Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model
Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin res...
Uloženo v:
| Vydáno v: | International journal of molecular sciences Ročník 24; číslo 1; s. 794 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI
02.01.2023
|
| Témata: | |
| ISSN: | 1422-0067, 1422-0067 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event. |
|---|---|
| AbstractList | Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event. Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event. |
| Author | Spanjaard, Aldo Hogenbirk, Marc A. Jacobs, Heinz de Groot, Daniel |
| AuthorAffiliation | 1 Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands 2 Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands |
| AuthorAffiliation_xml | – name: 1 Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands – name: 2 Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands |
| Author_xml | – sequence: 1 givenname: Daniel surname: de Groot fullname: de Groot, Daniel – sequence: 2 givenname: Aldo surname: Spanjaard fullname: Spanjaard, Aldo – sequence: 3 givenname: Marc A. surname: Hogenbirk fullname: Hogenbirk, Marc A. – sequence: 4 givenname: Heinz orcidid: 0000-0001-6227-9850 surname: Jacobs fullname: Jacobs, Heinz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36614236$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctLAzEQxoNU7ENvnmWPHlzNY7MPD0IptQoVQes5pNlpm7Kb1GRb8L832laqeMqE7zffN8x0UctYAwidE3zNWIFv9LL2NMEEZ0VyhDokoTTGOM1aB3Ubdb1fYkwZ5cUJarM0DRpLO-h1sHC2tt7WsopeQDonzRxqMI2PpCmjrdwsnF557W-jyQKiftWAM7LRG4iGgRmBARe-1kRPtoTqFB3PZOXhbPf20Nv9cDJ4iMfPo8dBfxwrlidNDFNCSiWhZMBUJumMl5yVgIHnZJZQnodpMWOK55JALouCEJ5CxmmugBQ0ZT10t_Vdrac1lCoM7WQlVk7X0n0IK7X4rRi9EHO7EUVOCeYsGFzuDJx9X4NvRK29gqqSBuzaC5qlpMgJ4zygF4dZPyH7TQaAbgHlrPcOZkLp5nspIVpXgmDxdS5xeK7QdPWnae_7L_4J0wCX_w |
| CitedBy_id | crossref_primary_10_1007_s00249_025_01765_9 crossref_primary_10_1098_rsob_240388 crossref_primary_10_3389_fbioe_2023_1276226 crossref_primary_10_1080_21683565_2024_2429620 crossref_primary_10_2147_PGPM_S350238 |
| Cites_doi | 10.1128/MCB.20.11.3977-3987.2000 10.1016/j.semcdb.2021.01.004 10.1002/gcc.22757 10.1186/2041-9414-1-15 10.1016/j.ceb.2013.02.008 10.1016/0360-3016(92)90949-I 10.1038/nrc3352 10.1091/mbc.e11-11-0926 10.1101/gr.275790.121 10.1038/470476a 10.1016/j.cell.2013.02.023 10.1007/978-3-540-71414-9_11 10.1016/j.mrrev.2010.03.004 10.1038/ncb3450 10.1101/gad.229559.113 10.1186/s12885-018-4594-0 10.1038/s41467-022-31133-6 10.18632/oncotarget.8058 10.1038/nature08467 10.1038/nrg2626 10.1126/science.aba0712 10.7554/eLife.06516 10.1007/978-1-4939-7780-2_8 10.1016/j.cell.2011.07.042 10.1038/sj.onc.1210324 10.21769/BioProtoc.1854 10.1093/genetics/26.2.234 10.1038/s41580-019-0152-0 10.1038/s41467-021-26745-3 10.1158/0008-5472.CAN-20-1920 10.1016/j.celrep.2012.05.009 10.7554/eLife.50292 10.1080/10409238.2019.1659227 10.1038/nature14493 10.1016/j.semcdb.2021.02.001 10.1038/nrg.2015.25 10.1038/ni.2367 10.1038/255197a0 10.1038/s41586-020-03064-z 10.3389/fgene.2019.00393 10.1038/s41467-018-06925-4 10.15252/msb.20156505 10.1083/jcb.201504005 10.1016/0360-3016(88)90125-3 10.1016/j.cell.2015.11.054 10.1182/blood-2011-03-344069 10.1073/pnas.2135498100 10.1016/j.cell.2010.11.055 10.1038/s41467-021-25469-8 10.1016/j.wneu.2019.07.003 10.1016/j.cell.2012.02.002 10.1038/ng.2202 10.1038/s41586-022-04767-1 10.1667/RR3245 10.1016/j.molcel.2012.06.036 10.1038/nature19823 10.1038/s41588-019-0576-7 10.1038/nm.2988 10.1146/annurev-genet-120213-092228 10.1038/s41588-019-0566-9 10.1073/pnas.1109720108 10.1111/febs.14053 10.1016/j.semcdb.2021.04.014 10.1016/j.dnarep.2021.103195 10.1158/2643-3230.BCD-20-0132 10.1016/j.trecan.2015.10.007 10.1146/annurev-genet-112414-054714 10.1038/nsmb.2418 10.18632/oncotarget.7186 10.1016/j.cell.2011.07.048 10.1038/35015097 10.1016/j.cell.2011.07.049 10.1016/j.cell.2012.01.006 10.1093/nar/gku525 10.1038/s41408-022-00673-x 10.1038/nature10802 10.1002/gcc.21981 10.1016/j.mrfmmm.2006.07.003 10.1073/pnas.1602025113 10.1126/science.aab4082 10.3389/fonc.2021.771664 10.1097/CCO.0000000000000038 10.1016/j.molcel.2012.11.029 10.1093/bfgp/elv014 10.1016/j.jim.2011.10.007 10.1016/j.cell.2010.12.025 10.1016/j.devcel.2012.10.010 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. 2023 |
| Copyright_xml | – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.3390/ijms24010794 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1422-0067 |
| ExternalDocumentID | PMC9821053 36614236 10_3390_ijms24010794 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Dutch Cancer Society grantid: KWF NKI-2017-10796 – fundername: Dutch Cancer Society grantid: KWF NKI-2017- 10032 – fundername: Dutch Cancer Foundation grantid: NKI-2017-10032; NKI2017-10796 |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF ALIPV BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7X8 ESTFP PUEGO 5PM |
| ID | FETCH-LOGICAL-c384t-eb11dcaed3e3c7a2f5d53de0e581f4258232033c58a1e8a991156e7528ce19263 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910243600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-0067 |
| IngestDate | Tue Nov 04 02:06:50 EST 2025 Fri Sep 05 06:15:00 EDT 2025 Wed Feb 19 02:25:19 EST 2025 Tue Nov 18 21:33:34 EST 2025 Sat Nov 29 07:13:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | DNA double-strand break repair chromosomal rearrangements Alternative End Joining (AEJ) Alternative End Generation (AEG) chromothripsis |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c384t-eb11dcaed3e3c7a2f5d53de0e581f4258232033c58a1e8a991156e7528ce19263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6227-9850 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9821053 |
| PMID | 36614236 |
| PQID | 2761981355 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9821053 proquest_miscellaneous_2761981355 pubmed_primary_36614236 crossref_citationtrail_10_3390_ijms24010794 crossref_primary_10_3390_ijms24010794 |
| PublicationCentury | 2000 |
| PublicationDate | 20230102 |
| PublicationDateYYYYMMDD | 2023-01-02 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230102 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | International journal of molecular sciences |
| PublicationTitleAlternate | Int J Mol Sci |
| PublicationYear | 2023 |
| Publisher | MDPI |
| Publisher_xml | – name: MDPI |
| References | Simovic (ref_91) 2022; 123 Henry (ref_30) 2018; 1769 Ratnaparkhe (ref_53) 2018; 9 Maciejowski (ref_59) 2015; 163 Kneissig (ref_73) 2019; 8 Baltus (ref_25) 2019; 130 Martincorena (ref_47) 2015; 349 Chiarle (ref_75) 2011; 147 Zavacka (ref_24) 2021; 11 Kloosterman (ref_54) 2012; 1 Mardin (ref_63) 2015; 11 Lupski (ref_27) 2016; 17 Ashby (ref_14) 2022; 12 Zhao (ref_18) 2021; 12 Terradas (ref_67) 2010; 705 ref_19 Kinsella (ref_48) 2014; 42 Sidiropoulos (ref_85) 2022; 32 Holland (ref_3) 2012; 18 Chan (ref_45) 2015; 49 Hogenbirk (ref_83) 2012; 13 Ly (ref_49) 2017; 19 Strumberg (ref_71) 2000; 20 Forment (ref_57) 2012; 12 Morishita (ref_37) 2016; 7 Liu (ref_10) 2011; 146 Meyerson (ref_58) 2011; 144 Lee (ref_26) 2020; 52 Cairns (ref_46) 1975; 255 Loucas (ref_81) 2004; 162 Zhang (ref_65) 2013; 27 Stephens (ref_2) 2011; 144 Schellenberg (ref_88) 2012; 19 Leibowitz (ref_7) 2015; 49 Li (ref_21) 2019; 56 Bolkestein (ref_22) 2020; 80 Godthelp (ref_80) 2006; 601 Yu (ref_72) 2019; 54 Jackson (ref_42) 2009; 461 Tan (ref_31) 2016; 6 Aparicio (ref_87) 2016; 212 Pellestor (ref_5) 2022; 123 Rodrigues (ref_6) 2020; 13 Chiang (ref_52) 2012; 44 Hogenbirk (ref_44) 2016; 113 Oliveira (ref_77) 2012; 375 Wurm (ref_40) 1994; 30 Willis (ref_50) 2015; 1 Kloosterman (ref_29) 2013; 25 Kamranvar (ref_62) 2007; 26 Kim (ref_17) 2020; 52 Sakamoto (ref_23) 2022; 13 Notta (ref_16) 2016; 538 Richardson (ref_79) 2000; 405 Jallepalli (ref_32) 2012; 23 Tang (ref_70) 2022; 606 Jankovic (ref_76) 2013; 49 Docampo (ref_90) 2015; 14 Cimini (ref_66) 2008; 1786 Rocha (ref_84) 2012; 47 Magrangeas (ref_15) 2011; 118 Tang (ref_36) 2012; 23 Krijgsman (ref_38) 2016; 7 Schwartz (ref_39) 1988; 15 Korbel (ref_4) 2013; 152 Zhang (ref_74) 2012; 148 Tubio (ref_35) 2011; 470 Righolt (ref_56) 2012; 51 Maura (ref_13) 2022; 123 McClintock (ref_61) 1941; 26 Biermann (ref_20) 2019; 58 Bohgaki (ref_41) 2010; 1 Umbreit (ref_60) 2020; 368 ref_82 Tan (ref_28) 2015; 4 So (ref_51) 2017; 284 Koltsova (ref_69) 2019; 10 Maclachlan (ref_11) 2021; 12 Metzker (ref_1) 2010; 11 Munisha (ref_9) 2021; 106 Klein (ref_78) 2011; 147 Crasta (ref_34) 2012; 482 Thompson (ref_68) 2011; 108 Shoshani (ref_8) 2021; 591 Maher (ref_64) 2012; 148 Scully (ref_86) 2019; 11 Vilenchik (ref_43) 2003; 100 Collins (ref_89) 2017; 36 Rustad (ref_12) 2020; 1 Zhang (ref_33) 2015; 522 Kloosterman (ref_55) 2014; 26 |
| References_xml | – volume: 20 start-page: 3977 year: 2000 ident: ref_71 article-title: Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5′-Phosphorylated DNA Double-Strand Breaks by Replication Runoff publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.11.3977-3987.2000 – volume: 123 start-page: 90 year: 2022 ident: ref_5 article-title: Chromoanagenesis, the mechanisms of a genomic chaos publication-title: Semin Cell Dev. Biol. doi: 10.1016/j.semcdb.2021.01.004 – volume: 58 start-page: 627 year: 2019 ident: ref_20 article-title: Radiation-induced genomic instability in breast carcinomas of the Swedish hemangioma cohort publication-title: Genes Chromosom. Cancer doi: 10.1002/gcc.22757 – volume: 1 start-page: 15 year: 2010 ident: ref_41 article-title: DNA double-strand break signaling and human disorders publication-title: Genome Integr. doi: 10.1186/2041-9414-1-15 – volume: 25 start-page: 341 year: 2013 ident: ref_29 article-title: Chromothripsis in congenital disorders and cancer: Similarities and differences publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2013.02.008 – volume: 30 start-page: 625 year: 1994 ident: ref_40 article-title: Cellular radiosensitivity and dna damage in primary human fibroblasts publication-title: Int. J. Radiat Oncol. Biol. Phys. doi: 10.1016/0360-3016(92)90949-I – volume: 12 start-page: 663 year: 2012 ident: ref_57 article-title: Chromothripsis and cancer: Causes and consequences of chromosome shattering publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3352 – volume: 23 start-page: 2240 year: 2012 ident: ref_36 article-title: Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-11-0926 – volume: 32 start-page: 643 year: 2022 ident: ref_85 article-title: Somatic structural variant formation is guided by and influences genome architecture publication-title: Genome Res. doi: 10.1101/gr.275790.121 – volume: 470 start-page: 476 year: 2011 ident: ref_35 article-title: When catastrophe strikes a cell publication-title: Nature doi: 10.1038/470476a – volume: 152 start-page: 1226 year: 2013 ident: ref_4 article-title: Criteria for inference of chromothripsis in cancer genomes publication-title: Cell doi: 10.1016/j.cell.2013.02.023 – ident: ref_82 doi: 10.1007/978-3-540-71414-9_11 – volume: 705 start-page: 60 year: 2010 ident: ref_67 article-title: Genetic activities in micronuclei: Is the DNA entrapped in micronuclei lost for the cell? publication-title: Mutat Res. doi: 10.1016/j.mrrev.2010.03.004 – volume: 19 start-page: 68 year: 2017 ident: ref_49 article-title: Selective y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining publication-title: Nat. Cell Biol. doi: 10.1038/ncb3450 – volume: 27 start-page: 2513 year: 2013 ident: ref_65 article-title: Chromothripsis and beyond: Rapid genome evolution from complex chromosomal rearrangements publication-title: Genes Dev. doi: 10.1101/gad.229559.113 – ident: ref_19 doi: 10.1186/s12885-018-4594-0 – volume: 13 start-page: 3464 year: 2022 ident: ref_23 article-title: Phasing analysis of lung cancer genomes using a long read sequencer publication-title: Nat. Commun. doi: 10.1038/s41467-022-31133-6 – volume: 36 start-page: 6 year: 2017 ident: ref_89 article-title: Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome publication-title: Genome Biol. – volume: 7 start-page: 37608 year: 2016 ident: ref_38 article-title: Immortalization capacity of HPV types is inversely related to chromosomal instability publication-title: Oncotarget doi: 10.18632/oncotarget.8058 – volume: 461 start-page: 1071 year: 2009 ident: ref_42 article-title: The DNA-damage response in human biology and disease publication-title: Nature doi: 10.1038/nature08467 – volume: 11 start-page: 31 year: 2010 ident: ref_1 article-title: Sequencing technologies the next generation publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2626 – volume: 368 start-page: eaba0712 year: 2020 ident: ref_60 article-title: Mechanisms generating cancer genome complexity from a single cell division error publication-title: Science doi: 10.1126/science.aba0712 – volume: 4 start-page: e06516 year: 2015 ident: ref_28 article-title: Catastrophic chromosomal restructuring during genome elimination in plants publication-title: Elife doi: 10.7554/eLife.06516 – volume: 1769 start-page: 119 year: 2018 ident: ref_30 article-title: Detection of Chromothripsis in Plants publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7780-2_8 – volume: 146 start-page: 889 year: 2011 ident: ref_10 article-title: Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements publication-title: Cell doi: 10.1016/j.cell.2011.07.042 – volume: 26 start-page: 5115 year: 2007 ident: ref_62 article-title: Epstein-Barr virus promotes genomic instability in Burkitt’s lymphoma publication-title: Oncogene doi: 10.1038/sj.onc.1210324 – volume: 6 start-page: e1854 year: 2016 ident: ref_31 article-title: Chromosome Dosage Analysis in Plants Using Whole Genome Sequencing publication-title: Bio. Protoc. doi: 10.21769/BioProtoc.1854 – volume: 26 start-page: 234 year: 1941 ident: ref_61 article-title: The Stability of Broken Ends of Chromosomes in Zea Mays publication-title: Genetics doi: 10.1093/genetics/26.2.234 – volume: 13 start-page: 11 year: 2020 ident: ref_6 article-title: Copy number variations and constitutional chromothripsis publication-title: Biomed. Rep. – volume: 11 start-page: 698 year: 2019 ident: ref_86 article-title: DNA double-strand break repair-pathway choice in somatic mammalian cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0152-0 – volume: 12 start-page: 6489 year: 2021 ident: ref_18 article-title: Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma publication-title: Nat. Commun. doi: 10.1038/s41467-021-26745-3 – volume: 1786 start-page: 32 year: 2008 ident: ref_66 article-title: Merotelic kinetochore orientation, aneuploidy, and cancer publication-title: Biochim Biophys. Acta – volume: 80 start-page: 4918 year: 2020 ident: ref_22 article-title: Chromothripsis in Human Breast Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-20-1920 – volume: 1 start-page: 648 year: 2012 ident: ref_54 article-title: Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.05.009 – volume: 8 start-page: e50292 year: 2019 ident: ref_73 article-title: Micronuclei-based model system reveals functional consequences of chromothripsis in human cells publication-title: Elife doi: 10.7554/eLife.50292 – volume: 54 start-page: 333 year: 2019 ident: ref_72 article-title: Current insights into the mechanism of mammalian immunoglobulin class switch recombination publication-title: Crit Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2019.1659227 – volume: 522 start-page: 179 year: 2015 ident: ref_33 article-title: Chromothripsis from DNA damage in micronuclei publication-title: Nature doi: 10.1038/nature14493 – volume: 123 start-page: 110 year: 2022 ident: ref_91 article-title: Chromothripsis, DNA repair and checkpoints defects publication-title: Semin Cell Dev. Biol. doi: 10.1016/j.semcdb.2021.02.001 – volume: 17 start-page: 224 year: 2016 ident: ref_27 article-title: Mechanisms underlying structural variant formation in genomic disorders publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2015.25 – volume: 13 start-page: 797 year: 2012 ident: ref_83 article-title: Reassessing genomic targeting of AID publication-title: Nat. Immunol. doi: 10.1038/ni.2367 – volume: 255 start-page: 197 year: 1975 ident: ref_46 article-title: Mutation selection and the natural history of cancer publication-title: Nature doi: 10.1038/255197a0 – volume: 591 start-page: 137 year: 2021 ident: ref_8 article-title: Chromothripsis drives the evolution of gene amplification in cancer publication-title: Nature doi: 10.1038/s41586-020-03064-z – volume: 10 start-page: 393 year: 2019 ident: ref_69 article-title: On the complexity of mechanisms and consequences of chromothripsis: An update publication-title: Front. Genet. doi: 10.3389/fgene.2019.00393 – volume: 9 start-page: 4760 year: 2018 ident: ref_53 article-title: Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors publication-title: Nat. Commun. doi: 10.1038/s41467-018-06925-4 – volume: 56 start-page: 522 year: 2019 ident: ref_21 article-title: Comprehensive identification and characterization of somatic copy number alterations in triple-negative breast cancer publication-title: Int. J. Oncol. – volume: 11 start-page: 828 year: 2015 ident: ref_63 article-title: A cell-based model system links chromothripsis with hyperploidy publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156505 – volume: 212 start-page: 399 year: 2016 ident: ref_87 article-title: MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts publication-title: J. Cell Biol. doi: 10.1083/jcb.201504005 – volume: 15 start-page: 907 year: 1988 ident: ref_39 article-title: Faster repair of DNA double-strand breaks in radioresistant human tumor cells publication-title: Int. J. Radiat Oncol. Biol. Phys. doi: 10.1016/0360-3016(88)90125-3 – volume: 163 start-page: 1641 year: 2015 ident: ref_59 article-title: Chromothripsis and Kataegis Induced by Telomere Crisis publication-title: Cell doi: 10.1016/j.cell.2015.11.054 – volume: 118 start-page: 675 year: 2011 ident: ref_15 article-title: Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients publication-title: Blood doi: 10.1182/blood-2011-03-344069 – volume: 100 start-page: 12871 year: 2003 ident: ref_43 article-title: Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2135498100 – volume: 144 start-page: 27 year: 2011 ident: ref_2 article-title: Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development publication-title: Cell doi: 10.1016/j.cell.2010.11.055 – volume: 12 start-page: 5172 year: 2021 ident: ref_11 article-title: Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma publication-title: Nat. Commun. doi: 10.1038/s41467-021-25469-8 – volume: 130 start-page: 380 year: 2019 ident: ref_25 article-title: Chromothripsis in an Early Recurrent Chordoid Meningioma publication-title: World Neurosurg. doi: 10.1016/j.wneu.2019.07.003 – volume: 148 start-page: 908 year: 2012 ident: ref_74 article-title: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations publication-title: Cell doi: 10.1016/j.cell.2012.02.002 – volume: 44 start-page: 390 year: 2012 ident: ref_52 article-title: Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration publication-title: Nat. Genet. doi: 10.1038/ng.2202 – volume: 606 start-page: 930 year: 2022 ident: ref_70 article-title: Breakage of cytoplasmic chromosomes by pathological DNA base excision repair publication-title: Nature doi: 10.1038/s41586-022-04767-1 – volume: 162 start-page: 339 year: 2004 ident: ref_81 article-title: Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays publication-title: Radiat Res. doi: 10.1667/RR3245 – volume: 47 start-page: 873 year: 2012 ident: ref_84 article-title: Close Proximity to Igh Is a Contributing Factor to AID-Mediated Translocations publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.036 – volume: 538 start-page: 378 year: 2016 ident: ref_16 article-title: A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns publication-title: Nature doi: 10.1038/nature19823 – volume: 52 start-page: 331 year: 2020 ident: ref_26 article-title: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing publication-title: Nat. Genet. doi: 10.1038/s41588-019-0576-7 – volume: 18 start-page: 1630 year: 2012 ident: ref_3 article-title: Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements publication-title: Nat. Med. doi: 10.1038/nm.2988 – volume: 49 start-page: 183 year: 2015 ident: ref_7 article-title: Chromothripsis: A New Mechanism for Rapid Karyotype Evolution publication-title: Ann. Rev. Genet. doi: 10.1146/annurev-genet-120213-092228 – volume: 52 start-page: 231 year: 2020 ident: ref_17 article-title: Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution publication-title: Nat. Genet. doi: 10.1038/s41588-019-0566-9 – volume: 108 start-page: 17974 year: 2011 ident: ref_68 article-title: Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1109720108 – volume: 284 start-page: 2324 year: 2017 ident: ref_51 article-title: Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells publication-title: FEBS J. doi: 10.1111/febs.14053 – volume: 123 start-page: 115 year: 2022 ident: ref_13 article-title: Chromothripsis as a pathogenic driver of multiple myeloma publication-title: Semin Cell Dev. Biol. doi: 10.1016/j.semcdb.2021.04.014 – volume: 106 start-page: 103195 year: 2021 ident: ref_9 article-title: Genome maintenance during embryogenesis publication-title: DNA Repair doi: 10.1016/j.dnarep.2021.103195 – volume: 1 start-page: 258 year: 2020 ident: ref_12 article-title: Revealing the Impact of Structural Variants in Multiple Myeloma publication-title: Blood Cancer Discov. doi: 10.1158/2643-3230.BCD-20-0132 – volume: 1 start-page: 217 year: 2015 ident: ref_50 article-title: Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement publication-title: Trends Cancer doi: 10.1016/j.trecan.2015.10.007 – volume: 49 start-page: 243 year: 2015 ident: ref_45 article-title: Clusters of Multiple Mutations: Incidence and Molecular Mechanisms publication-title: Ann. Rev. Genet. doi: 10.1146/annurev-genet-112414-054714 – volume: 19 start-page: 1363 year: 2012 ident: ref_88 article-title: Mechanism of repair of 5’-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2418 – volume: 7 start-page: 10182 year: 2016 ident: ref_37 article-title: Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system publication-title: Oncotarget doi: 10.18632/oncotarget.7186 – volume: 147 start-page: 95 year: 2011 ident: ref_78 article-title: Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes publication-title: Cell doi: 10.1016/j.cell.2011.07.048 – volume: 405 start-page: 697 year: 2000 ident: ref_79 article-title: Frequent chromosomal translocations induced by DNA double-strand breaks publication-title: Nature doi: 10.1038/35015097 – volume: 147 start-page: 107 year: 2011 ident: ref_75 article-title: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells publication-title: Cell doi: 10.1016/j.cell.2011.07.049 – volume: 148 start-page: 29 year: 2012 ident: ref_64 article-title: Chromothripsis and Human Disease: Piecing Together the Shattering Process publication-title: Cell doi: 10.1016/j.cell.2012.01.006 – volume: 42 start-page: 8231 year: 2014 ident: ref_48 article-title: The elusive evidence for chromothripsis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku525 – volume: 12 start-page: 85 year: 2022 ident: ref_14 article-title: Structural variants shape the genomic landscape and clinical outcome of multiple myeloma publication-title: Blood Cancer J. doi: 10.1038/s41408-022-00673-x – volume: 482 start-page: 53 year: 2012 ident: ref_34 article-title: DNA breaks and chromosome pulverization from errors in mitosis publication-title: Nature doi: 10.1038/nature10802 – volume: 51 start-page: 975 year: 2012 ident: ref_56 article-title: Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? publication-title: Genes Chromosom. Cancer doi: 10.1002/gcc.21981 – volume: 601 start-page: 191 year: 2006 ident: ref_80 article-title: Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2 publication-title: Mutat Res. doi: 10.1016/j.mrfmmm.2006.07.003 – volume: 113 start-page: E3649 year: 2016 ident: ref_44 article-title: Defining chromosomal translocation risks in cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602025113 – volume: 349 start-page: 1483 year: 2015 ident: ref_47 article-title: Somatic mutation in cancer and normal cells publication-title: Science doi: 10.1126/science.aab4082 – volume: 11 start-page: 771664 year: 2021 ident: ref_24 article-title: Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability publication-title: Front. Oncol. doi: 10.3389/fonc.2021.771664 – volume: 26 start-page: 64 year: 2014 ident: ref_55 article-title: Prevalence and clinical implications of chromothripsis in cancer genomes publication-title: Curr. Opin. Oncol. doi: 10.1097/CCO.0000000000000038 – volume: 49 start-page: 623 year: 2013 ident: ref_76 article-title: 53BP1 Alters the Landscape of DNA Rearrangements and Suppresses AID-Induced B Cell Lymphoma publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.029 – volume: 14 start-page: 305 year: 2015 ident: ref_90 article-title: A decade of structural variants: Description, history and methods to detect structural variation publication-title: Brief. Funct. Genom. doi: 10.1093/bfgp/elv014 – volume: 375 start-page: 176 year: 2012 ident: ref_77 article-title: Translocation capture sequencing: A method for high throughput mapping of chromosomal rearrangements publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2011.10.007 – volume: 144 start-page: 9 year: 2011 ident: ref_58 article-title: Cancer genomes evolve by pulverizing single chromosomes publication-title: Cell doi: 10.1016/j.cell.2010.12.025 – volume: 23 start-page: 908 year: 2012 ident: ref_32 article-title: Chromothripsis: Chromosomes in Crisis publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.10.010 |
| SSID | ssj0023259 |
| Score | 2.4068162 |
| SecondaryResourceType | review_article |
| Snippet | Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 794 |
| SubjectTerms | Chromatin Chromosome Aberrations Chromothripsis DNA - genetics DNA Breaks, Double-Stranded Humans Review |
| Title | Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36614236 https://www.proquest.com/docview/2761981355 https://pubmed.ncbi.nlm.nih.gov/PMC9821053 |
| Volume | 24 |
| WOSCitedRecordID | wos000910243600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: 7X7 dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: BENPR dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: PIMPY dateStart: 20000301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1422-0067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023259 issn: 1422-0067 databaseCode: M2O dateStart: 20000301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKBhIvE7_pgClIwEsV0cRx4_BWUCdAbVdBh8pT5NiulqlNSpNVg0f-cu7iNE0GSOOBl6hxrLj1fT3fnX3fEfJCRQpZvD0b1sKu7XEV2XyuA5tFnpA0UEoWdE1fhv54zGezYNJq_dzmwmwWfpLwy8tg9V9FDW0gbEyd_QdxVy-FBvgMQocriB2u1xI80t0u0yxdFrT5Yr3G9AGTyIZBcvM4PwNlkcXZ9tBFf1EGBje6M4Beho26wAZWS1vUbdhmELFGPbHcltrtlOtqZa8rjUGuNN8lte927UVyLoQ5YN9fqLTCWQq_MIrNSe4RMgpUWPsIWjzKzKIZJz_qgQuXFoGLWiwTo082rpZmKfpDW6mgTZJ1HYhX9T6lAR6UjM-XGVgo4NGawslNeu3xSXh8OhyG08Fs-mr1zcbKY7hDX5ZhuUH2XZ8FqBn92c5pp25RcK_6YiZ5Agd8XR-uadb85qtcPXJbs2Gmd8hB6XxYfQOau6Slk3vklilH-v0--VyDjtWEjgXQsZrQeWMBcKwacCwAjrUDjlUA5wE5PR5M3723y6IbtqTcy21Yux0lhVZUU-kLd84Uo0p3NePOHBQ8hxnpUioZF47mAtwLh_W0z1wuNXgLPfqQ7CVpoh8TizmaMeEpjRyClOoIzOuo58hoLntdHug26WznLJQlIz0WRlmE4JniDIf1GW6Tl1XvlWFi-Uu_59vpD0FV4v6XSHR6kYUuhuy4AxZ2mzwy4qjeRNFOdWmvTfyGoKoOSMPefJLEZwUde8BdcFLo4TXGfUJu7_4JT8levr7Qz8hNucnjbH1UAK-48iOy_3YwnnyCu5F7AneTD6PJ11-kCrFK |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosomal+Rearrangements+and+Chromothripsis%3A+The+Alternative+End+Generation+Model&rft.jtitle=International+journal+of+molecular+sciences&rft.au=de+Groot%2C+Daniel&rft.au=Spanjaard%2C+Aldo&rft.au=Hogenbirk%2C+Marc+A&rft.au=Jacobs%2C+Heinz&rft.date=2023-01-02&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=24&rft.issue=1&rft_id=info:doi/10.3390%2Fijms24010794&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |