A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia

By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). Thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neuropharmacology Ročník 218; s. 109205
Hlavní autoři: Calabrese, Valeria, Picconi, Barbara, Heck, Nicolas, Campanelli, Federica, Natale, Giuseppina, Marino, Gioia, Sciaccaluga, Miriam, Ghiglieri, Veronica, Tozzi, Alessandro, Anceaume, Estelle, Cuoc, Emeline, Caboche, Jocelyne, Conquet, François, Calabresi, Paolo, Charvin, Delphine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2022
Elsevier
Témata:
ISSN:0028-3908, 1873-7064, 1873-7064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity. •MGluR4 PAM foliglurax reduces the excess of glutamatergic transmission in a PD rat model.•Foliglurax and l-DOPA co-administration attenuates the intensity of l-DOPA-induced dyskinesia.•l-DOPA and modulation of mGluRs rescue dopamine-dependent striatal bidirectional plasticity.•MGluR4 PAM combined with l-DOPA restores dendritic spine density in a dose-dependent manner.
AbstractList By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.
By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (L-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with L-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with L-DOPA or L-DOPA plus foliglurax. In slices from the same rats, patchclamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When coadministered with L-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dosedependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of L-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.
By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity. •MGluR4 PAM foliglurax reduces the excess of glutamatergic transmission in a PD rat model.•Foliglurax and l-DOPA co-administration attenuates the intensity of l-DOPA-induced dyskinesia.•l-DOPA and modulation of mGluRs rescue dopamine-dependent striatal bidirectional plasticity.•MGluR4 PAM combined with l-DOPA restores dendritic spine density in a dose-dependent manner.
ArticleNumber 109205
Author Calabresi, Paolo
Sciaccaluga, Miriam
Marino, Gioia
Heck, Nicolas
Anceaume, Estelle
Charvin, Delphine
Caboche, Jocelyne
Natale, Giuseppina
Picconi, Barbara
Calabrese, Valeria
Campanelli, Federica
Cuoc, Emeline
Conquet, François
Tozzi, Alessandro
Ghiglieri, Veronica
Author_xml – sequence: 1
  givenname: Valeria
  surname: Calabrese
  fullname: Calabrese, Valeria
  organization: San Raffaele University, Rome, 00166, Italy
– sequence: 2
  givenname: Barbara
  surname: Picconi
  fullname: Picconi, Barbara
  organization: San Raffaele University, Rome, 00166, Italy
– sequence: 3
  givenname: Nicolas
  surname: Heck
  fullname: Heck, Nicolas
  organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France
– sequence: 4
  givenname: Federica
  surname: Campanelli
  fullname: Campanelli, Federica
  organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
– sequence: 5
  givenname: Giuseppina
  surname: Natale
  fullname: Natale, Giuseppina
  organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
– sequence: 6
  givenname: Gioia
  surname: Marino
  fullname: Marino, Gioia
  organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
– sequence: 7
  givenname: Miriam
  surname: Sciaccaluga
  fullname: Sciaccaluga, Miriam
  organization: Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
– sequence: 8
  givenname: Veronica
  surname: Ghiglieri
  fullname: Ghiglieri, Veronica
  organization: San Raffaele University, Rome, 00166, Italy
– sequence: 9
  givenname: Alessandro
  surname: Tozzi
  fullname: Tozzi, Alessandro
  organization: Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
– sequence: 10
  givenname: Estelle
  surname: Anceaume
  fullname: Anceaume, Estelle
  organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France
– sequence: 11
  givenname: Emeline
  surname: Cuoc
  fullname: Cuoc, Emeline
  organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France
– sequence: 12
  givenname: Jocelyne
  surname: Caboche
  fullname: Caboche, Jocelyne
  organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France
– sequence: 13
  givenname: François
  surname: Conquet
  fullname: Conquet, François
