A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia
By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). Thi...
Uloženo v:
| Vydáno v: | Neuropharmacology Ročník 218; s. 109205 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2022
Elsevier |
| Témata: | |
| ISSN: | 0028-3908, 1873-7064, 1873-7064 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.
•MGluR4 PAM foliglurax reduces the excess of glutamatergic transmission in a PD rat model.•Foliglurax and l-DOPA co-administration attenuates the intensity of l-DOPA-induced dyskinesia.•l-DOPA and modulation of mGluRs rescue dopamine-dependent striatal bidirectional plasticity.•MGluR4 PAM combined with l-DOPA restores dendritic spine density in a dose-dependent manner. |
|---|---|
| AbstractList | By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity. By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (L-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with L-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with L-DOPA or L-DOPA plus foliglurax. In slices from the same rats, patchclamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When coadministered with L-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dosedependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of L-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity. By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity. •MGluR4 PAM foliglurax reduces the excess of glutamatergic transmission in a PD rat model.•Foliglurax and l-DOPA co-administration attenuates the intensity of l-DOPA-induced dyskinesia.•l-DOPA and modulation of mGluRs rescue dopamine-dependent striatal bidirectional plasticity.•MGluR4 PAM combined with l-DOPA restores dendritic spine density in a dose-dependent manner. |
| ArticleNumber | 109205 |
| Author | Calabresi, Paolo Sciaccaluga, Miriam Marino, Gioia Heck, Nicolas Anceaume, Estelle Charvin, Delphine Caboche, Jocelyne Natale, Giuseppina Picconi, Barbara Calabrese, Valeria Campanelli, Federica Cuoc, Emeline Conquet, François Tozzi, Alessandro Ghiglieri, Veronica |
| Author_xml | – sequence: 1 givenname: Valeria surname: Calabrese fullname: Calabrese, Valeria organization: San Raffaele University, Rome, 00166, Italy – sequence: 2 givenname: Barbara surname: Picconi fullname: Picconi, Barbara organization: San Raffaele University, Rome, 00166, Italy – sequence: 3 givenname: Nicolas surname: Heck fullname: Heck, Nicolas organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France – sequence: 4 givenname: Federica surname: Campanelli fullname: Campanelli, Federica organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy – sequence: 5 givenname: Giuseppina surname: Natale fullname: Natale, Giuseppina organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy – sequence: 6 givenname: Gioia surname: Marino fullname: Marino, Gioia organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy – sequence: 7 givenname: Miriam surname: Sciaccaluga fullname: Sciaccaluga, Miriam organization: Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy – sequence: 8 givenname: Veronica surname: Ghiglieri fullname: Ghiglieri, Veronica organization: San Raffaele University, Rome, 00166, Italy – sequence: 9 givenname: Alessandro surname: Tozzi fullname: Tozzi, Alessandro organization: Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy – sequence: 10 givenname: Estelle surname: Anceaume fullname: Anceaume, Estelle organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France – sequence: 11 givenname: Emeline surname: Cuoc fullname: Cuoc, Emeline organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France – sequence: 12 givenname: Jocelyne surname: Caboche fullname: Caboche, Jocelyne organization: CNRS, INSERM, Sorbonne University, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005, Paris, France – sequence: 13 givenname: François surname: Conquet fullname: Conquet, François organization: H. Lundbeck A/S, 2500, Valby, Denmark – sequence: 14 givenname: Paolo surname: Calabresi fullname: Calabresi, Paolo email: paolo.calabresi@policlinicogemelli.it organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy – sequence: 15 givenname: Delphine surname: Charvin fullname: Charvin, Delphine email: delphine.charvin@mindeedconsulting.com organization: H. Lundbeck A/S, 2500, Valby, Denmark |
| BackLink | https://hal.science/hal-03974743$$DView record in HAL |
| BookMark | eNqNkU-LFDEQxYOs4Ozqd8hRDz1W_vR0-iKM67orDHjRc0in02yNmU6bpAfmtF_dNK0seFEIVHi8-lFV75pcjWF0hFAGWwZs9_64Hd0cw_Ro4mnLgfMitxzqF2TDVCOqBnbyimwAuKpEC-oVuU7pCABSMbUhT3s6hYQZz44a70PKLqKlp9DP3uQQaRjo6d7PkkZn3VSUVH6pVJdoyhFNNp5O3qSMFvOF4kjN8vBU9IJxfkH46lOYTIVjP1vX0_6SfuDoEprX5OVgfHJvftcb8v3z3bfbh-rw9f7L7f5QWaHqXDE2NKwdjNrVvOth6Dpb923Pe-k4sFbUTljZmLaroZF1J8vmwFjXcgUSBG_EDXm3ch-N11Ms08WLDgb1w_6gFw1E28hGijMr3rerd4rh51yW1SdM1nlvRhfmpHkDIJgUShbrh9VqY0gpukGXI5iMYczRoNcM9JKSPurnlPSSkl5TKgD1F-DPcP_R-nFtdeVuZ3RRJ4tuLPfFklXWfcB_Q34BrIy2Qw |
| CitedBy_id | crossref_primary_10_1016_j_isci_2024_110123 crossref_primary_10_1016_j_brainres_2023_148349 crossref_primary_10_1016_j_jchemneu_2024_102422 crossref_primary_10_1016_j_pneurobio_2023_102548 crossref_primary_10_3390_cells12232754 |
| Cites_doi | 10.3233/JPD-2011-11066 10.1080/13543784.2020.1839047 10.1016/j.expneurol.2008.09.025 10.1007/s00429-011-0340-y 10.1016/j.neuropharm.2015.02.023 10.1016/j.conb.2011.01.005 10.1002/mds.27462 10.1038/nature05506 10.1016/j.tins.2007.03.008 10.1002/mds.28970 10.1093/brain/awr158 10.1046/j.1469-7580.2000.19640527.x 10.1126/science.1160575 10.1016/j.conb.2003.10.013 10.1016/j.biopsych.2013.05.006 10.1002/mds.27172 10.1523/JNEUROSCI.2664-12.2012 10.1007/s00702-017-1735-6 10.1146/annurev-neuro-071013-013924 10.1016/j.neuropharm.2018.03.027 10.1146/annurev-neuro-061010-113641 10.1016/j.nbd.2014.08.002 10.1016/S0301-0082(96)00040-8 10.1038/nn.2723 10.1021/acs.jmedchem.7b00991 10.1523/JNEUROSCI.5326-05.2006 10.1016/0165-0270(85)90026-3 10.1038/ncomms6316 10.1016/S0168-0102(96)01134-0 10.1093/brain/awq342 10.1038/nn1632 10.1016/j.tins.2007.03.001 10.1111/j.1365-201X.1971.tb11000.x 10.1016/j.pneurobio.2015.07.002 10.1016/S1353-8020(08)70012-9 10.1002/mds.26139 10.3389/fncel.2015.00245 10.1016/j.nbd.2013.11.017 10.1002/mds.10107 10.1016/j.neuropharm.2010.01.008 10.1038/nn1040 10.1098/rstb.2014.0184 10.1016/j.nbd.2015.11.022 10.1111/j.1460-9568.2004.03591.x 10.1212/01.WNL.0000150591.33787.A4 10.1523/JNEUROSCI.2149-10.2010 10.1523/JNEUROSCI.0288-13.2013 10.1002/ana.25364 10.1016/j.nbd.2007.10.001 10.3389/fnagi.2020.00230 10.1016/j.nbd.2022.105697 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7X8 1XC |
| DOI | 10.1016/j.neuropharm.2022.109205 |
| DatabaseName | CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1873-7064 |
| ExternalDocumentID | oai:HAL:hal-03974743v1 10_1016_j_neuropharm_2022_109205 S0028390822002647 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXLA AAXUO ABCQJ ABFRF ABIVO ABJNI ABMAC ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SNS SPCBC SSN SSP SSZ T5K TEORI ~G- .55 .GJ 29N 3O- 41~ 53G 5VS 9DU AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMQ HMT HVGLF HZ~ R2- SEW SPT WUQ X7M XOL ZGI ZXP ~HD 7X8 1XC |
| ID | FETCH-LOGICAL-c385t-11f719fa8652bd0fbbc5d9d2d4e201935e3c47a9b50745b4873011b9280403273 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844046700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-3908 1873-7064 |
| IngestDate | Tue Oct 14 20:46:58 EDT 2025 Sun Sep 28 05:48:01 EDT 2025 Tue Nov 18 21:21:56 EST 2025 Sat Nov 29 07:29:19 EST 2025 Fri Feb 23 02:37:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | mGlu4 Striatum Basal ganglia Movement disorder Synaptic plasticity Positive allosteric modulator Glutamate Spines Dyskinesia Dyskinesia Glutamate Synaptic plasticity mGlu4 Spines Basal ganglia Striatum Positive allosteric modulator Movement disorder |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c385t-11f719fa8652bd0fbbc5d9d2d4e201935e3c47a9b50745b4873011b9280403273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4742-7055 0000-0002-3116-7685 0000-0002-5754-8873 |
| PQID | 2700314384 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03974743v1 proquest_miscellaneous_2700314384 crossref_citationtrail_10_1016_j_neuropharm_2022_109205 crossref_primary_10_1016_j_neuropharm_2022_109205 elsevier_sciencedirect_doi_10_1016_j_neuropharm_2022_109205 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 2022-11-00 20221101 2022-11 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neuropharmacology |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Cenci, Lee, Bjorklund (bib10) 1998; 10 Picconi, Centonze, Hakansson, Bernardi, Greengard, Fisone, Cenci, Calabresi (bib39) 2003; 6 Zaja-Milatovic, Milatovic, Schantz, Zhang, Montine, Samii, Deutch, Montine (bib54) 2005; 64 Charvin, Di Paolo, Bezard, Gregoire, Takano, Duvey, Pioli, Halldin, Medori, Conquet (bib13) 2018; 33 Villalba, Smith (bib52) 2018; 125 Ghiglieri, Mineo, Vannelli, Cacace, Mancini, Pendolino, Napolitano, di Maio, Mellone, Stanic, Tronci, Fidalgo, Stancampiano, Carta, Calabresi, Gardoni, Usiello, Picconi (bib23) 2016; 86 Picconi, Paille, Ghiglieri, Bagetta, Barone, Lindgren, Bernardi, Angela Cenci, Calabresi (bib40) 2008; 29 Doller, Bespalov, Miller, Pietraszek, Kalinichev (bib17) 2020; 29 Zhang, Meredith, Mendoza-Elias, Rademacher, Tseng, Steece-Collier (bib55) 2013; 33 Bastide, Meissner, Picconi, Fasano, Fernagut, Feyder, Francardo, Alcacer, Ding, Brambilla, Fisone, Jon Stoessl, Bourdenx, Engeln, Navailles, De Deurwaerdere, Ko, Simola, Morelli, Groc, Rodriguez, Gurevich, Quik, Morari, Mellone, Gardoni, Tronci, Guehl, Tison, Crossman, Kang, Steece-Collier, Fox, Carta, Angela Cenci, Bezard (bib2) 2015; 132 Charvin (bib12) 2018; 135 Nishijima, Ueno, Funamizu, Ueno, Tomiyama (bib36) 2018; 33 Charvin, Pomel, Ortiz, Frauli, Scheffler, Steinberg, Baron, Deshons, Rudigier, Thiarc, Morice, Manteau, Mayer, Graham, Giethlen, Brugger, Hedou, Conquet, Schann (bib14) 2017; 60 Kawaguchi (bib28) 1997; 27 Fieblinger, Cenci (bib19) 2015; 30 Schwarting, Huston (bib45) 1996; 50 Villalba, Lee, Smith (bib51) 2009; 215 Toy, Petzinger, Leyshon, Akopian, Walsh, Hoffman, Vuckovic, Jakowec (bib49) 2014; 63 Lopez, Bonito-Oliva, Pallottino, Acher, Fisone (bib31) 2011; 1 Rascol, Medori, Baayen, Such, Meulien (bib43) 2022; 37 Wickens, Reynolds, Hyland (bib53) 2003; 13 Surmeier, Ding, Day, Wang, Shen (bib48) 2007; 30 Cenci, Lundblad (bib11) 2007; 9 Iderberg, Maslava, Thompson, Bubser, Niswender, Hopkins, Lindsley, Conn, Jones, Cenci (bib27) 2015; 95 Lovinger (bib32) 2010; 58 Hikosaka, Kim, Yasuda, Yamamoto (bib25) 2014; 37 Kreitzer, Malenka (bib29) 2007; 445 Fieblinger, Graves, Sebel, Alcacer, Plotkin, Gertler, Chan, Heiman, Greengard, Cenci, Surmeier (bib20) 2014; 5 Gardoni, Picconi, Ghiglieri, Polli, Bagetta, Bernardi, Cattabeni, Di Luca, Calabresi (bib21) 2006; 26 Huang, Rothwell, Lu, Chuang, Chen (bib26) 2011; 134 Calabresi, Picconi, Tozzi, Di Filippo (bib7) 2007; 30 Day, Wang, Ding, An, Ingham, Shering, Wokosin, Ilijic, Sun, Sampson, Mugnaini, Deutch, Sesack, Arbuthnott, Surmeier (bib15) 2006; 9 Espay, Morgante, Merola, Fasano, Marsili, Fox, Bezard, Picconi, Calabresi, Lang (bib18) 2018; 84 Calabrese, Di Maio, Marino, Cardinale, Natale, De Rosa, Campanelli, Mancini, Napolitano, Avallone, Calabresi, Usiello, Ghiglieri, Picconi (bib4) 2020; 12 Nash, Brotchie (bib35) 2002; 17 Heck, Betuing, Vanhoutte, Caboche (bib24) 2012; 217 Ungerstedt (bib50) 1971; 367 Bolam, Hanley, Booth, Bevan (bib3) 2000; 196 Robelet, Melon, Guillet, Salin, Kerkerian-Le Goff (bib44) 2004; 20 Maia, Frank (bib33) 2011; 14 Calabresi, Giacomini, Centonze, Bernardi (bib6) 2000; 47 Paille, Picconi, Bagetta, Ghiglieri, Sgobio, Di Filippo, Viscomi, Giampa, Fusco, Gardoni, Bernardi, Greengard, Di Luca, Calabresi (bib37) 2010; 30 Campanelli, Natale, Marino, Ghiglieri, Calabresi (bib9) 2022; 168 Shen, Flajolet, Greengard, Surmeier (bib46) 2008; 321 Gerfen, Surmeier (bib22) 2011; 34 Lerner, Kreitzer (bib30) 2011; 21 Paxinos, Watson, Pennisi, Topple (bib38) 1985; 13 Mellone, Stanic, Hernandez, Iglesias, Zianni, Longhi, Prigent, Picconi, Calabresi, Hirsch, Obeso, Di Luca, Gardoni (bib34) 2015; 9 Bagetta, Sgobio, Pendolino, Del Papa, Tozzi, Ghiglieri, Giampa, Zianni, Gardoni, Calabresi, Picconi (bib1) 2012; 32 Deutch, Colbran, Winder (bib16) 2007; 13 Prescott, Liu, Dostrovsky, Hodaie, Lozano, Hutchison (bib42) 2014; 71 Suarez, Solis, Carames, Taravini, Solis, Murer, Moratalla (bib47) 2014; 75 Picconi, Bagetta, Ghiglieri, Paillè, Di Filippo, Pendolino, Tozzi, Giampà, Fusco, Sgobio, Calabresi (bib41) 2012; 134 Calabresi, Ghiglieri, Mazzocchetti, Corbelli, Picconi (bib5) 2015; 370 Prescott (10.1016/j.neuropharm.2022.109205_bib42) 2014; 71 Deutch (10.1016/j.neuropharm.2022.109205_bib16) 2007; 13 Charvin (10.1016/j.neuropharm.2022.109205_bib13) 2018; 33 Mellone (10.1016/j.neuropharm.2022.109205_bib34) 2015; 9 Espay (10.1016/j.neuropharm.2022.109205_bib18) 2018; 84 Ungerstedt (10.1016/j.neuropharm.2022.109205_bib50) 1971; 367 Surmeier (10.1016/j.neuropharm.2022.109205_bib48) 2007; 30 Bastide (10.1016/j.neuropharm.2022.109205_bib2) 2015; 132 Lopez (10.1016/j.neuropharm.2022.109205_bib31) 2011; 1 Picconi (10.1016/j.neuropharm.2022.109205_bib40) 2008; 29 Suarez (10.1016/j.neuropharm.2022.109205_bib47) 2014; 75 Iderberg (10.1016/j.neuropharm.2022.109205_bib27) 2015; 95 Zhang (10.1016/j.neuropharm.2022.109205_bib55) 2013; 33 Bolam (10.1016/j.neuropharm.2022.109205_bib3) 2000; 196 Lovinger (10.1016/j.neuropharm.2022.109205_bib32) 2010; 58 Schwarting (10.1016/j.neuropharm.2022.109205_bib45) 1996; 50 Zaja-Milatovic (10.1016/j.neuropharm.2022.109205_bib54) 2005; 64 Bagetta (10.1016/j.neuropharm.2022.109205_bib1) 2012; 32 Heck (10.1016/j.neuropharm.2022.109205_bib24) 2012; 217 Picconi (10.1016/j.neuropharm.2022.109205_bib41) 2012; 134 Villalba (10.1016/j.neuropharm.2022.109205_bib51) 2009; 215 Ghiglieri (10.1016/j.neuropharm.2022.109205_bib23) 2016; 86 Shen (10.1016/j.neuropharm.2022.109205_bib46) 2008; 321 Charvin (10.1016/j.neuropharm.2022.109205_bib12) 2018; 135 Day (10.1016/j.neuropharm.2022.109205_bib15) 2006; 9 Wickens (10.1016/j.neuropharm.2022.109205_bib53) 2003; 13 Paille (10.1016/j.neuropharm.2022.109205_bib37) 2010; 30 Rascol (10.1016/j.neuropharm.2022.109205_bib43) 2022; 37 Lerner (10.1016/j.neuropharm.2022.109205_bib30) 2011; 21 Kreitzer (10.1016/j.neuropharm.2022.109205_bib29) 2007; 445 Gardoni (10.1016/j.neuropharm.2022.109205_bib21) 2006; 26 Campanelli (10.1016/j.neuropharm.2022.109205_bib9) 2022; 168 Hikosaka (10.1016/j.neuropharm.2022.109205_bib25) 2014; 37 Maia (10.1016/j.neuropharm.2022.109205_bib33) 2011; 14 Paxinos (10.1016/j.neuropharm.2022.109205_bib38) 1985; 13 Calabrese (10.1016/j.neuropharm.2022.109205_bib4) 2020; 12 Cenci (10.1016/j.neuropharm.2022.109205_bib10) 1998; 10 Doller (10.1016/j.neuropharm.2022.109205_bib17) 2020; 29 Nishijima (10.1016/j.neuropharm.2022.109205_bib36) 2018; 33 Fieblinger (10.1016/j.neuropharm.2022.109205_bib19) 2015; 30 Picconi (10.1016/j.neuropharm.2022.109205_bib39) 2003; 6 Robelet (10.1016/j.neuropharm.2022.109205_bib44) 2004; 20 Charvin (10.1016/j.neuropharm.2022.109205_bib14) 2017; 60 Calabresi (10.1016/j.neuropharm.2022.109205_bib7) 2007; 30 Calabresi (10.1016/j.neuropharm.2022.109205_bib6) 2000; 47 Cenci (10.1016/j.neuropharm.2022.109205_bib11) 2007; 9 Calabresi (10.1016/j.neuropharm.2022.109205_bib5) 2015; 370 Gerfen (10.1016/j.neuropharm.2022.109205_bib22) 2011; 34 Kawaguchi (10.1016/j.neuropharm.2022.109205_bib28) 1997; 27 Villalba (10.1016/j.neuropharm.2022.109205_bib52) 2018; 125 Fieblinger (10.1016/j.neuropharm.2022.109205_bib20) 2014; 5 Nash (10.1016/j.neuropharm.2022.109205_bib35) 2002; 17 Huang (10.1016/j.neuropharm.2022.109205_bib26) 2011; 134 Toy (10.1016/j.neuropharm.2022.109205_bib49) 2014; 63 |
| References_xml | – volume: 5 start-page: 5316 year: 2014 ident: bib20 article-title: Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia publication-title: Nat. Commun. – volume: 29 start-page: 1323 year: 2020 end-page: 1338 ident: bib17 article-title: A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson's disease: translational gaps or a failing industry innovation model? publication-title: Expet Opin. Invest. Drugs – volume: 6 start-page: 501 year: 2003 end-page: 506 ident: bib39 article-title: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia publication-title: Nat. Neurosci. – volume: 30 start-page: 228 year: 2007 end-page: 235 ident: bib48 article-title: D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons publication-title: Trends Neurosci. – volume: 196 start-page: 527 year: 2000 end-page: 542 ident: bib3 article-title: Synaptic organisation of the basal ganglia publication-title: J. Anat. – volume: 134 start-page: 2312 year: 2011 end-page: 2320 ident: bib26 article-title: Abnormal bidirectional plasticity-like effects in Parkinson's disease publication-title: Brain – volume: 30 start-page: 14182 year: 2010 end-page: 14193 ident: bib37 article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition publication-title: J. Neurosci. – volume: 13 start-page: 139 year: 1985 end-page: 143 ident: bib38 article-title: Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight publication-title: J. Neurosci. Methods – volume: 367 start-page: 69 year: 1971 end-page: 93 ident: bib50 article-title: Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system publication-title: Acta Physiol. Scand. Suppl. – volume: 27 start-page: 1 year: 1997 end-page: 8 ident: bib28 article-title: Neostriatal cell subtypes and their functional roles publication-title: Neurosci. Res. – volume: 9 year: 2007 ident: bib11 article-title: Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice publication-title: Curr Protoc Neurosci Chapter – volume: 10 start-page: 2694 year: 1998 end-page: 2706 ident: bib10 article-title: L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA publication-title: Eur. J. Neurosci. – volume: 37 start-page: 1088 year: 2022 end-page: 1093 ident: bib43 article-title: A randomized, double-blind, controlled phase II study of foliglurax in Parkinson's disease publication-title: Mov. Disord. – volume: 370 year: 2015 ident: bib5 article-title: Levodopa-induced plasticity: a double-edged sword in Parkinson's disease? publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 34 start-page: 441 year: 2011 end-page: 466 ident: bib22 article-title: Modulation of striatal projection systems by dopamine publication-title: Annu. Rev. Neurosci. – volume: 75 start-page: 711 year: 2014 end-page: 722 ident: bib47 article-title: L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice publication-title: Biol. Psychiatr. – volume: 134 start-page: 375 year: 2012 end-page: 387 ident: bib41 article-title: Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia publication-title: Brain – volume: 30 start-page: 211 year: 2007 end-page: 219 ident: bib7 article-title: Dopamine-mediated regulation of corticostriatal synaptic plasticity publication-title: Trends Neurosci. – volume: 168 year: 2022 ident: bib9 article-title: Striatal glutamatergic hyperactivity in Parkinson's disease publication-title: Neurobiol. Dis. – volume: 64 start-page: 545 year: 2005 end-page: 547 ident: bib54 article-title: Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease publication-title: Neurology – volume: 1 start-page: 339 year: 2011 end-page: 346 ident: bib31 article-title: Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a mouse model of Parkinson's disease publication-title: J. Parkinsons Dis. – volume: 33 start-page: 11655 year: 2013 end-page: 11667 ident: bib55 article-title: Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses publication-title: J. Neurosci. – volume: 29 start-page: 327 year: 2008 end-page: 335 ident: bib40 article-title: l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation publication-title: Neurobiol. Dis. – volume: 14 start-page: 154 year: 2011 end-page: 162 ident: bib33 article-title: From reinforcement learning models to psychiatric and neurological disorders publication-title: Nat. Neurosci. – volume: 86 start-page: 140 year: 2016 end-page: 153 ident: bib23 article-title: Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms publication-title: Neurobiol. Dis. – volume: 445 start-page: 643 year: 2007 end-page: 647 ident: bib29 article-title: Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models publication-title: Nature – volume: 26 start-page: 2914 year: 2006 end-page: 2922 ident: bib21 article-title: A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia publication-title: J. Neurosci. – volume: 215 start-page: 220 year: 2009 end-page: 227 ident: bib51 article-title: Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys publication-title: Exp. Neurol. – volume: 33 start-page: 1619 year: 2018 end-page: 1631 ident: bib13 article-title: An mGlu4-positive allosteric modulator alleviates parkinsonism in primates publication-title: Mov. Disord. – volume: 217 start-page: 421 year: 2012 end-page: 434 ident: bib24 article-title: A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease publication-title: Brain Struct. Funct. – volume: 58 start-page: 951 year: 2010 end-page: 961 ident: bib32 article-title: Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum publication-title: Neuropharmacology – volume: 13 start-page: 685 year: 2003 end-page: 690 ident: bib53 article-title: Neural mechanisms of reward-related motor learning publication-title: Curr. Opin. Neurobiol. – volume: 132 start-page: 96 year: 2015 end-page: 168 ident: bib2 article-title: Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease publication-title: Prog. Neurobiol. – volume: 60 start-page: 8515 year: 2017 end-page: 8537 ident: bib14 article-title: Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4 publication-title: J. Med. Chem. – volume: 95 start-page: 121 year: 2015 end-page: 129 ident: bib27 article-title: Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist publication-title: Neuropharmacology – volume: 37 start-page: 289 year: 2014 end-page: 306 ident: bib25 article-title: Basal ganglia circuits for reward value-guided behavior publication-title: Annu. Rev. Neurosci. – volume: 47 start-page: S60 year: 2000 end-page: S68 ident: bib6 article-title: Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? publication-title: Ann. Neurol. – volume: 12 start-page: 230 year: 2020 ident: bib4 article-title: Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia publication-title: Front. Aging Neurosci. – volume: 135 start-page: 308 year: 2018 end-page: 315 ident: bib12 article-title: mGlu4 allosteric modulation for treating Parkinson's disease publication-title: Neuropharmacology – volume: 84 start-page: 797 year: 2018 end-page: 811 ident: bib18 article-title: Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts publication-title: Ann. Neurol. – volume: 321 start-page: 848 year: 2008 end-page: 851 ident: bib46 article-title: Dichotomous dopaminergic control of striatal synaptic plasticity publication-title: Science – volume: 30 start-page: 484 year: 2015 end-page: 493 ident: bib19 article-title: Zooming in on the small: the plasticity of striatal dendritic spines in L-DOPA-induced dyskinesia publication-title: Mov. Disord. – volume: 20 start-page: 1255 year: 2004 end-page: 1266 ident: bib44 article-title: Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease publication-title: Eur. J. Neurosci. – volume: 32 start-page: 17921 year: 2012 end-page: 17931 ident: bib1 article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease publication-title: J. Neurosci. – volume: 9 start-page: 251 year: 2006 end-page: 259 ident: bib15 article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models publication-title: Nat. Neurosci. – volume: 17 start-page: 455 year: 2002 end-page: 466 ident: bib35 article-title: Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat publication-title: Mov. Disord. – volume: 13 start-page: S251 year: 2007 end-page: S258 ident: bib16 article-title: Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism publication-title: Park. Relat. Disord. – volume: 9 start-page: 245 year: 2015 ident: bib34 article-title: NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients publication-title: Front. Cell. Neurosci. – volume: 33 start-page: 877 year: 2018 end-page: 888 ident: bib36 article-title: Levodopa treatment and dendritic spine pathology publication-title: Mov. Disord. – volume: 63 start-page: 201 year: 2014 end-page: 209 ident: bib49 article-title: Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease publication-title: Neurobiol. Dis. – volume: 21 start-page: 322 year: 2011 end-page: 327 ident: bib30 article-title: Neuromodulatory control of striatal plasticity and behavior publication-title: Curr. Opin. Neurobiol. – volume: 125 start-page: 431 year: 2018 end-page: 447 ident: bib52 article-title: Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? publication-title: J. Neural. Transm. – volume: 71 start-page: 24 year: 2014 end-page: 33 ident: bib42 article-title: Lack of depotentiation at basal ganglia output neurons in PD patients with levodopa-induced dyskinesia publication-title: Neurobiol. Dis. – volume: 50 start-page: 275 year: 1996 end-page: 331 ident: bib45 article-title: The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments publication-title: Prog. Neurobiol. – volume: 1 start-page: 339 year: 2011 ident: 10.1016/j.neuropharm.2022.109205_bib31 article-title: Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a mouse model of Parkinson's disease publication-title: J. Parkinsons Dis. doi: 10.3233/JPD-2011-11066 – volume: 29 start-page: 1323 year: 2020 ident: 10.1016/j.neuropharm.2022.109205_bib17 article-title: A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson's disease: translational gaps or a failing industry innovation model? publication-title: Expet Opin. Invest. Drugs doi: 10.1080/13543784.2020.1839047 – volume: 215 start-page: 220 year: 2009 ident: 10.1016/j.neuropharm.2022.109205_bib51 article-title: Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2008.09.025 – volume: 217 start-page: 421 year: 2012 ident: 10.1016/j.neuropharm.2022.109205_bib24 article-title: A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease publication-title: Brain Struct. Funct. doi: 10.1007/s00429-011-0340-y – volume: 95 start-page: 121 year: 2015 ident: 10.1016/j.neuropharm.2022.109205_bib27 article-title: Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.02.023 – volume: 21 start-page: 322 year: 2011 ident: 10.1016/j.neuropharm.2022.109205_bib30 article-title: Neuromodulatory control of striatal plasticity and behavior publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.01.005 – volume: 10 start-page: 2694 year: 1998 ident: 10.1016/j.neuropharm.2022.109205_bib10 article-title: L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA publication-title: Eur. J. Neurosci. – volume: 33 start-page: 1619 year: 2018 ident: 10.1016/j.neuropharm.2022.109205_bib13 article-title: An mGlu4-positive allosteric modulator alleviates parkinsonism in primates publication-title: Mov. Disord. doi: 10.1002/mds.27462 – volume: 445 start-page: 643 year: 2007 ident: 10.1016/j.neuropharm.2022.109205_bib29 article-title: Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models publication-title: Nature doi: 10.1038/nature05506 – volume: 30 start-page: 228 year: 2007 ident: 10.1016/j.neuropharm.2022.109205_bib48 article-title: D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.03.008 – volume: 37 start-page: 1088 year: 2022 ident: 10.1016/j.neuropharm.2022.109205_bib43 article-title: A randomized, double-blind, controlled phase II study of foliglurax in Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.28970 – volume: 134 start-page: 2312 year: 2011 ident: 10.1016/j.neuropharm.2022.109205_bib26 article-title: Abnormal bidirectional plasticity-like effects in Parkinson's disease publication-title: Brain doi: 10.1093/brain/awr158 – volume: 196 start-page: 527 issue: Pt 4 year: 2000 ident: 10.1016/j.neuropharm.2022.109205_bib3 article-title: Synaptic organisation of the basal ganglia publication-title: J. Anat. doi: 10.1046/j.1469-7580.2000.19640527.x – volume: 321 start-page: 848 year: 2008 ident: 10.1016/j.neuropharm.2022.109205_bib46 article-title: Dichotomous dopaminergic control of striatal synaptic plasticity publication-title: Science doi: 10.1126/science.1160575 – volume: 13 start-page: 685 year: 2003 ident: 10.1016/j.neuropharm.2022.109205_bib53 article-title: Neural mechanisms of reward-related motor learning publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2003.10.013 – volume: 75 start-page: 711 year: 2014 ident: 10.1016/j.neuropharm.2022.109205_bib47 article-title: L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2013.05.006 – volume: 33 start-page: 877 year: 2018 ident: 10.1016/j.neuropharm.2022.109205_bib36 article-title: Levodopa treatment and dendritic spine pathology publication-title: Mov. Disord. doi: 10.1002/mds.27172 – volume: 32 start-page: 17921 year: 2012 ident: 10.1016/j.neuropharm.2022.109205_bib1 article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2664-12.2012 – volume: 125 start-page: 431 year: 2018 ident: 10.1016/j.neuropharm.2022.109205_bib52 article-title: Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? publication-title: J. Neural. Transm. doi: 10.1007/s00702-017-1735-6 – volume: 37 start-page: 289 year: 2014 ident: 10.1016/j.neuropharm.2022.109205_bib25 article-title: Basal ganglia circuits for reward value-guided behavior publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-013924 – volume: 135 start-page: 308 year: 2018 ident: 10.1016/j.neuropharm.2022.109205_bib12 article-title: mGlu4 allosteric modulation for treating Parkinson's disease publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.03.027 – volume: 34 start-page: 441 year: 2011 ident: 10.1016/j.neuropharm.2022.109205_bib22 article-title: Modulation of striatal projection systems by dopamine publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-061010-113641 – volume: 71 start-page: 24 year: 2014 ident: 10.1016/j.neuropharm.2022.109205_bib42 article-title: Lack of depotentiation at basal ganglia output neurons in PD patients with levodopa-induced dyskinesia publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.08.002 – volume: 50 start-page: 275 year: 1996 ident: 10.1016/j.neuropharm.2022.109205_bib45 article-title: The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(96)00040-8 – volume: 14 start-page: 154 year: 2011 ident: 10.1016/j.neuropharm.2022.109205_bib33 article-title: From reinforcement learning models to psychiatric and neurological disorders publication-title: Nat. Neurosci. doi: 10.1038/nn.2723 – volume: 60 start-page: 8515 year: 2017 ident: 10.1016/j.neuropharm.2022.109205_bib14 article-title: Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b00991 – volume: 26 start-page: 2914 year: 2006 ident: 10.1016/j.neuropharm.2022.109205_bib21 article-title: A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5326-05.2006 – volume: 13 start-page: 139 year: 1985 ident: 10.1016/j.neuropharm.2022.109205_bib38 article-title: Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(85)90026-3 – volume: 5 start-page: 5316 year: 2014 ident: 10.1016/j.neuropharm.2022.109205_bib20 article-title: Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia publication-title: Nat. Commun. doi: 10.1038/ncomms6316 – volume: 9 year: 2007 ident: 10.1016/j.neuropharm.2022.109205_bib11 article-title: Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice publication-title: Curr Protoc Neurosci Chapter – volume: 27 start-page: 1 year: 1997 ident: 10.1016/j.neuropharm.2022.109205_bib28 article-title: Neostriatal cell subtypes and their functional roles publication-title: Neurosci. Res. doi: 10.1016/S0168-0102(96)01134-0 – volume: 134 start-page: 375 year: 2012 ident: 10.1016/j.neuropharm.2022.109205_bib41 article-title: Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia publication-title: Brain doi: 10.1093/brain/awq342 – volume: 9 start-page: 251 year: 2006 ident: 10.1016/j.neuropharm.2022.109205_bib15 article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models publication-title: Nat. Neurosci. doi: 10.1038/nn1632 – volume: 30 start-page: 211 year: 2007 ident: 10.1016/j.neuropharm.2022.109205_bib7 article-title: Dopamine-mediated regulation of corticostriatal synaptic plasticity publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.03.001 – volume: 367 start-page: 69 year: 1971 ident: 10.1016/j.neuropharm.2022.109205_bib50 article-title: Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system publication-title: Acta Physiol. Scand. Suppl. doi: 10.1111/j.1365-201X.1971.tb11000.x – volume: 132 start-page: 96 year: 2015 ident: 10.1016/j.neuropharm.2022.109205_bib2 article-title: Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2015.07.002 – volume: 47 start-page: S60 year: 2000 ident: 10.1016/j.neuropharm.2022.109205_bib6 article-title: Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? publication-title: Ann. Neurol. – volume: 13 start-page: S251 issue: Suppl. 3 year: 2007 ident: 10.1016/j.neuropharm.2022.109205_bib16 article-title: Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism publication-title: Park. Relat. Disord. doi: 10.1016/S1353-8020(08)70012-9 – volume: 30 start-page: 484 year: 2015 ident: 10.1016/j.neuropharm.2022.109205_bib19 article-title: Zooming in on the small: the plasticity of striatal dendritic spines in L-DOPA-induced dyskinesia publication-title: Mov. Disord. doi: 10.1002/mds.26139 – volume: 9 start-page: 245 year: 2015 ident: 10.1016/j.neuropharm.2022.109205_bib34 article-title: NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00245 – volume: 63 start-page: 201 year: 2014 ident: 10.1016/j.neuropharm.2022.109205_bib49 article-title: Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2013.11.017 – volume: 17 start-page: 455 year: 2002 ident: 10.1016/j.neuropharm.2022.109205_bib35 article-title: Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat publication-title: Mov. Disord. doi: 10.1002/mds.10107 – volume: 58 start-page: 951 year: 2010 ident: 10.1016/j.neuropharm.2022.109205_bib32 article-title: Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2010.01.008 – volume: 6 start-page: 501 year: 2003 ident: 10.1016/j.neuropharm.2022.109205_bib39 article-title: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia publication-title: Nat. Neurosci. doi: 10.1038/nn1040 – volume: 370 year: 2015 ident: 10.1016/j.neuropharm.2022.109205_bib5 article-title: Levodopa-induced plasticity: a double-edged sword in Parkinson's disease? publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2014.0184 – volume: 86 start-page: 140 year: 2016 ident: 10.1016/j.neuropharm.2022.109205_bib23 article-title: Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.11.022 – volume: 20 start-page: 1255 year: 2004 ident: 10.1016/j.neuropharm.2022.109205_bib44 article-title: Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2004.03591.x – volume: 64 start-page: 545 year: 2005 ident: 10.1016/j.neuropharm.2022.109205_bib54 article-title: Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease publication-title: Neurology doi: 10.1212/01.WNL.0000150591.33787.A4 – volume: 30 start-page: 14182 year: 2010 ident: 10.1016/j.neuropharm.2022.109205_bib37 article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2149-10.2010 – volume: 33 start-page: 11655 year: 2013 ident: 10.1016/j.neuropharm.2022.109205_bib55 article-title: Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0288-13.2013 – volume: 84 start-page: 797 year: 2018 ident: 10.1016/j.neuropharm.2022.109205_bib18 article-title: Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts publication-title: Ann. Neurol. doi: 10.1002/ana.25364 – volume: 29 start-page: 327 year: 2008 ident: 10.1016/j.neuropharm.2022.109205_bib40 article-title: l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2007.10.001 – volume: 12 start-page: 230 year: 2020 ident: 10.1016/j.neuropharm.2022.109205_bib4 article-title: Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2020.00230 – volume: 168 year: 2022 ident: 10.1016/j.neuropharm.2022.109205_bib9 article-title: Striatal glutamatergic hyperactivity in Parkinson's disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2022.105697 |
| SSID | ssj0004818 |
| Score | 2.4254403 |
| Snippet | By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy... By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (L-DOPA) may restore the synergy... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109205 |
| SubjectTerms | Basal ganglia Dyskinesia Glutamate Life Sciences mGlu4 Movement disorder Positive allosteric modulator Spines Striatum Synaptic plasticity |
| Title | A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia |
| URI | https://dx.doi.org/10.1016/j.neuropharm.2022.109205 https://www.proquest.com/docview/2700314384 https://hal.science/hal-03974743 |
| Volume | 218 |
| WOSCitedRecordID | wos000844046700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7064 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004818 issn: 0028-3908 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZJu4e9jF1ZdinaGH1JHXyRY4k9ha5bN0rJQwZ5M7JsM3epE-IktE_7SfuLO0e2rLTbWDYYGBEEOrZzPp-LdC6EvBEyiLhkypEiUQ4bwsBdlTu5D-o8zxkfDnWi8Fl0fs6nUzHudL6bXJjNLCpLfnUlFv-V1TAHzMbU2b9gd0sUJuA3MB1GYDuMOzF-1K8DsTZZHw_VsRBCobDjDTbqmutDgcsPszXrg6zLFrrZzlK3l8mqvm7igemRCzCqMd56pdMCJV7FJSaaYOMcJDFz3oG77YBHv8YIgvS6-ooB9IXctnZ15Y-FLY7dbt8fSwAfJj7pMFvQUcuiVQ_jQoGPXmwdhtj92lp2a_TKyhJDkYaFRbUljtUxTABSs50BnrDXbmeY9ALuBMLl2yLab2R0LWQ9V_g6V_tn-V9vRVwMyvb9BniTgV1ys-T2LVXYBiia2LeL2FKKkVJcU-qSfT8KBYjR_dHHk-knm4rLPW4Kf-NbNMFjdUjhr5_qdxZR9wuG5t6yELTZM7lP7jX-Ch3VOHtAOln5kByOa55eH9GJzd-rjughHW9x-xH5NqIGjNSCkbZgpPOcajDSFozUgJEaMFILRlqUVOKFYKQajEjiJhipBeNj8vn9yeT41Glafjgq4OEKwJBHnsglH4Z-krp5kqgwFamfsgwsVRGEWaBYBHIF3BgWJuBto4JKhM9BGQVgij8he-W8zJ4SKkQk_WHCJFchU8Asj4XCz1kGJn2S8KhHIvO3x6qph49tWWbxn5jfI167clHXhNlhzVvD2bixbWubNQbo7rD6NYChvRmWhD8dncU45wa4I8CCjdcjrwxWYtARePAHH998XcUYXBKAY8TZs3949Ofkrv1QX5C91XKdvSR31GZVVMsD0o2m_KD5DH4AxHzqcQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+positive+allosteric+modulator+of+mGlu4+receptors+restores+striatal+plasticity+in+an+animal+model+of+l-Dopa-induced+dyskinesia&rft.jtitle=Neuropharmacology&rft.au=Calabrese%2C+Valeria&rft.au=Picconi%2C+Barbara&rft.au=Heck%2C+Nicolas&rft.au=Campanelli%2C+Federica&rft.date=2022-11-01&rft.issn=0028-3908&rft.volume=218&rft.spage=109205&rft_id=info:doi/10.1016%2Fj.neuropharm.2022.109205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuropharm_2022_109205 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon |