A dimensionality-reduction genomic prediction method without direct inverse of the genomic relationship matrix for large genomic data

Key message A new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Plant cell reports Ročník 42; číslo 11; s. 1825 - 1832
Hlavní autori: Liu, Hailan, Yu, Shizhou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Predmet:
ISSN:0721-7714, 1432-203X, 1432-203X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Key message A new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.
AbstractList KEY MESSAGE: A new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.
A new genomic prediction method (RHPP) was developed via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.KEY MESSAGEA new genomic prediction method (RHPP) was developed via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.
Key messageA new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm.Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.
Key message A new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.
Author Yu, Shizhou
Liu, Hailan
Author_xml – sequence: 1
  givenname: Hailan
  orcidid: 0000-0001-5737-9240
  surname: Liu
  fullname: Liu, Hailan
  email: lhlzju@hotmail.com
  organization: Maize Research Institute, Sichuan Agricultural University
– sequence: 2
  givenname: Shizhou
  surname: Yu
  fullname: Yu, Shizhou
  email: yusz@nwafu.edu.cn
  organization: Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science
BookMark eNqFkc1q3DAQgEVJoZu0L9CToJdelOrPknwMoUkDgVxS6E3I8nhXwba2ktw2D5D3rjYuDeSQgGDQzPdJw8wxOprjDAh9ZPSUUaq_ZEp52xLKBaGCqpaYN2jDpOCEU_HjCG2o5oxozeQ7dJzzHaW1qNUGPZzhPkww5xBnN4ZyTxL0iy_1ircwxyl4vK-psKYmKLvY49-hhqVUNYEvOMy_IGXAccBlB_-9BKM7WHkX9nhyJYU_eIgJjy5tn6jeFfcevR3cmOHDv3iCvl98vT3_Rq5vLq_Oz66JF6YphLHOd00LChwwxUynBt2B933vKYdackawnvpBGQlSGtNJKal2UgysMboXJ-jz-u4-xZ8L5GKnkD2Mo5shLtkK1oimnta8inKjWs5aLduKfnqG3sUl1XEeKC2V0FqJSvGV8inmnGCw-xQml-4to_awRLsu0dYl2scl2kMX5pnkQ3kcakkujC-rYlVz_WfeQnrq6gXrL2p1tgM
CitedBy_id crossref_primary_10_3389_fpls_2024_1441555
crossref_primary_10_1007_s00122_025_04929_5
crossref_primary_10_1007_s00122_024_04793_9
Cites_doi 10.1016/j.ajhg.2010.11.011
10.1016/j.xplc.2019.100005
10.3389/fpls.2021.728567
10.1186/1297-9686-42-2
10.1186/s12711-016-0261-6
10.2135/cropsci2011.06.0297
10.3389/fgene.2018.00078
10.1007/s00122-019-03493-z
10.3168/jdsc.2021-0097
10.1186/s12711-017-0369-3
10.1534/genetics.113.152207
10.1534/g3.118.200311
10.1093/aob/mcs109
10.2135/cropsci2011.11.0592
10.3389/fpls.2022.1089937
10.1071/AN15538
10.1016/j.cj.2021.09.001
10.3168/jds.2019-17332
10.2527/af.2016-0002
10.1534/genetics.111.137026
10.3168/jds.2007-0980
10.1186/s12711-022-00767-x
10.1186/s12711-018-0373-2
10.1038/s41467-020-18404-w
10.1093/bioinformatics/bty253
10.1534/genetics.112.147983
10.2135/cropsci2008.08.0512
10.1186/s12711-022-00756-0
10.1534/g3.120.401172
10.1007/s00122-015-2555-4
10.3168/jds.2019-17684
10.1038/s41437-018-0078-x
10.1007/s00122-017-2887-3
10.1186/s12711-014-0060-x
10.1186/s13059-021-02370-7
10.1111/j.1439-0388.2007.00702.x
10.1016/j.animal.2023.100766
10.1007/s11434-011-4632-7
10.2527/af.2011-0027
10.1038/s41437-018-0099-5
10.1186/s12711-014-0082-4
10.1038/ng.3920
10.1146/annurev-animal-031412-103705
10.1534/genetics.115.177907
10.1534/genetics.115.182089
10.1017/S1751731116002366
10.1371/journal.pone.0210442
10.1038/hdy.2013.16
10.1534/genetics.116.187013
10.1093/genetics/157.4.1819
10.1186/1753-6561-5-S3-S11
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
3V.
7QL
7T5
7T7
7TM
7U9
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
DOI 10.1007/s00299-023-03069-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1432-203X
EndPage 1832
ExternalDocumentID 10_1007_s00299_023_03069_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 32271984
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Program of China National Tobacco Corporation
  grantid: 110202101032(JY-09)
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2023NSFSC0222
  funderid: http://dx.doi.org/10.13039/501100018542
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0K
M0L
M1P
M4Y
M7P
MA-
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
N~3
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z8O
Z8P
Z8Q
Z8S
Z8W
ZMTXR
ZOVNA
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7T5
7T7
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c385t-11bcb59e6eae1618b6f7beccddc02ecb5a831d0cf684e4488b44407a43f1587d3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072264000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0721-7714
1432-203X
IngestDate Thu Oct 02 05:19:29 EDT 2025
Sun Nov 09 10:28:01 EST 2025
Wed Nov 05 02:01:54 EST 2025
Sat Nov 29 02:21:35 EST 2025
Tue Nov 18 21:51:31 EST 2025
Fri Feb 21 02:42:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Genomic prediction
Principal component regression
GBLUP
Preconditioned conjugate gradient algorithm
Randomized Haseman–Elston regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-11bcb59e6eae1618b6f7beccddc02ecb5a831d0cf684e4488b44407a43f1587d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5737-9240
PQID 2874637763
PQPubID 54035
PageCount 8
ParticipantIDs proquest_miscellaneous_3153553598
proquest_miscellaneous_2869219749
proquest_journals_2874637763
crossref_primary_10_1007_s00299_023_03069_8
crossref_citationtrail_10_1007_s00299_023_03069_8
springer_journals_10_1007_s00299_023_03069_8
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Berlin
PublicationTitle Plant cell reports
PublicationTitleAbbrev Plant Cell Rep
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ødegård, Indahl, Strandén, Meuwissen (CR32) 2018; 50
Wang, Miao, Chang, Xia, An, Li, Xu, Zhang, Gao, Li, Gao (CR47) 2019; 14
VanRaden (CR43) 2008; 91
Xu, Liu, Fu, Wang, Wang, Huang, Prasanna, Olsen, Wang, Zhang (CR50) 2020; 1
Ogutu, Piepho, Schulz-Streeck (CR33) 2011; 5
Heslot, Yang, Sorrells, Jannink (CR14) 2012; 52
Yang, Lee, Goddard, Visscher (CR51) 2011; 88
Tsuruta, Lourenco, Masuda, Lawlor, Misztal (CR42) 2021; 2
Habier, Fernando, Garrick (CR12) 2013; 194
Xiao, Jiang, Cheng, Wang, Yan, Zhang, Qiao, Ma, Luo, Li, Liu, Yang, Song, Meng, Warburton, Zhao, Wang, Yan (CR49) 2021; 22
Zhang, Zhang, Ding (CR52) 2011; 56
Liu, Chen (CR21) 2022; 10
Meuwissen, Hayes, Goddard (CR24) 2001; 157
Varona, Legarra, Toro, Vitezica (CR45) 2018; 9
Gholami, Wimmer, Sansaloni, Petroli, Hearne, Covarrubias-Pazaran, Rensing, Heise, Pérez-Rodrĺguez, Dreisigacker, Crossa, Martini (CR10) 2021; 12
Liu, Chen (CR20) 2018; 121
Resende, Muñoz, Resende, Garrick, Fernando, Davis, Jokela, Martin, Peter, Kirst (CR39) 2012; 190
Christensen, Lund (CR3) 2010; 42
Pocrnic, Lourenco, Masuda, Legarra, Misztal (CR35) 2016; 203
Nakaya, Isobe (CR30) 2012; 110
VanRaden (CR44) 2020; 103
Sansaloni, Franco, Santos, Percival-Alwyn, Singh, Petroli, Campos, Dreher, Payne, Marshall, Kilian, Milne, Raubach, Shaw, Stephen, Carling, Pierre, Burgueño, Crosa, Li, Guzman, Kehel, Amri, Kilian, Wenzl, Uauy, Banziger, Caccamo, Pixley (CR41) 2020; 11
Ghafouri-Kesbi, Rahimi-Mianji, Honarvar, Nejati-Javaremi (CR9) 2017; 57
Cesarani, Bermann, Dimauro, Degano, Vicario, Lourenco, Macciotta (CR2) 2023; 17
Liu, Xia, Lan (CR22) 2022; 13
Crossa, Pérez, Hickey, Burgueño, Ornella, Cerón-Rojas, Zhang, Dreisigacker, Babu, Li, Bonnett, Mathews (CR4) 2014; 112
Pocrnic, Lindgren, Tolhurst, Herring, Gorjanc (CR37) 2022; 54
Meuwissen, Hayes, Goddard (CR25) 2013; 1
Piepho, Ogutu, Schulz -Streeck T, Estaghvirou B, Gordillo A, Technow F (CR34) 2012; 52
Eggen (CR8) 2012; 2
Goddard, Hayes (CR11) 2007; 124
Misztal, Legarra (CR29) 2017; 11
Meuwissen, Hayes, Goddard (CR26) 2016; 6
Ros-Freixedes, Johnsson, Whalen, Chen, Valente, Herring, Gorjanc, Hickey (CR40) 2022; 54
Daetwyler, Calus, Pong-Wong, de los Campos, Hickey (CR6) 2013; 193
Mageto, Crossa, Pérez-Rodrĺguez, Dhliwayo, Palacios-Rojas, Lee, Guo, Vicente, Zhang, Hindu (CR23) 2020; 10
Ceballos, Kawuki, Gracen, Yencho, Hershey (CR1) 2015; 128
Liu, Chen (CR19) 2017; 130
Jiang, Reif (CR16) 2015; 201
Jiang, Cheng, Yan, Fu, Wang (CR17) 2020; 133
Hickey, Chiurugwi, Mackay, Powell (CR15) 2017; 49
Heffner, Sorrells, Jannink (CR13) 2009; 49
Meuwissen, Indahl, Ødegård (CR27) 2017; 49
Misztal (CR28) 2016; 202
(CR38) 2017
Dadousis, Veerkamp, Heringstad, Pszczola, Calus (CR5) 2014; 46
Pocrnic, Lourenco, Masuda, Misztal (CR36) 2016; 48
Norman, Taylor, Edwards, Kuchel (CR31) 2018; 8
Du, Wei, Wang, Jia (CR7) 2018; 121
Wang, Chen, Goddard, Meuwissen, Kemper, Hayes (CR46) 2015; 47
Wu, Sankararaman (CR48) 2018; 34
Li, VanRaden, Guduk, O’Connell, Null, Connor, VandeHaar, Tempelman, Weigel, Cole (CR18) 2020; 103
F Ghafouri-Kesbi (3069_CR9) 2017; 57
A Norman (3069_CR31) 2018; 8
B Li (3069_CR18) 2020; 103
H Liu (3069_CR22) 2022; 13
PM VanRaden (3069_CR44) 2020; 103
THE Meuwissen (3069_CR24) 2001; 157
C Sansaloni (3069_CR41) 2020; 11
H Liu (3069_CR21) 2022; 10
I Misztal (3069_CR29) 2017; 11
I Pocrnic (3069_CR37) 2022; 54
T Meuwissen (3069_CR26) 2016; 6
HD Daetwyler (3069_CR6) 2013; 193
HP Piepho (3069_CR34) 2012; 52
S Jiang (3069_CR17) 2020; 133
X Wang (3069_CR47) 2019; 14
T Meuwissen (3069_CR25) 2013; 1
ME Goddard (3069_CR11) 2007; 124
J Ødegård (3069_CR32) 2018; 50
H Liu (3069_CR19) 2017; 130
I Pocrnic (3069_CR36) 2016; 48
N Heslot (3069_CR14) 2012; 52
A Eggen (3069_CR8) 2012; 2
OF Christensen (3069_CR3) 2010; 42
Y Wu (3069_CR48) 2018; 34
Y Xu (3069_CR50) 2020; 1
L Varona (3069_CR45) 2018; 9
I Misztal (3069_CR28) 2016; 202
M Gholami (3069_CR10) 2021; 12
J Yang (3069_CR51) 2011; 88
H Liu (3069_CR20) 2018; 121
T Wang (3069_CR46) 2015; 47
PM VanRaden (3069_CR43) 2008; 91
C Du (3069_CR7) 2018; 121
A Cesarani (3069_CR2) 2023; 17
H Ceballos (3069_CR1) 2015; 128
A Nakaya (3069_CR30) 2012; 110
J Crossa (3069_CR4) 2014; 112
THE Meuwissen (3069_CR27) 2017; 49
C Dadousis (3069_CR5) 2014; 46
R Ros-Freixedes (3069_CR40) 2022; 54
EL Heffner (3069_CR13) 2009; 49
S Tsuruta (3069_CR42) 2021; 2
D Habier (3069_CR12) 2013; 194
JM Hickey (3069_CR15) 2017; 49
Y Xiao (3069_CR49) 2021; 22
Y Jiang (3069_CR16) 2015; 201
EK Mageto (3069_CR23) 2020; 10
Z Zhang (3069_CR52) 2011; 56
JO Ogutu (3069_CR33) 2011; 5
I Pocrnic (3069_CR35) 2016; 203
R Core Team (3069_CR38) 2017
MFR Resende Jr (3069_CR39) 2012; 190
References_xml – volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: CR51
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 1
  year: 2020
  ident: CR50
  article-title: Enhancing genetic gain through genomic selection: from livestock to plants
  publication-title: Plant Commun
  doi: 10.1016/j.xplc.2019.100005
– volume: 12
  year: 2021
  ident: CR10
  article-title: A comparison of the adoption of genomic selection across different breeding institutions
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.728567
– volume: 42
  start-page: 2
  year: 2010
  ident: CR3
  article-title: Genomic prediction when some animals are not genotyped
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-42-2
– volume: 48
  start-page: 82
  year: 2016
  ident: CR36
  article-title: Dimensionality of genomic information and performance of the algorithm for Proven and Young for different livestock species
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-016-0261-6
– volume: 52
  start-page: 146
  year: 2012
  end-page: 160
  ident: CR14
  article-title: Genomic selection in plant breeding: a comparison of models
  publication-title: Crop Sci
  doi: 10.2135/cropsci2011.06.0297
– volume: 9
  start-page: 78
  year: 2018
  ident: CR45
  article-title: Non-additive effects in genomic selection
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00078
– volume: 133
  start-page: 1491
  year: 2020
  end-page: 1502
  ident: CR17
  article-title: Genome optimization for improvement of maize breeding
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-019-03493-z
– volume: 2
  start-page: 356
  year: 2021
  end-page: 360
  ident: CR42
  article-title: Reducing computational cost of large-scale genomic evaluation by using indirect genomic prediction
  publication-title: JDS Commun
  doi: 10.3168/jdsc.2021-0097
– volume: 49
  start-page: 94
  year: 2017
  ident: CR27
  article-title: Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-017-0369-3
– volume: 194
  start-page: 597
  year: 2013
  end-page: 607
  ident: CR12
  article-title: Genomic BLUP decoded: a look into the black box of genomic prediction
  publication-title: Genetics
  doi: 10.1534/genetics.113.152207
– volume: 8
  start-page: 2889
  year: 2018
  end-page: 2899
  ident: CR31
  article-title: Optimising genomic selection in wheat: effect of marker density, population size and population structure on prediction accuracy
  publication-title: G3 Genes Genomes Genet
  doi: 10.1534/g3.118.200311
– volume: 110
  start-page: 1303
  year: 2012
  end-page: 1316
  ident: CR30
  article-title: Will genomic selection be a practical method for plant breeding?
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs109
– volume: 52
  start-page: 1093
  year: 2012
  end-page: 1104
  ident: CR34
  article-title: Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding
  publication-title: Crop Sci
  doi: 10.2135/cropsci2011.11.0592
– volume: 13
  start-page: 1089937
  year: 2022
  ident: CR22
  article-title: An efficient genomic prediction method without the direct inverse of the genomic relationship matrix
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.1089937
– volume: 57
  start-page: 229
  year: 2017
  end-page: 236
  ident: CR9
  article-title: Predictive ability of random forests, boosting, support vector machines and genomic best linear unbiased prediction in different scenarios of genomic evaluation
  publication-title: Anim Prod Sci
  doi: 10.1071/AN15538
– volume: 10
  start-page: 550
  year: 2022
  end-page: 554
  ident: CR21
  article-title: A novel genomic prediction method combining randomized Haseman–Elston regression with a modified algorithm for Proven and Young for large genomic data
  publication-title: Crop J
  doi: 10.1016/j.cj.2021.09.001
– volume: 103
  start-page: 2477
  year: 2020
  end-page: 2486
  ident: CR18
  article-title: Genomic prediction of residual feed intake in US Holstein dairy cattle
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2019-17332
– volume: 6
  start-page: 6
  year: 2016
  end-page: 14
  ident: CR26
  article-title: Genomic selection: A paradigm shift in animal breeding
  publication-title: Anim Front
  doi: 10.2527/af.2016-0002
– volume: 190
  start-page: 1503
  year: 2012
  end-page: 1510
  ident: CR39
  article-title: Accuracy of genomic selection methods in a standard data set of loblolly pine ( L.)
  publication-title: Genetics
  doi: 10.1534/genetics.111.137026
– volume: 91
  start-page: 4414
  year: 2008
  end-page: 4423
  ident: CR43
  article-title: Efficient methods to compute genomic predictions
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 54
  start-page: 76
  year: 2022
  ident: CR37
  article-title: Optimisation of the core subset for the APY approximation of genomic relationships
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-022-00767-x
– volume: 50
  start-page: 6
  year: 2018
  ident: CR32
  article-title: Large-scale genomic prediction using singular value decomposition of the genotype matrix
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-018-0373-2
– volume: 11
  start-page: 4572
  year: 2020
  ident: CR41
  article-title: Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18404-w
– volume: 34
  start-page: i187
  year: 2018
  end-page: i194
  ident: CR48
  article-title: A scalable estimator of SNP heritability for biobank-scale data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty253
– volume: 193
  start-page: 347
  year: 2013
  end-page: 365
  ident: CR6
  article-title: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking
  publication-title: Genetics
  doi: 10.1534/genetics.112.147983
– volume: 49
  start-page: 1
  year: 2009
  end-page: 12
  ident: CR13
  article-title: Genomic selection for crop improvement
  publication-title: Crop Sci
  doi: 10.2135/cropsci2008.08.0512
– volume: 54
  start-page: 65
  year: 2022
  ident: CR40
  article-title: Genomic prediction with whole-genome sequence data in intensely selected pig lines
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-022-00756-0
– volume: 10
  start-page: 2629
  year: 2020
  end-page: 2639
  ident: CR23
  article-title: Genomic prediction with genotype by environment interaction analysis for kernel zinc concentration in tropical maize germplasm
  publication-title: G3 Genes Genomes Genet
  doi: 10.1534/g3.120.401172
– volume: 128
  start-page: 1647
  year: 2015
  end-page: 1667
  ident: CR1
  article-title: Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-015-2555-4
– volume: 103
  start-page: 5291
  year: 2020
  end-page: 5301
  ident: CR44
  article-title: Symposium review: how to implement genomic selection
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2019-17684
– volume: 121
  start-page: 12
  year: 2018
  end-page: 23
  ident: CR7
  article-title: Genomic selection using principal component regression
  publication-title: Heredity
  doi: 10.1038/s41437-018-0078-x
– year: 2017
  ident: CR38
  publication-title: R: A language and environment for statistical computing
– volume: 130
  start-page: 1277
  year: 2017
  end-page: 1284
  ident: CR19
  article-title: A fast genomic selection approach for large genomic data
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-017-2887-3
– volume: 46
  start-page: 60
  year: 2014
  ident: CR5
  article-title: A comparison of principal component regression and genomic REML for genomic prediction across populations
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-014-0060-x
– volume: 22
  start-page: 148
  year: 2021
  ident: CR49
  article-title: The genetic mechanism of heterosis utilization in maize improvement
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02370-7
– volume: 124
  start-page: 323
  year: 2007
  end-page: 330
  ident: CR11
  article-title: Genomic selection
  publication-title: J Anim Breed Genet
  doi: 10.1111/j.1439-0388.2007.00702.x
– volume: 17
  year: 2023
  ident: CR2
  article-title: Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
  publication-title: Animal
  doi: 10.1016/j.animal.2023.100766
– volume: 56
  start-page: 2655
  year: 2011
  end-page: 2663
  ident: CR52
  article-title: Advances in genomic selection in domestic animals
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-011-4632-7
– volume: 2
  start-page: 10
  year: 2012
  end-page: 15
  ident: CR8
  article-title: The development and application of genomic selection as a new breeding paradigm
  publication-title: Anim Front
  doi: 10.2527/af.2011-0027
– volume: 121
  start-page: 196
  year: 2018
  end-page: 204
  ident: CR20
  article-title: A new genomic prediction method with additive-dominance effects in the least-squares framework
  publication-title: Heredity
  doi: 10.1038/s41437-018-0099-5
– volume: 47
  start-page: 34
  year: 2015
  ident: CR46
  article-title: A computationally efficient algorithm for genomic prediction using a Bayesian model
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-014-0082-4
– volume: 49
  start-page: 1297
  year: 2017
  end-page: 1303
  ident: CR15
  article-title: Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery
  publication-title: Nat Genet
  doi: 10.1038/ng.3920
– volume: 1
  start-page: 221
  year: 2013
  end-page: 237
  ident: CR25
  article-title: Accelerating improvement of livestock with genomic selection
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-031412-103705
– volume: 201
  start-page: 759
  year: 2015
  end-page: 768
  ident: CR16
  article-title: Modeling epistasis in genomic selection
  publication-title: Genetics
  doi: 10.1534/genetics.115.177907
– volume: 202
  start-page: 401
  year: 2016
  end-page: 409
  ident: CR28
  article-title: Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size
  publication-title: Genetics
  doi: 10.1534/genetics.115.182089
– volume: 11
  start-page: 731
  year: 2017
  end-page: 736
  ident: CR29
  article-title: Invited review: efficient computation strategies in genomic selection
  publication-title: Animal
  doi: 10.1017/S1751731116002366
– volume: 14
  year: 2019
  ident: CR47
  article-title: Evaluation of GBLUP, BayesB and elastic net for genomic prediction in Chinese Simmental beef cattle
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210442
– volume: 112
  start-page: 48
  year: 2014
  end-page: 60
  ident: CR4
  article-title: Genomic prediction in CIMMYT maize and wheat breeding programs
  publication-title: Heredity
  doi: 10.1038/hdy.2013.16
– volume: 203
  start-page: 573
  year: 2016
  end-page: 581
  ident: CR35
  article-title: The Dimensionality of genomic information and its effect on genomic prediction
  publication-title: Genetics
  doi: 10.1534/genetics.116.187013
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: CR24
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 5
  start-page: S11
  year: 2011
  ident: CR33
  article-title: A comparison of random forests, boosting and support vector machines for genomic selection
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-5-S3-S11
– volume: 46
  start-page: 60
  year: 2014
  ident: 3069_CR5
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-014-0060-x
– volume: 9
  start-page: 78
  year: 2018
  ident: 3069_CR45
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00078
– volume: 12
  year: 2021
  ident: 3069_CR10
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.728567
– volume: 201
  start-page: 759
  year: 2015
  ident: 3069_CR16
  publication-title: Genetics
  doi: 10.1534/genetics.115.177907
– volume: 1
  year: 2020
  ident: 3069_CR50
  publication-title: Plant Commun
  doi: 10.1016/j.xplc.2019.100005
– volume: 54
  start-page: 76
  year: 2022
  ident: 3069_CR37
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-022-00767-x
– volume: 88
  start-page: 76
  year: 2011
  ident: 3069_CR51
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 50
  start-page: 6
  year: 2018
  ident: 3069_CR32
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-018-0373-2
– volume: 48
  start-page: 82
  year: 2016
  ident: 3069_CR36
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-016-0261-6
– volume: 128
  start-page: 1647
  year: 2015
  ident: 3069_CR1
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-015-2555-4
– volume: 11
  start-page: 731
  year: 2017
  ident: 3069_CR29
  publication-title: Animal
  doi: 10.1017/S1751731116002366
– volume: 14
  year: 2019
  ident: 3069_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210442
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: 3069_CR38
– volume: 8
  start-page: 2889
  year: 2018
  ident: 3069_CR31
  publication-title: G3 Genes Genomes Genet
  doi: 10.1534/g3.118.200311
– volume: 5
  start-page: S11
  year: 2011
  ident: 3069_CR33
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-5-S3-S11
– volume: 52
  start-page: 146
  year: 2012
  ident: 3069_CR14
  publication-title: Crop Sci
  doi: 10.2135/cropsci2011.06.0297
– volume: 190
  start-page: 1503
  year: 2012
  ident: 3069_CR39
  publication-title: Genetics
  doi: 10.1534/genetics.111.137026
– volume: 124
  start-page: 323
  year: 2007
  ident: 3069_CR11
  publication-title: J Anim Breed Genet
  doi: 10.1111/j.1439-0388.2007.00702.x
– volume: 194
  start-page: 597
  year: 2013
  ident: 3069_CR12
  publication-title: Genetics
  doi: 10.1534/genetics.113.152207
– volume: 133
  start-page: 1491
  year: 2020
  ident: 3069_CR17
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-019-03493-z
– volume: 103
  start-page: 2477
  year: 2020
  ident: 3069_CR18
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2019-17332
– volume: 49
  start-page: 1297
  year: 2017
  ident: 3069_CR15
  publication-title: Nat Genet
  doi: 10.1038/ng.3920
– volume: 203
  start-page: 573
  year: 2016
  ident: 3069_CR35
  publication-title: Genetics
  doi: 10.1534/genetics.116.187013
– volume: 22
  start-page: 148
  year: 2021
  ident: 3069_CR49
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02370-7
– volume: 157
  start-page: 1819
  year: 2001
  ident: 3069_CR24
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 47
  start-page: 34
  year: 2015
  ident: 3069_CR46
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-014-0082-4
– volume: 42
  start-page: 2
  year: 2010
  ident: 3069_CR3
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-42-2
– volume: 52
  start-page: 1093
  year: 2012
  ident: 3069_CR34
  publication-title: Crop Sci
  doi: 10.2135/cropsci2011.11.0592
– volume: 91
  start-page: 4414
  year: 2008
  ident: 3069_CR43
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 112
  start-page: 48
  year: 2014
  ident: 3069_CR4
  publication-title: Heredity
  doi: 10.1038/hdy.2013.16
– volume: 49
  start-page: 1
  year: 2009
  ident: 3069_CR13
  publication-title: Crop Sci
  doi: 10.2135/cropsci2008.08.0512
– volume: 17
  year: 2023
  ident: 3069_CR2
  publication-title: Animal
  doi: 10.1016/j.animal.2023.100766
– volume: 6
  start-page: 6
  year: 2016
  ident: 3069_CR26
  publication-title: Anim Front
  doi: 10.2527/af.2016-0002
– volume: 2
  start-page: 356
  year: 2021
  ident: 3069_CR42
  publication-title: JDS Commun
  doi: 10.3168/jdsc.2021-0097
– volume: 202
  start-page: 401
  year: 2016
  ident: 3069_CR28
  publication-title: Genetics
  doi: 10.1534/genetics.115.182089
– volume: 10
  start-page: 2629
  year: 2020
  ident: 3069_CR23
  publication-title: G3 Genes Genomes Genet
  doi: 10.1534/g3.120.401172
– volume: 56
  start-page: 2655
  year: 2011
  ident: 3069_CR52
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-011-4632-7
– volume: 130
  start-page: 1277
  year: 2017
  ident: 3069_CR19
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-017-2887-3
– volume: 13
  start-page: 1089937
  year: 2022
  ident: 3069_CR22
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.1089937
– volume: 103
  start-page: 5291
  year: 2020
  ident: 3069_CR44
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2019-17684
– volume: 49
  start-page: 94
  year: 2017
  ident: 3069_CR27
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-017-0369-3
– volume: 193
  start-page: 347
  year: 2013
  ident: 3069_CR6
  publication-title: Genetics
  doi: 10.1534/genetics.112.147983
– volume: 121
  start-page: 12
  year: 2018
  ident: 3069_CR7
  publication-title: Heredity
  doi: 10.1038/s41437-018-0078-x
– volume: 110
  start-page: 1303
  year: 2012
  ident: 3069_CR30
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs109
– volume: 54
  start-page: 65
  year: 2022
  ident: 3069_CR40
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-022-00756-0
– volume: 34
  start-page: i187
  year: 2018
  ident: 3069_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty253
– volume: 10
  start-page: 550
  year: 2022
  ident: 3069_CR21
  publication-title: Crop J
  doi: 10.1016/j.cj.2021.09.001
– volume: 1
  start-page: 221
  year: 2013
  ident: 3069_CR25
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-031412-103705
– volume: 11
  start-page: 4572
  year: 2020
  ident: 3069_CR41
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18404-w
– volume: 2
  start-page: 10
  year: 2012
  ident: 3069_CR8
  publication-title: Anim Front
  doi: 10.2527/af.2011-0027
– volume: 57
  start-page: 229
  year: 2017
  ident: 3069_CR9
  publication-title: Anim Prod Sci
  doi: 10.1071/AN15538
– volume: 121
  start-page: 196
  year: 2018
  ident: 3069_CR20
  publication-title: Heredity
  doi: 10.1038/s41437-018-0099-5
SSID ssj0014376
Score 2.408388
Snippet Key message A new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information...
Key messageA new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic information...
A new genomic prediction method (RHPP) was developed via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core...
KEY MESSAGE: A new genomic prediction method (RHPP) was developed via combining randomized Haseman–Elston regression (RHE-reg), PCR based on genomic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1825
SubjectTerms Accuracy
Algorithms
Biomedical and Life Sciences
Biotechnology
Cell Biology
Computational efficiency
Computer applications
Computing time
Conjugate gradient method
data collection
Efficiency
Genomics
Genotyping
Life Sciences
Machine learning
Methods
Original Article
Pine trees
Pinus taeda
Plant Biochemistry
Plant Sciences
prediction
Predictions
wheat
SummonAdditionalLinks – databaseName: Biological Science Database (ProQuest)
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61lEMvQEurLoXKlXoDq5u1k9gntKCuOCDEoZW4RY4f6kqQbLO7qP0B_O_OOI8VleDSazxWLM3Y_sYz8w3AF2lCmeAIT0WwXLrMcaNyw6XVaC1WB1HGQuHL_OpK3dzo6-7BbdmlVfZnYjyoXW3pjfwr8bJnIsftcLr4xalrFEVXuxYaL-EVsSSImLp3PUQRpIjN5YgCDFFkIruimVg6R-EozfHG4oSaNVePL6YN2vwnQBrvndnu_654D3Y6xMmmrYm8gRe-egvbZzWiwj_78DBljgj-W3IOhOS8ITJXUhcj_ta7uWWLhqI58VPbcJrR6229XrH2QmTzipI7PKsDQzw5zGv6RLuf8wW7o14AvxliZHZL2eeDFOWovoMfs2_fzy9415qBW6HSFU-S0pap9pk3nij3yyzkZA3O2fHE45BRInFjGzIlPXqAqpQSXUcjRUhSlTvxHraquvIfgIXc2LFBGBocOpvZxGQapzk1CeQbpvkIkl4vhe14y6l9xm0xMC5HXRaoyyLqslAjOB7mLFrWjmelD3sFFt0OXhYb7Y3g8zCMe48CKqby9ZpkMo0nfi710zICzTJNiSdxBCe9KW1-8_SqDp5f1Ud4PSHrjWWRh7C1atb-CLbt_Wq-bD7FffAXA8cRDQ
  priority: 102
  providerName: ProQuest
Title A dimensionality-reduction genomic prediction method without direct inverse of the genomic relationship matrix for large genomic data
URI https://link.springer.com/article/10.1007/s00299-023-03069-8
https://www.proquest.com/docview/2874637763
https://www.proquest.com/docview/2869219749
https://www.proquest.com/docview/3153553598
Volume 42
WOSCitedRecordID wos001072264000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1432-203X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014376
  issn: 0721-7714
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB7R44EXKJe6UFZG4g0sbdZO7Dy2qFWlwmpVDu1b5PgQK7XJKruL4Afwv5lxjgpEK8FLpMTjxPI1nzMz3wC8liaUCZbwVATLpcscN1oZLm2Os8XmQZQxUPi9ms30YpHPu6Cwde_t3psk4049BLuRASnnqGM44dyc6x3YQ3WnaTlefvwy2A6kiCnliPgLsWMiu1CZv7_jd3V0gzH_MItGbXP28P_aeQAPOnTJjtvp8Aju-eox7J_UiAB_PIGfx8wRmX9LxIHwmzdE3EpDw4ir9Xpp2aohy0181CaXZvSntt5uWKv82LIiRw7P6sAQOw71mt6p7utyxa6J9_87QzzMrsjTfJAif9Sn8Pns9NO7c96lYeBW6HTDk6S0ZZr7zBtP9PplFhSNvHN2MvVYZLRI3MSGTEuPpz1dSonHRCNFSFKtnHgGu1Vd-UNgQRk7MQg5g8ODZTY1WY7VnJ4GOgemagRJPxqF7TjKKVXGVTGwK8feLbB3i9i7hR7Bm6HOqmXouFP6qB_kolut64I4_zOhcKsdwauhGNcZGU9M5estyWQ57u5K5rfLCFQfaUqciCN420-Om8_c3qrn_yb-Au5T1vs2JPIIdjfN1r-Efftts1w3Y9hRCxWvegx7J6ez-SXefZhc0FXNx3G1_AKyfgxD
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgkuvBELBYwEJ7DYJE5iHxAqj6pVl1UPReotOH6Ildpkye4C_QH8HX4jM85jBVJ764FrbOfhfPbMeGa-AXgutC8jbOFp4g0XNrNcy1xzYRSixSiflCFReJJPp_L4WB1uwO8-F4bCKvs9MWzUtjZ0Rv6aeNmzJMfl8Hb-jVPVKPKu9iU0WlgcuLMfaLIt3ux_wP_7Io53Px693-NdVQFuEpkueRSVpkyVy5x2xBZfZj6nD7HWjGOHTVomkR0bn0nh0HiRpRBo9WiR-CiVuU3wvlfgKqoRsQyhgoeD10IkoZgdUY6h1hqJLkknpOqR-0txlJCctHTF5d-CcK3d_uOQDXJu9-b_NkO34EanUbOddgnchg1X3YGtdzVqvWd34dcOs1TAoCUfQZODN0RWS3BkxE97OjNs3pC3KlxqC2ozOp2uV0vWCnw2qyh4xbHaM9SXh3FNH0j4dTZnp1Tr4CdDG4CdUHT90IticO_B50uZgvuwWdWVewDM59qMNarZ3qIxncU6UzjMytiT7ZvmI4h6HBSm42Wn8iAnxcAoHbBTIHaKgJ1CjuDlMGbespJc2Hu7B0zR7VCLYo2WETwbmnFvIYeRrly9oj6ZQomWC3V-nwRFZpoSD-QIXvXQXT_m_Ld6ePFbPYVre0efJsVkf3rwCK7HtHJCCug2bC6blXsMW-b7crZonoQ1yODLZUP6D7_Ib-o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUiEu5VmxpYCR4ARWN4mTOIcKFcqKqtVqDyD1Fhw_xEptsmR3gf6A_qn-us44jxVI7a0HrrGdh_PZM-OZ-QbgjVCuCLCFx5HTXJjEcCVTxYXOEC06c1HhE4WP0_FYnpxkkzW47HJhKKyy2xP9Rm0qTWfku8TLnkQpLodd14ZFTA5GH2Y_OVWQIk9rV06jgciRPf-N5tt87_AA__XbMBx9_vrpC28rDHAdyXjBg6DQRZzZxCpLzPFF4lL6KGP0MLTYpGQUmKF2iRQWDRlZCIEWkBKRC2KZmgjvewfupkRa7sMGJ70HQ0S-sB3Rj6EGG4g2Ycen7ZErLOMoLTlp7BmXfwvFlab7j3PWy7zRg_95th7CZqtps_1maTyCNVs-ho2PFWrD50_gYp8ZKmzQkJKgKcJrIrElmDLirT2bajaryYvlLzWFthmdWlfLBWsUATYtKajFssox1KP7cXUXYPhjOmNnVAPhD0PbgJ1S1H3fi2Jzn8K3W5mCLVgvq9I-A-ZSpYcK1W9n0MhOQpVkOMzI0JFNHKcDCDpM5Lrla6eyIad5zzTtcZQjjnKPo1wO4F0_ZtawldzYe6cDT97uXPN8hZwBvO6bcc8hR5IqbbWkPkmGki4V2fV9IhSlcUz8kAN438F49Zjr32r75rd6BfcQyfnx4fjoOdwPaRH5zNAdWF_US_sCNvSvxXRev_TLkcH320b0FZcAeKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dimensionality-reduction+genomic+prediction+method+without+direct+inverse+of+the+genomic+relationship+matrix+for+large+genomic+data&rft.jtitle=Plant+cell+reports&rft.au=Liu%2C+Hailan&rft.au=Yu%2C+Shizhou&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0721-7714&rft.eissn=1432-203X&rft.volume=42&rft.issue=11&rft.spage=1825&rft.epage=1832&rft_id=info:doi/10.1007%2Fs00299-023-03069-8&rft.externalDocID=10_1007_s00299_023_03069_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0721-7714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0721-7714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0721-7714&client=summon