT0002 – volume-title: Deep learning year: 2016 ident: CIT0011 – ident: CIT0028 doi: 10.1109/CVPR.2016.278 – ident: CIT0019 doi: 10.1109/ACCESS.2019.2908232 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: CIT0032 publication-title: Journal of Machine Learning Research – ident: CIT0023 doi: 10.1016/j.compenvurbsys.2008.06.004 |
| SSID | ssib023898875 ssj0001015 ssib000159086 |
| Score | 2.4133542 |
| Snippet | Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data),... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2296 |
| SubjectTerms | cartographic polylines Cartography Coders Deep learning encoder-decoder model Filling gap Missing data Spatial data spatial data quality Vector processing (computers) |
| Title | Filling gaps of cartographic polylines by using an encoder-decoder model |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13658816.2022.2055036 https://www.proquest.com/docview/2730177385 |
| Volume | 36 |
| WOSCitedRecordID | wos000776552500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1362-3087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001015 issn: 1365-8816 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBL34Lc4vcvBaXZu2aY4ilp2Gh4m7hXzOwdjGOoX99-al6dwQ2UFPpZQk5OUl79fw3u-H0F1HMioLkUfMKBqlLiBFMtYyyoiVKUlobnTHi03QXq8YDNhLyCasQlol_EPbmijCn9WwuYWsmoy4B8jMKooYEgwSqKVyIJsA6bZD9uDj_fJtDcCApvcq4Lr4xNyu-gbIziGzpjILumxqfH4bZSN6bXCb_jjLfYAqD_9hakfoIKBT_Fi70zHaMZMTtBeE0t-Xp6hbjjyJNx6KWYWnFivnevXXkcKz6XgJg1ZYLjFk1A-xmGCgytRmHmnjn9iL75yh1_K5_9SNghhDpEiRgWS9jbWODSEq0ZKYJFZW5dahr1QXgmYqpWmedmwirXRTELnKZZGYWGlCjHHrfo5ak-nEXCCsKSso1Q45CZHmkjGVE-Cpt5nrkxHSRmljZK4CUzkIZox5HAhNGzNxMBMPZmqj-1WzWU3Vsa0BW19BvvB3JLYWNOFkS9vrZrl52PUVT-C4pMAPdPmHrq_QPrz6gsfkGrUW8w9zg3bV52JUzW-9f38Bj8Xwuw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTfDitxFF7cHrlK1bux6NkWBEThi5NesXkhAggCb89_Z1G0KM8aCnHZq26ev7WvPe74fQdUNyJtOMBtwoFsQuIAUy1DJIiJUxiRg1uuHJJlink_Z6fLUXBsoq4R_a5kAR3leDccNjdFkSdwulWWkaQoVBBM1ULssmdBNtJS7WQllft_m6ksIAq_cy5LoIxZ1dfaXITiWTsjcL1iy7fH7aZi1-raGbfvPmPkQ19_7jcPtot0hQ8V2uUQdow4wOUbXgSn9bHKFWc-BxvHE_m8zw2GLltC8fHSg8GQ8XsOsMywWGovo-zkYY0DK1mQba-C_2_DvH6KX50L1vBQUfQ6BImgBrvQ21Dg0hKtKSmChUVlHrErBYpxlLVMxiGjdsJK10R8ioojKNTKg0Ica4qz9BldF4ZE4R1oynjGmXPGVZTCXnihKAqreJW5MTUkNxKWWhCrBy4MwYirDANC3FJEBMohBTDd0sp01ytI7fJvDVKxRz_0xic04TQX6ZWy_vWxSGPxMReEwGEEFnf1j6ClVb3ee2aD92ns7RDgz5_seojirz6bu5QNvqYz6YTS-9sn8CysT03A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA5uqBd3cTcHr9Vp0ybNUdQyogweFL2FZtOBYWaYjsL8e_PSVEdEPOiph5CEvLwt5b3vQ-ikJTmTeUkjbhSLUheQIhlrGWXEypQkjBrd8mQTrNPJn574XagmrEJZJbyhbQ0U4X01GPdQ26Yi7gwqs_I8hgKDBHqpXJJN6Cya9-BYTqXvi8epDAZIvT8irgtQ3JnVZ4bsNDJrWrNgzabJ56dtvoSvL-Cm35y5j1DF6j-cbQ2thPQUn9f6tI5mTH8DLQWm9JfJJmoXXY_ijZ_LYYUHFiune_VoV-HhoDeBTSssJxhK6p9x2ceAlanNKNLGf7Fn39lCD8XV_UU7CmwMkSJ5Bpz1NtY6NoSoREtiklhZRa1Lv1KdlyxTKUtp2rKJtNIdoaSKyjwxsdKEGOMufhvN9Qd9s4OwZjxnTLvUqSxTKjlXlABQvc3cmpyQXZQ2QhYqQJUDY0ZPxAHRtBGTADGJIKZddPoxbVhjdfw2gU_foBj7nyS2ZjQR5Je5B811i2D2lUjAXzIACNr7w9LHaPHushC3152bfbQMI775MTlAc-PRqzlEC-pt3K1GR17V3wG6CfOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Filling+gaps+of+cartographic+polylines+by+using+an+encoder%E2%80%93decoder+model&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Yu%2C+Wenhao&rft.au=Chen%2C+Yujie&rft.date=2022-11-02&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=36&rft.issue=11&rft.spage=2296&rft.epage=2321&rft_id=info:doi/10.1080%2F13658816.2022.2055036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13658816_2022_2055036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon |