An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings

The construction of shortest feedback shift registers for a finite sequence S 1 , … , S N is considered over finite chain rings, such as Z p r . A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S 1 , … , S N , thus solv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 83; číslo 2; s. 283 - 305
Hlavní autoři: Kuijper, M., Pinto, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2017
Springer Nature B.V
Témata:
ISSN:0925-1022, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The construction of shortest feedback shift registers for a finite sequence S 1 , … , S N is considered over finite chain rings, such as Z p r . A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S 1 , … , S N , thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S 1 , and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence S N , … , S 1 . The complexity order of the algorithm is shown to be O ( r N 2 ) .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-016-0226-3