Automatic decomposition of selective needle-detected myoelectric signals

A procedure for the storage and documentation of myoelectric signals has been developed that consists of a selective needle signal detection protocol, a data collection-compression routine, an adaptive signal decomposition algorithm, and an error filter. The collection-compression routine stores onl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 35; číslo 1; s. 1 - 10
Hlavní autoři: Stashuk, D., De Bruin, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.1988
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A procedure for the storage and documentation of myoelectric signals has been developed that consists of a selective needle signal detection protocol, a data collection-compression routine, an adaptive signal decomposition algorithm, and an error filter. The collection-compression routine stores only fixed-length signal epochs that contain motor unit action potentials (MUAPs) detected during individual motor unit firings. The decomposition algorithm assigns the collected MUAPs to candidate motor units, based on template matching using power-spectrum domain features and firing-time criteria calculated from the motor units' firing statistics. Power spectrum features allow the use of Nyquist sampling rates and remove the need for template alignment. The algorithm is adaptive and attempts to minimize dependent errors. The error filter, using firing statistics, accounts for unresolved superpositions and other decomposition errors. Using a standard TECA single-fiber needle electrode, signal recorded during isometric, constant, or slow force-varying contractions of up to 50% of the maximal voluntary contraction level, have been successfully analyzed.< >
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0018-9294
DOI:10.1109/10.1330