  organization: H. Lundbeck A/S, 2500, Valby, Denmark
– sequence: 14
  givenname: Paolo
  surname: Calabresi
  fullname: Calabresi, Paolo
  email: paolo.calabresi@policlinicogemelli.it
  organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
– sequence: 15
  givenname: Delphine
  surname: Charvin
  fullname: Charvin, Delphine
  email: delphine.charvin@mindeedconsulting.com
  organization: H. Lundbeck A/S, 2500, Valby, Denmark
BackLink https://hal.science/hal-03974743$$DView record in HAL
BookMark eNqNkU-LFDEQxYOs4Ozqd8hRDz1W_vR0-iKM67orDHjRc0in02yNmU6bpAfmtF_dNK0seFEIVHi8-lFV75pcjWF0hFAGWwZs9_64Hd0cw_Ro4mnLgfMitxzqF2TDVCOqBnbyimwAuKpEC-oVuU7pCABSMbUhT3s6hYQZz44a70PKLqKlp9DP3uQQaRjo6d7PkkZn3VSUVH6pVJdoyhFNNp5O3qSMFvOF4kjN8vBU9IJxfkH46lOYTIVjP1vX0_6SfuDoEprX5OVgfHJvftcb8v3z3bfbh-rw9f7L7f5QWaHqXDE2NKwdjNrVvOth6Dpb923Pe-k4sFbUTljZmLaroZF1J8vmwFjXcgUSBG_EDXm3ch-N11Ms08WLDgb1w_6gFw1E28hGijMr3rerd4rh51yW1SdM1nlvRhfmpHkDIJgUShbrh9VqY0gpukGXI5iMYczRoNcM9JKSPurnlPSSkl5TKgD1F-DPcP_R-nFtdeVuZ3RRJ4tuLPfFklXWfcB_Q34BrIy2Qw
CitedBy_id crossref_primary_10_1016_j_isci_2024_110123
crossref_primary_10_1016_j_brainres_2023_148349
crossref_primary_10_1016_j_jchemneu_2024_102422
crossref_primary_10_1016_j_pneurobio_2023_102548
crossref_primary_10_3390_cells12232754
Cites_doi 10.3233/JPD-2011-11066
10.1080/13543784.2020.1839047
10.1016/j.expneurol.2008.09.025
10.1007/s00429-011-0340-y
10.1016/j.neuropharm.2015.02.023
10.1016/j.conb.2011.01.005
10.1002/mds.27462
10.1038/nature05506
10.1016/j.tins.2007.03.008
10.1002/mds.28970
10.1093/brain/awr158
10.1046/j.1469-7580.2000.19640527.x
10.1126/science.1160575
10.1016/j.conb.2003.10.013
10.1016/j.biopsych.2013.05.006
10.1002/mds.27172
10.1523/JNEUROSCI.2664-12.2012
10.1007/s00702-017-1735-6
10.1146/annurev-neuro-071013-013924
10.1016/j.neuropharm.2018.03.027
10.1146/annurev-neuro-061010-113641
10.1016/j.nbd.2014.08.002
10.1016/S0301-0082(96)00040-8
10.1038/nn.2723
10.1021/acs.jmedchem.7b00991
10.1523/JNEUROSCI.5326-05.2006
10.1016/0165-0270(85)90026-3
10.1038/ncomms6316
10.1016/S0168-0102(96)01134-0
10.1093/brain/awq342
10.1038/nn1632
10.1016/j.tins.2007.03.001
10.1111/j.1365-201X.1971.tb11000.x
10.1016/j.pneurobio.2015.07.002
10.1016/S1353-8020(08)70012-9
10.1002/mds.26139
10.3389/fncel.2015.00245
10.1016/j.nbd.2013.11.017
10.1002/mds.10107
10.1016/j.neuropharm.2010.01.008
10.1038/nn1040
10.1098/rstb.2014.0184
10.1016/j.nbd.2015.11.022
10.1111/j.1460-9568.2004.03591.x
10.1212/01.WNL.0000150591.33787.A4
10.1523/JNEUROSCI.2149-10.2010
10.1523/JNEUROSCI.0288-13.2013
10.1002/ana.25364
10.1016/j.nbd.2007.10.001
10.3389/fnagi.2020.00230
10.1016/j.nbd.2022.105697
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7X8
1XC
DOI 10.1016/j.neuropharm.2022.109205
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-7064
ExternalDocumentID oai:HAL:hal-03974743v1
10_1016_j_neuropharm_2022_109205
S0028390822002647
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXLA
AAXUO
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SNS
SPCBC
SSN
SSP
SSZ
T5K
TEORI
~G-
.55
.GJ
29N
3O-
41~
53G
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMQ
HMT
HVGLF
HZ~
R2-
SEW
SPT
WUQ
X7M
XOL
ZGI
ZXP
~HD
7X8
1XC
ID FETCH-LOGICAL-c385t-11f719fa8652bd0fbbc5d9d2d4e201935e3c47a9b50745b4873011b9280403273
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844046700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-3908
1873-7064
IngestDate Tue Oct 14 20:46:58 EDT 2025
Sun Sep 28 05:48:01 EDT 2025
Tue Nov 18 21:21:56 EST 2025
Sat Nov 29 07:29:19 EST 2025
Fri Feb 23 02:37:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords mGlu4
Striatum
Basal ganglia
Movement disorder
Synaptic plasticity
Positive allosteric modulator
Glutamate
Spines
Dyskinesia
Dyskinesia Glutamate Synaptic plasticity mGlu4 Spines Basal ganglia Striatum Positive allosteric modulator Movement disorder
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-11f719fa8652bd0fbbc5d9d2d4e201935e3c47a9b50745b4873011b9280403273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4742-7055
0000-0002-3116-7685
0000-0002-5754-8873
PQID 2700314384
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03974743v1
proquest_miscellaneous_2700314384
crossref_citationtrail_10_1016_j_neuropharm_2022_109205
crossref_primary_10_1016_j_neuropharm_2022_109205
elsevier_sciencedirect_doi_10_1016_j_neuropharm_2022_109205
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
2022-11
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Neuropharmacology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cenci, Lee, Bjorklund (bib10) 1998; 10
Picconi, Centonze, Hakansson, Bernardi, Greengard, Fisone, Cenci, Calabresi (bib39) 2003; 6
Zaja-Milatovic, Milatovic, Schantz, Zhang, Montine, Samii, Deutch, Montine (bib54) 2005; 64
Charvin, Di Paolo, Bezard, Gregoire, Takano, Duvey, Pioli, Halldin, Medori, Conquet (bib13) 2018; 33
Villalba, Smith (bib52) 2018; 125
Ghiglieri, Mineo, Vannelli, Cacace, Mancini, Pendolino, Napolitano, di Maio, Mellone, Stanic, Tronci, Fidalgo, Stancampiano, Carta, Calabresi, Gardoni, Usiello, Picconi (bib23) 2016; 86
Picconi, Paille, Ghiglieri, Bagetta, Barone, Lindgren, Bernardi, Angela Cenci, Calabresi (bib40) 2008; 29
Doller, Bespalov, Miller, Pietraszek, Kalinichev (bib17) 2020; 29
Zhang, Meredith, Mendoza-Elias, Rademacher, Tseng, Steece-Collier (bib55) 2013; 33
Bastide, Meissner, Picconi, Fasano, Fernagut, Feyder, Francardo, Alcacer, Ding, Brambilla, Fisone, Jon Stoessl, Bourdenx, Engeln, Navailles, De Deurwaerdere, Ko, Simola, Morelli, Groc, Rodriguez, Gurevich, Quik, Morari, Mellone, Gardoni, Tronci, Guehl, Tison, Crossman, Kang, Steece-Collier, Fox, Carta, Angela Cenci, Bezard (bib2) 2015; 132
Charvin (bib12) 2018; 135
Nishijima, Ueno, Funamizu, Ueno, Tomiyama (bib36) 2018; 33
Charvin, Pomel, Ortiz, Frauli, Scheffler, Steinberg, Baron, Deshons, Rudigier, Thiarc, Morice, Manteau, Mayer, Graham, Giethlen, Brugger, Hedou, Conquet, Schann (bib14) 2017; 60
Kawaguchi (bib28) 1997; 27
Fieblinger, Cenci (bib19) 2015; 30
Schwarting, Huston (bib45) 1996; 50
Villalba, Lee, Smith (bib51) 2009; 215
Toy, Petzinger, Leyshon, Akopian, Walsh, Hoffman, Vuckovic, Jakowec (bib49) 2014; 63
Lopez, Bonito-Oliva, Pallottino, Acher, Fisone (bib31) 2011; 1
Rascol, Medori, Baayen, Such, Meulien (bib43) 2022; 37
Wickens, Reynolds, Hyland (bib53) 2003; 13
Surmeier, Ding, Day, Wang, Shen (bib48) 2007; 30
Cenci, Lundblad (bib11) 2007; 9
Iderberg, Maslava, Thompson, Bubser, Niswender, Hopkins, Lindsley, Conn, Jones, Cenci (bib27) 2015; 95
Lovinger (bib32) 2010; 58
Hikosaka, Kim, Yasuda, Yamamoto (bib25) 2014; 37
Kreitzer, Malenka (bib29) 2007; 445
Fieblinger, Graves, Sebel, Alcacer, Plotkin, Gertler, Chan, Heiman, Greengard, Cenci, Surmeier (bib20) 2014; 5
Gardoni, Picconi, Ghiglieri, Polli, Bagetta, Bernardi, Cattabeni, Di Luca, Calabresi (bib21) 2006; 26
Huang, Rothwell, Lu, Chuang, Chen (bib26) 2011; 134
Calabresi, Picconi, Tozzi, Di Filippo (bib7) 2007; 30
Day, Wang, Ding, An, Ingham, Shering, Wokosin, Ilijic, Sun, Sampson, Mugnaini, Deutch, Sesack, Arbuthnott, Surmeier (bib15) 2006; 9
Espay, Morgante, Merola, Fasano, Marsili, Fox, Bezard, Picconi, Calabresi, Lang (bib18) 2018; 84
Calabrese, Di Maio, Marino, Cardinale, Natale, De Rosa, Campanelli, Mancini, Napolitano, Avallone, Calabresi, Usiello, Ghiglieri, Picconi (bib4) 2020; 12
Nash, Brotchie (bib35) 2002; 17
Heck, Betuing, Vanhoutte, Caboche (bib24) 2012; 217
Ungerstedt (bib50) 1971; 367
Bolam, Hanley, Booth, Bevan (bib3) 2000; 196
Robelet, Melon, Guillet, Salin, Kerkerian-Le Goff (bib44) 2004; 20
Maia, Frank (bib33) 2011; 14
Calabresi, Giacomini, Centonze, Bernardi (bib6) 2000; 47
Paille, Picconi, Bagetta, Ghiglieri, Sgobio, Di Filippo, Viscomi, Giampa, Fusco, Gardoni, Bernardi, Greengard, Di Luca, Calabresi (bib37) 2010; 30
Campanelli, Natale, Marino, Ghiglieri, Calabresi (bib9) 2022; 168
Shen, Flajolet, Greengard, Surmeier (bib46) 2008; 321
Gerfen, Surmeier (bib22) 2011; 34
Lerner, Kreitzer (bib30) 2011; 21
Paxinos, Watson, Pennisi, Topple (bib38) 1985; 13
Mellone, Stanic, Hernandez, Iglesias, Zianni, Longhi, Prigent, Picconi, Calabresi, Hirsch, Obeso, Di Luca, Gardoni (bib34) 2015; 9
Bagetta, Sgobio, Pendolino, Del Papa, Tozzi, Ghiglieri, Giampa, Zianni, Gardoni, Calabresi, Picconi (bib1) 2012; 32
Deutch, Colbran, Winder (bib16) 2007; 13
Prescott, Liu, Dostrovsky, Hodaie, Lozano, Hutchison (bib42) 2014; 71
Suarez, Solis, Carames, Taravini, Solis, Murer, Moratalla (bib47) 2014; 75
Picconi, Bagetta, Ghiglieri, Paillè, Di Filippo, Pendolino, Tozzi, Giampà, Fusco, Sgobio, Calabresi (bib41) 2012; 134
Calabresi, Ghiglieri, Mazzocchetti, Corbelli, Picconi (bib5) 2015; 370
Prescott (10.1016/j.neuropharm.2022.109205_bib42) 2014; 71
Deutch (10.1016/j.neuropharm.2022.109205_bib16) 2007; 13
Charvin (10.1016/j.neuropharm.2022.109205_bib13) 2018; 33
Mellone (10.1016/j.neuropharm.2022.109205_bib34) 2015; 9
Espay (10.1016/j.neuropharm.2022.109205_bib18) 2018; 84
Ungerstedt (10.1016/j.neuropharm.2022.109205_bib50) 1971; 367
Surmeier (10.1016/j.neuropharm.2022.109205_bib48) 2007; 30
Bastide (10.1016/j.neuropharm.2022.109205_bib2) 2015; 132
Lopez (10.1016/j.neuropharm.2022.109205_bib31) 2011; 1
Picconi (10.1016/j.neuropharm.2022.109205_bib40) 2008; 29
Suarez (10.1016/j.neuropharm.2022.109205_bib47) 2014; 75
Iderberg (10.1016/j.neuropharm.2022.109205_bib27) 2015; 95
Zhang (10.1016/j.neuropharm.2022.109205_bib55) 2013; 33
Bolam (10.1016/j.neuropharm.2022.109205_bib3) 2000; 196
Lovinger (10.1016/j.neuropharm.2022.109205_bib32) 2010; 58
Schwarting (10.1016/j.neuropharm.2022.109205_bib45) 1996; 50
Zaja-Milatovic (10.1016/j.neuropharm.2022.109205_bib54) 2005; 64
Bagetta (10.1016/j.neuropharm.2022.109205_bib1) 2012; 32
Heck (10.1016/j.neuropharm.2022.109205_bib24) 2012; 217
Picconi (10.1016/j.neuropharm.2022.109205_bib41) 2012; 134
Villalba (10.1016/j.neuropharm.2022.109205_bib51) 2009; 215
Ghiglieri (10.1016/j.neuropharm.2022.109205_bib23) 2016; 86
Shen (10.1016/j.neuropharm.2022.109205_bib46) 2008; 321
Charvin (10.1016/j.neuropharm.2022.109205_bib12) 2018; 135
Day (10.1016/j.neuropharm.2022.109205_bib15) 2006; 9
Wickens (10.1016/j.neuropharm.2022.109205_bib53) 2003; 13
Paille (10.1016/j.neuropharm.2022.109205_bib37) 2010; 30
Rascol (10.1016/j.neuropharm.2022.109205_bib43) 2022; 37
Lerner (10.1016/j.neuropharm.2022.109205_bib30) 2011; 21
Kreitzer (10.1016/j.neuropharm.2022.109205_bib29) 2007; 445
Gardoni (10.1016/j.neuropharm.2022.109205_bib21) 2006; 26
Campanelli (10.1016/j.neuropharm.2022.109205_bib9) 2022; 168
Hikosaka (10.1016/j.neuropharm.2022.109205_bib25) 2014; 37
Maia (10.1016/j.neuropharm.2022.109205_bib33) 2011; 14
Paxinos (10.1016/j.neuropharm.2022.109205_bib38) 1985; 13
Calabrese (10.1016/j.neuropharm.2022.109205_bib4) 2020; 12
Cenci (10.1016/j.neuropharm.2022.109205_bib10) 1998; 10
Doller (10.1016/j.neuropharm.2022.109205_bib17) 2020; 29
Nishijima (10.1016/j.neuropharm.2022.109205_bib36) 2018; 33
Fieblinger (10.1016/j.neuropharm.2022.109205_bib19) 2015; 30
Picconi (10.1016/j.neuropharm.2022.109205_bib39) 2003; 6
Robelet (10.1016/j.neuropharm.2022.109205_bib44) 2004; 20
Charvin (10.1016/j.neuropharm.2022.109205_bib14) 2017; 60
Calabresi (10.1016/j.neuropharm.2022.109205_bib7) 2007; 30
Calabresi (10.1016/j.neuropharm.2022.109205_bib6) 2000; 47
Cenci (10.1016/j.neuropharm.2022.109205_bib11) 2007; 9
Calabresi (10.1016/j.neuropharm.2022.109205_bib5) 2015; 370
Gerfen (10.1016/j.neuropharm.2022.109205_bib22) 2011; 34
Kawaguchi (10.1016/j.neuropharm.2022.109205_bib28) 1997; 27
Villalba (10.1016/j.neuropharm.2022.109205_bib52) 2018; 125
Fieblinger (10.1016/j.neuropharm.2022.109205_bib20) 2014; 5
Nash (10.1016/j.neuropharm.2022.109205_bib35) 2002; 17
Huang (10.1016/j.neuropharm.2022.109205_bib26) 2011; 134
Toy (10.1016/j.neuropharm.2022.109205_bib49) 2014; 63
References_xml – volume: 5
  start-page: 5316
  year: 2014
  ident: bib20
  article-title: Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1323
  year: 2020
  end-page: 1338
  ident: bib17
  article-title: A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson's disease: translational gaps or a failing industry innovation model?
  publication-title: Expet Opin. Invest. Drugs
– volume: 6
  start-page: 501
  year: 2003
  end-page: 506
  ident: bib39
  article-title: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia
  publication-title: Nat. Neurosci.
– volume: 30
  start-page: 228
  year: 2007
  end-page: 235
  ident: bib48
  article-title: D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons
  publication-title: Trends Neurosci.
– volume: 196
  start-page: 527
  year: 2000
  end-page: 542
  ident: bib3
  article-title: Synaptic organisation of the basal ganglia
  publication-title: J. Anat.
– volume: 134
  start-page: 2312
  year: 2011
  end-page: 2320
  ident: bib26
  article-title: Abnormal bidirectional plasticity-like effects in Parkinson's disease
  publication-title: Brain
– volume: 30
  start-page: 14182
  year: 2010
  end-page: 14193
  ident: bib37
  article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition
  publication-title: J. Neurosci.
– volume: 13
  start-page: 139
  year: 1985
  end-page: 143
  ident: bib38
  article-title: Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight
  publication-title: J. Neurosci. Methods
– volume: 367
  start-page: 69
  year: 1971
  end-page: 93
  ident: bib50
  article-title: Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system
  publication-title: Acta Physiol. Scand. Suppl.
– volume: 27
  start-page: 1
  year: 1997
  end-page: 8
  ident: bib28
  article-title: Neostriatal cell subtypes and their functional roles
  publication-title: Neurosci. Res.
– volume: 9
  year: 2007
  ident: bib11
  article-title: Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice
  publication-title: Curr Protoc Neurosci Chapter
– volume: 10
  start-page: 2694
  year: 1998
  end-page: 2706
  ident: bib10
  article-title: L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA
  publication-title: Eur. J. Neurosci.
– volume: 37
  start-page: 1088
  year: 2022
  end-page: 1093
  ident: bib43
  article-title: A randomized, double-blind, controlled phase II study of foliglurax in Parkinson's disease
  publication-title: Mov. Disord.
– volume: 370
  year: 2015
  ident: bib5
  article-title: Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 34
  start-page: 441
  year: 2011
  end-page: 466
  ident: bib22
  article-title: Modulation of striatal projection systems by dopamine
  publication-title: Annu. Rev. Neurosci.
– volume: 75
  start-page: 711
  year: 2014
  end-page: 722
  ident: bib47
  article-title: L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice
  publication-title: Biol. Psychiatr.
– volume: 134
  start-page: 375
  year: 2012
  end-page: 387
  ident: bib41
  article-title: Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia
  publication-title: Brain
– volume: 30
  start-page: 211
  year: 2007
  end-page: 219
  ident: bib7
  article-title: Dopamine-mediated regulation of corticostriatal synaptic plasticity
  publication-title: Trends Neurosci.
– volume: 168
  year: 2022
  ident: bib9
  article-title: Striatal glutamatergic hyperactivity in Parkinson's disease
  publication-title: Neurobiol. Dis.
– volume: 64
  start-page: 545
  year: 2005
  end-page: 547
  ident: bib54
  article-title: Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease
  publication-title: Neurology
– volume: 1
  start-page: 339
  year: 2011
  end-page: 346
  ident: bib31
  article-title: Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a mouse model of Parkinson's disease
  publication-title: J. Parkinsons Dis.
– volume: 33
  start-page: 11655
  year: 2013
  end-page: 11667
  ident: bib55
  article-title: Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses
  publication-title: J. Neurosci.
– volume: 29
  start-page: 327
  year: 2008
  end-page: 335
  ident: bib40
  article-title: l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation
  publication-title: Neurobiol. Dis.
– volume: 14
  start-page: 154
  year: 2011
  end-page: 162
  ident: bib33
  article-title: From reinforcement learning models to psychiatric and neurological disorders
  publication-title: Nat. Neurosci.
– volume: 86
  start-page: 140
  year: 2016
  end-page: 153
  ident: bib23
  article-title: Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms
  publication-title: Neurobiol. Dis.
– volume: 445
  start-page: 643
  year: 2007
  end-page: 647
  ident: bib29
  article-title: Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models
  publication-title: Nature
– volume: 26
  start-page: 2914
  year: 2006
  end-page: 2922
  ident: bib21
  article-title: A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia
  publication-title: J. Neurosci.
– volume: 215
  start-page: 220
  year: 2009
  end-page: 227
  ident: bib51
  article-title: Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys
  publication-title: Exp. Neurol.
– volume: 33
  start-page: 1619
  year: 2018
  end-page: 1631
  ident: bib13
  article-title: An mGlu4-positive allosteric modulator alleviates parkinsonism in primates
  publication-title: Mov. Disord.
– volume: 217
  start-page: 421
  year: 2012
  end-page: 434
  ident: bib24
  article-title: A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease
  publication-title: Brain Struct. Funct.
– volume: 58
  start-page: 951
  year: 2010
  end-page: 961
  ident: bib32
  article-title: Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum
  publication-title: Neuropharmacology
– volume: 13
  start-page: 685
  year: 2003
  end-page: 690
  ident: bib53
  article-title: Neural mechanisms of reward-related motor learning
  publication-title: Curr. Opin. Neurobiol.
– volume: 132
  start-page: 96
  year: 2015
  end-page: 168
  ident: bib2
  article-title: Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease
  publication-title: Prog. Neurobiol.
– volume: 60
  start-page: 8515
  year: 2017
  end-page: 8537
  ident: bib14
  article-title: Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4
  publication-title: J. Med. Chem.
– volume: 95
  start-page: 121
  year: 2015
  end-page: 129
  ident: bib27
  article-title: Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist
  publication-title: Neuropharmacology
– volume: 37
  start-page: 289
  year: 2014
  end-page: 306
  ident: bib25
  article-title: Basal ganglia circuits for reward value-guided behavior
  publication-title: Annu. Rev. Neurosci.
– volume: 47
  start-page: S60
  year: 2000
  end-page: S68
  ident: bib6
  article-title: Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity?
  publication-title: Ann. Neurol.
– volume: 12
  start-page: 230
  year: 2020
  ident: bib4
  article-title: Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia
  publication-title: Front. Aging Neurosci.
– volume: 135
  start-page: 308
  year: 2018
  end-page: 315
  ident: bib12
  article-title: mGlu4 allosteric modulation for treating Parkinson's disease
  publication-title: Neuropharmacology
– volume: 84
  start-page: 797
  year: 2018
  end-page: 811
  ident: bib18
  article-title: Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts
  publication-title: Ann. Neurol.
– volume: 321
  start-page: 848
  year: 2008
  end-page: 851
  ident: bib46
  article-title: Dichotomous dopaminergic control of striatal synaptic plasticity
  publication-title: Science
– volume: 30
  start-page: 484
  year: 2015
  end-page: 493
  ident: bib19
  article-title: Zooming in on the small: the plasticity of striatal dendritic spines in L-DOPA-induced dyskinesia
  publication-title: Mov. Disord.
– volume: 20
  start-page: 1255
  year: 2004
  end-page: 1266
  ident: bib44
  article-title: Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease
  publication-title: Eur. J. Neurosci.
– volume: 32
  start-page: 17921
  year: 2012
  end-page: 17931
  ident: bib1
  article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease
  publication-title: J. Neurosci.
– volume: 9
  start-page: 251
  year: 2006
  end-page: 259
  ident: bib15
  article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models
  publication-title: Nat. Neurosci.
– volume: 17
  start-page: 455
  year: 2002
  end-page: 466
  ident: bib35
  article-title: Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat
  publication-title: Mov. Disord.
– volume: 13
  start-page: S251
  year: 2007
  end-page: S258
  ident: bib16
  article-title: Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism
  publication-title: Park. Relat. Disord.
– volume: 9
  start-page: 245
  year: 2015
  ident: bib34
  article-title: NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients
  publication-title: Front. Cell. Neurosci.
– volume: 33
  start-page: 877
  year: 2018
  end-page: 888
  ident: bib36
  article-title: Levodopa treatment and dendritic spine pathology
  publication-title: Mov. Disord.
– volume: 63
  start-page: 201
  year: 2014
  end-page: 209
  ident: bib49
  article-title: Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease
  publication-title: Neurobiol. Dis.
– volume: 21
  start-page: 322
  year: 2011
  end-page: 327
  ident: bib30
  article-title: Neuromodulatory control of striatal plasticity and behavior
  publication-title: Curr. Opin. Neurobiol.
– volume: 125
  start-page: 431
  year: 2018
  end-page: 447
  ident: bib52
  article-title: Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity?
  publication-title: J. Neural. Transm.
– volume: 71
  start-page: 24
  year: 2014
  end-page: 33
  ident: bib42
  article-title: Lack of depotentiation at basal ganglia output neurons in PD patients with levodopa-induced dyskinesia
  publication-title: Neurobiol. Dis.
– volume: 50
  start-page: 275
  year: 1996
  end-page: 331
  ident: bib45
  article-title: The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments
  publication-title: Prog. Neurobiol.
– volume: 1
  start-page: 339
  year: 2011
  ident: 10.1016/j.neuropharm.2022.109205_bib31
  article-title: Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a mouse model of Parkinson's disease
  publication-title: J. Parkinsons Dis.
  doi: 10.3233/JPD-2011-11066
– volume: 29
  start-page: 1323
  year: 2020
  ident: 10.1016/j.neuropharm.2022.109205_bib17
  article-title: A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson's disease: translational gaps or a failing industry innovation model?
  publication-title: Expet Opin. Invest. Drugs
  doi: 10.1080/13543784.2020.1839047
– volume: 215
  start-page: 220
  year: 2009
  ident: 10.1016/j.neuropharm.2022.109205_bib51
  article-title: Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2008.09.025
– volume: 217
  start-page: 421
  year: 2012
  ident: 10.1016/j.neuropharm.2022.109205_bib24
  article-title: A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-011-0340-y
– volume: 95
  start-page: 121
  year: 2015
  ident: 10.1016/j.neuropharm.2022.109205_bib27
  article-title: Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2015.02.023
– volume: 21
  start-page: 322
  year: 2011
  ident: 10.1016/j.neuropharm.2022.109205_bib30
  article-title: Neuromodulatory control of striatal plasticity and behavior
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.01.005
– volume: 10
  start-page: 2694
  year: 1998
  ident: 10.1016/j.neuropharm.2022.109205_bib10
  article-title: L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA
  publication-title: Eur. J. Neurosci.
– volume: 33
  start-page: 1619
  year: 2018
  ident: 10.1016/j.neuropharm.2022.109205_bib13
  article-title: An mGlu4-positive allosteric modulator alleviates parkinsonism in primates
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27462
– volume: 445
  start-page: 643
  year: 2007
  ident: 10.1016/j.neuropharm.2022.109205_bib29
  article-title: Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models
  publication-title: Nature
  doi: 10.1038/nature05506
– volume: 30
  start-page: 228
  year: 2007
  ident: 10.1016/j.neuropharm.2022.109205_bib48
  article-title: D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.03.008
– volume: 37
  start-page: 1088
  year: 2022
  ident: 10.1016/j.neuropharm.2022.109205_bib43
  article-title: A randomized, double-blind, controlled phase II study of foliglurax in Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.28970
– volume: 134
  start-page: 2312
  year: 2011
  ident: 10.1016/j.neuropharm.2022.109205_bib26
  article-title: Abnormal bidirectional plasticity-like effects in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/awr158
– volume: 196
  start-page: 527
  issue: Pt 4
  year: 2000
  ident: 10.1016/j.neuropharm.2022.109205_bib3
  article-title: Synaptic organisation of the basal ganglia
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.2000.19640527.x
– volume: 321
  start-page: 848
  year: 2008
  ident: 10.1016/j.neuropharm.2022.109205_bib46
  article-title: Dichotomous dopaminergic control of striatal synaptic plasticity
  publication-title: Science
  doi: 10.1126/science.1160575
– volume: 13
  start-page: 685
  year: 2003
  ident: 10.1016/j.neuropharm.2022.109205_bib53
  article-title: Neural mechanisms of reward-related motor learning
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2003.10.013
– volume: 75
  start-page: 711
  year: 2014
  ident: 10.1016/j.neuropharm.2022.109205_bib47
  article-title: L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2013.05.006
– volume: 33
  start-page: 877
  year: 2018
  ident: 10.1016/j.neuropharm.2022.109205_bib36
  article-title: Levodopa treatment and dendritic spine pathology
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27172
– volume: 32
  start-page: 17921
  year: 2012
  ident: 10.1016/j.neuropharm.2022.109205_bib1
  article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2664-12.2012
– volume: 125
  start-page: 431
  year: 2018
  ident: 10.1016/j.neuropharm.2022.109205_bib52
  article-title: Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity?
  publication-title: J. Neural. Transm.
  doi: 10.1007/s00702-017-1735-6
– volume: 37
  start-page: 289
  year: 2014
  ident: 10.1016/j.neuropharm.2022.109205_bib25
  article-title: Basal ganglia circuits for reward value-guided behavior
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-013924
– volume: 135
  start-page: 308
  year: 2018
  ident: 10.1016/j.neuropharm.2022.109205_bib12
  article-title: mGlu4 allosteric modulation for treating Parkinson's disease
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2018.03.027
– volume: 34
  start-page: 441
  year: 2011
  ident: 10.1016/j.neuropharm.2022.109205_bib22
  article-title: Modulation of striatal projection systems by dopamine
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-061010-113641
– volume: 71
  start-page: 24
  year: 2014
  ident: 10.1016/j.neuropharm.2022.109205_bib42
  article-title: Lack of depotentiation at basal ganglia output neurons in PD patients with levodopa-induced dyskinesia
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2014.08.002
– volume: 50
  start-page: 275
  year: 1996
  ident: 10.1016/j.neuropharm.2022.109205_bib45
  article-title: The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(96)00040-8
– volume: 14
  start-page: 154
  year: 2011
  ident: 10.1016/j.neuropharm.2022.109205_bib33
  article-title: From reinforcement learning models to psychiatric and neurological disorders
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2723
– volume: 60
  start-page: 8515
  year: 2017
  ident: 10.1016/j.neuropharm.2022.109205_bib14
  article-title: Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b00991
– volume: 26
  start-page: 2914
  year: 2006
  ident: 10.1016/j.neuropharm.2022.109205_bib21
  article-title: A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5326-05.2006
– volume: 13
  start-page: 139
  year: 1985
  ident: 10.1016/j.neuropharm.2022.109205_bib38
  article-title: Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(85)90026-3
– volume: 5
  start-page: 5316
  year: 2014
  ident: 10.1016/j.neuropharm.2022.109205_bib20
  article-title: Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6316
– volume: 9
  year: 2007
  ident: 10.1016/j.neuropharm.2022.109205_bib11
  article-title: Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice
  publication-title: Curr Protoc Neurosci Chapter
– volume: 27
  start-page: 1
  year: 1997
  ident: 10.1016/j.neuropharm.2022.109205_bib28
  article-title: Neostriatal cell subtypes and their functional roles
  publication-title: Neurosci. Res.
  doi: 10.1016/S0168-0102(96)01134-0
– volume: 134
  start-page: 375
  year: 2012
  ident: 10.1016/j.neuropharm.2022.109205_bib41
  article-title: Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia
  publication-title: Brain
  doi: 10.1093/brain/awq342
– volume: 9
  start-page: 251
  year: 2006
  ident: 10.1016/j.neuropharm.2022.109205_bib15
  article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1632
– volume: 30
  start-page: 211
  year: 2007
  ident: 10.1016/j.neuropharm.2022.109205_bib7
  article-title: Dopamine-mediated regulation of corticostriatal synaptic plasticity
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.03.001
– volume: 367
  start-page: 69
  year: 1971
  ident: 10.1016/j.neuropharm.2022.109205_bib50
  article-title: Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system
  publication-title: Acta Physiol. Scand. Suppl.
  doi: 10.1111/j.1365-201X.1971.tb11000.x
– volume: 132
  start-page: 96
  year: 2015
  ident: 10.1016/j.neuropharm.2022.109205_bib2
  article-title: Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2015.07.002
– volume: 47
  start-page: S60
  year: 2000
  ident: 10.1016/j.neuropharm.2022.109205_bib6
  article-title: Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity?
  publication-title: Ann. Neurol.
– volume: 13
  start-page: S251
  issue: Suppl. 3
  year: 2007
  ident: 10.1016/j.neuropharm.2022.109205_bib16
  article-title: Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism
  publication-title: Park. Relat. Disord.
  doi: 10.1016/S1353-8020(08)70012-9
– volume: 30
  start-page: 484
  year: 2015
  ident: 10.1016/j.neuropharm.2022.109205_bib19
  article-title: Zooming in on the small: the plasticity of striatal dendritic spines in L-DOPA-induced dyskinesia
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26139
– volume: 9
  start-page: 245
  year: 2015
  ident: 10.1016/j.neuropharm.2022.109205_bib34
  article-title: NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2015.00245
– volume: 63
  start-page: 201
  year: 2014
  ident: 10.1016/j.neuropharm.2022.109205_bib49
  article-title: Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2013.11.017
– volume: 17
  start-page: 455
  year: 2002
  ident: 10.1016/j.neuropharm.2022.109205_bib35
  article-title: Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10107
– volume: 58
  start-page: 951
  year: 2010
  ident: 10.1016/j.neuropharm.2022.109205_bib32
  article-title: Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2010.01.008
– volume: 6
  start-page: 501
  year: 2003
  ident: 10.1016/j.neuropharm.2022.109205_bib39
  article-title: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1040
– volume: 370
  year: 2015
  ident: 10.1016/j.neuropharm.2022.109205_bib5
  article-title: Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2014.0184
– volume: 86
  start-page: 140
  year: 2016
  ident: 10.1016/j.neuropharm.2022.109205_bib23
  article-title: Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.11.022
– volume: 20
  start-page: 1255
  year: 2004
  ident: 10.1016/j.neuropharm.2022.109205_bib44
  article-title: Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2004.03591.x
– volume: 64
  start-page: 545
  year: 2005
  ident: 10.1016/j.neuropharm.2022.109205_bib54
  article-title: Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000150591.33787.A4
– volume: 30
  start-page: 14182
  year: 2010
  ident: 10.1016/j.neuropharm.2022.109205_bib37
  article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2149-10.2010
– volume: 33
  start-page: 11655
  year: 2013
  ident: 10.1016/j.neuropharm.2022.109205_bib55
  article-title: Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0288-13.2013
– volume: 84
  start-page: 797
  year: 2018
  ident: 10.1016/j.neuropharm.2022.109205_bib18
  article-title: Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25364
– volume: 29
  start-page: 327
  year: 2008
  ident: 10.1016/j.neuropharm.2022.109205_bib40
  article-title: l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2007.10.001
– volume: 12
  start-page: 230
  year: 2020
  ident: 10.1016/j.neuropharm.2022.109205_bib4
  article-title: Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2020.00230
– volume: 168
  year: 2022
  ident: 10.1016/j.neuropharm.2022.109205_bib9
  article-title: Striatal glutamatergic hyperactivity in Parkinson's disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2022.105697
SSID ssj0004818
Score 2.4254403
Snippet By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy...
By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (L-DOPA) may restore the synergy...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109205
SubjectTerms Basal ganglia
Dyskinesia
Glutamate
Life Sciences
mGlu4
Movement disorder
Positive allosteric modulator
Spines
Striatum
Synaptic plasticity
Title A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia
URI https://dx.doi.org/10.1016/j.neuropharm.2022.109205
https://www.proquest.com/docview/2700314384
https://hal.science/hal-03974743
Volume 218
WOSCitedRecordID wos000844046700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7064
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004818
  issn: 0028-3908
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZJu4e9jF1ZdinaGH1JHXyRY4k9ha5bN0rJQwZ5M7JsM3epE-IktE_7SfuLO0e2rLTbWDYYGBEEOrZzPp-LdC6EvBEyiLhkypEiUQ4bwsBdlTu5D-o8zxkfDnWi8Fl0fs6nUzHudL6bXJjNLCpLfnUlFv-V1TAHzMbU2b9gd0sUJuA3MB1GYDuMOzF-1K8DsTZZHw_VsRBCobDjDTbqmutDgcsPszXrg6zLFrrZzlK3l8mqvm7igemRCzCqMd56pdMCJV7FJSaaYOMcJDFz3oG77YBHv8YIgvS6-ooB9IXctnZ15Y-FLY7dbt8fSwAfJj7pMFvQUcuiVQ_jQoGPXmwdhtj92lp2a_TKyhJDkYaFRbUljtUxTABSs50BnrDXbmeY9ALuBMLl2yLab2R0LWQ9V_g6V_tn-V9vRVwMyvb9BniTgV1ys-T2LVXYBiia2LeL2FKKkVJcU-qSfT8KBYjR_dHHk-knm4rLPW4Kf-NbNMFjdUjhr5_qdxZR9wuG5t6yELTZM7lP7jX-Ch3VOHtAOln5kByOa55eH9GJzd-rjughHW9x-xH5NqIGjNSCkbZgpPOcajDSFozUgJEaMFILRlqUVOKFYKQajEjiJhipBeNj8vn9yeT41Glafjgq4OEKwJBHnsglH4Z-krp5kqgwFamfsgwsVRGEWaBYBHIF3BgWJuBto4JKhM9BGQVgij8he-W8zJ4SKkQk_WHCJFchU8Asj4XCz1kGJn2S8KhHIvO3x6qph49tWWbxn5jfI167clHXhNlhzVvD2bixbWubNQbo7rD6NYChvRmWhD8dncU45wa4I8CCjdcjrwxWYtARePAHH998XcUYXBKAY8TZs3949Ofkrv1QX5C91XKdvSR31GZVVMsD0o2m_KD5DH4AxHzqcQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+positive+allosteric+modulator+of+mGlu4+receptors+restores+striatal+plasticity+in+an+animal+model+of+l-Dopa-induced+dyskinesia&rft.jtitle=Neuropharmacology&rft.au=Calabrese%2C+Valeria&rft.au=Picconi%2C+Barbara&rft.au=Heck%2C+Nicolas&rft.au=Campanelli%2C+Federica&rft.date=2022-11-01&rft.issn=0028-3908&rft.volume=218&rft.spage=109205&rft_id=info:doi/10.1016%2Fj.neuropharm.2022.109205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuropharm_2022_109205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon