Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model

Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of molecular sciences Ročník 24; číslo 1; s. 794
Hlavní autoři: de Groot, Daniel, Spanjaard, Aldo, Hogenbirk, Marc A., Jacobs, Heinz
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI 02.01.2023
Témata:
ISSN:1422-0067, 1422-0067
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.
AbstractList Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.
Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.
Author Spanjaard, Aldo
Hogenbirk, Marc A.
Jacobs, Heinz
de Groot, Daniel
AuthorAffiliation 1 Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
2 Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands
AuthorAffiliation_xml – name: 1 Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
– name: 2 Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Daniel
  surname: de Groot
  fullname: de Groot, Daniel
– sequence: 2
  givenname: Aldo
  surname: Spanjaard
  fullname: Spanjaard, Aldo
– sequence: 3
  givenname: Marc A.
  surname: Hogenbirk
  fullname: Hogenbirk, Marc A.
– sequence: 4
  givenname: Heinz
  orcidid: 0000-0001-6227-9850
  surname: Jacobs
  fullname: Jacobs, Heinz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36614236$$D View this record in MEDLINE/PubMed
BookMark eNptkctLAzEQxoNU7ENvnmWPHlzNY7MPD0IptQoVQes5pNlpm7Kb1GRb8L832laqeMqE7zffN8x0UctYAwidE3zNWIFv9LL2NMEEZ0VyhDokoTTGOM1aB3Ubdb1fYkwZ5cUJarM0DRpLO-h1sHC2tt7WsopeQDonzRxqMI2PpCmjrdwsnF557W-jyQKiftWAM7LRG4iGgRmBARe-1kRPtoTqFB3PZOXhbPf20Nv9cDJ4iMfPo8dBfxwrlidNDFNCSiWhZMBUJumMl5yVgIHnZJZQnodpMWOK55JALouCEJ5CxmmugBQ0ZT10t_Vdrac1lCoM7WQlVk7X0n0IK7X4rRi9EHO7EUVOCeYsGFzuDJx9X4NvRK29gqqSBuzaC5qlpMgJ4zygF4dZPyH7TQaAbgHlrPcOZkLp5nspIVpXgmDxdS5xeK7QdPWnae_7L_4J0wCX_w
CitedBy_id crossref_primary_10_1007_s00249_025_01765_9
crossref_primary_10_1098_rsob_240388
crossref_primary_10_3389_fbioe_2023_1276226
crossref_primary_10_1080_21683565_2024_2429620
crossref_primary_10_2147_PGPM_S350238
Cites_doi 10.1128/MCB.20.11.3977-3987.2000
10.1016/j.semcdb.2021.01.004
10.1002/gcc.22757
10.1186/2041-9414-1-15
10.1016/j.ceb.2013.02.008
10.1016/0360-3016(92)90949-I
10.1038/nrc3352
10.1091/mbc.e11-11-0926
10.1101/gr.275790.121
10.1038/470476a
10.1016/j.cell.2013.02.023
10.1007/978-3-540-71414-9_11
10.1016/j.mrrev.2010.03.004
10.1038/ncb3450
10.1101/gad.229559.113
10.1186/s12885-018-4594-0
10.1038/s41467-022-31133-6
10.18632/oncotarget.8058
10.1038/nature08467
10.1038/nrg2626
10.1126/science.aba0712
10.7554/eLife.06516
10.1007/978-1-4939-7780-2_8
10.1016/j.cell.2011.07.042
10.1038/sj.onc.1210324
10.21769/BioProtoc.1854
10.1093/genetics/26.2.234
10.1038/s41580-019-0152-0
10.1038/s41467-021-26745-3
10.1158/0008-5472.CAN-20-1920
10.1016/j.celrep.2012.05.009
10.7554/eLife.50292
10.1080/10409238.2019.1659227
10.1038/nature14493
10.1016/j.semcdb.2021.02.001
10.1038/nrg.2015.25
10.1038/ni.2367
10.1038/255197a0
10.1038/s41586-020-03064-z
10.3389/fgene.2019.00393
10.1038/s41467-018-06925-4
10.15252/msb.20156505
10.1083/jcb.201504005
10.1016/0360-3016(88)90125-3
10.1016/j.cell.2015.11.054
10.1182/blood-2011-03-344069
10.1073/pnas.2135498100
10.1016/j.cell.2010.11.055
10.1038/s41467-021-25469-8
10.1016/j.wneu.2019.07.003
10.1016/j.cell.2012.02.002
10.1038/ng.2202
10.1038/s41586-022-04767-1
10.1667/RR3245
10.1016/j.molcel.2012.06.036
10.1038/nature19823
10.1038/s41588-019-0576-7
10.1038/nm.2988
10.1146/annurev-genet-120213-092228
10.1038/s41588-019-0566-9
10.1073/pnas.1109720108
10.1111/febs.14053
10.1016/j.semcdb.2021.04.014
10.1016/j.dnarep.2021.103195
10.1158/2643-3230.BCD-20-0132
10.1016/j.trecan.2015.10.007
10.1146/annurev-genet-112414-054714
10.1038/nsmb.2418
10.18632/oncotarget.7186
10.1016/j.cell.2011.07.048
10.1038/35015097
10.1016/j.cell.2011.07.049
10.1016/j.cell.2012.01.006
10.1093/nar/gku525
10.1038/s41408-022-00673-x
10.1038/nature10802
10.1002/gcc.21981
10.1016/j.mrfmmm.2006.07.003
10.1073/pnas.1602025113
10.1126/science.aab4082
10.3389/fonc.2021.771664
10.1097/CCO.0000000000000038
10.1016/j.molcel.2012.11.029
10.1093/bfgp/elv014
10.1016/j.jim.2011.10.007
10.1016/j.cell.2010.12.025
10.1016/j.devcel.2012.10.010
ContentType Journal Article
Copyright 2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3390/ijms24010794
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC9821053
36614236
10_3390_ijms24010794
Genre Journal Article
Review
GrantInformation_xml – fundername: Dutch Cancer Society
  grantid: KWF NKI-2017-10796
– fundername: Dutch Cancer Society
  grantid: KWF NKI-2017- 10032
– fundername: Dutch Cancer Foundation
  grantid: NKI-2017-10032; NKI2017-10796
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
ALIPV
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c384t-eb11dcaed3e3c7a2f5d53de0e581f4258232033c58a1e8a991156e7528ce19263
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910243600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-0067
IngestDate Tue Nov 04 02:06:50 EST 2025
Fri Sep 05 06:15:00 EDT 2025
Wed Feb 19 02:25:19 EST 2025
Tue Nov 18 21:33:34 EST 2025
Sat Nov 29 07:13:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA double-strand break repair
chromosomal rearrangements
Alternative End Joining (AEJ)
Alternative End Generation (AEG)
chromothripsis
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-eb11dcaed3e3c7a2f5d53de0e581f4258232033c58a1e8a991156e7528ce19263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6227-9850
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9821053
PMID 36614236
PQID 2761981355
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9821053
proquest_miscellaneous_2761981355
pubmed_primary_36614236
crossref_citationtrail_10_3390_ijms24010794
crossref_primary_10_3390_ijms24010794
PublicationCentury 2000
PublicationDate 20230102
PublicationDateYYYYMMDD 2023-01-02
PublicationDate_xml – month: 1
  year: 2023
  text: 20230102
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2023
Publisher MDPI
Publisher_xml – name: MDPI
References Simovic (ref_91) 2022; 123
Henry (ref_30) 2018; 1769
Ratnaparkhe (ref_53) 2018; 9
Maciejowski (ref_59) 2015; 163
Kneissig (ref_73) 2019; 8
Baltus (ref_25) 2019; 130
Martincorena (ref_47) 2015; 349
Chiarle (ref_75) 2011; 147
Zavacka (ref_24) 2021; 11
Kloosterman (ref_54) 2012; 1
Mardin (ref_63) 2015; 11
Lupski (ref_27) 2016; 17
Ashby (ref_14) 2022; 12
Zhao (ref_18) 2021; 12
Terradas (ref_67) 2010; 705
ref_19
Kinsella (ref_48) 2014; 42
Sidiropoulos (ref_85) 2022; 32
Holland (ref_3) 2012; 18
Chan (ref_45) 2015; 49
Hogenbirk (ref_83) 2012; 13
Ly (ref_49) 2017; 19
Strumberg (ref_71) 2000; 20
Forment (ref_57) 2012; 12
Morishita (ref_37) 2016; 7
Liu (ref_10) 2011; 146
Meyerson (ref_58) 2011; 144
Lee (ref_26) 2020; 52
Cairns (ref_46) 1975; 255
Loucas (ref_81) 2004; 162
Zhang (ref_65) 2013; 27
Stephens (ref_2) 2011; 144
Schellenberg (ref_88) 2012; 19
Leibowitz (ref_7) 2015; 49
Li (ref_21) 2019; 56
Bolkestein (ref_22) 2020; 80
Godthelp (ref_80) 2006; 601
Yu (ref_72) 2019; 54
Jackson (ref_42) 2009; 461
Tan (ref_31) 2016; 6
Aparicio (ref_87) 2016; 212
Pellestor (ref_5) 2022; 123
Rodrigues (ref_6) 2020; 13
Chiang (ref_52) 2012; 44
Hogenbirk (ref_44) 2016; 113
Oliveira (ref_77) 2012; 375
Wurm (ref_40) 1994; 30
Willis (ref_50) 2015; 1
Kloosterman (ref_29) 2013; 25
Kamranvar (ref_62) 2007; 26
Kim (ref_17) 2020; 52
Sakamoto (ref_23) 2022; 13
Notta (ref_16) 2016; 538
Richardson (ref_79) 2000; 405
Jallepalli (ref_32) 2012; 23
Tang (ref_70) 2022; 606
Jankovic (ref_76) 2013; 49
Docampo (ref_90) 2015; 14
Cimini (ref_66) 2008; 1786
Rocha (ref_84) 2012; 47
Magrangeas (ref_15) 2011; 118
Tang (ref_36) 2012; 23
Krijgsman (ref_38) 2016; 7
Schwartz (ref_39) 1988; 15
Korbel (ref_4) 2013; 152
Zhang (ref_74) 2012; 148
Tubio (ref_35) 2011; 470
Righolt (ref_56) 2012; 51
Maura (ref_13) 2022; 123
McClintock (ref_61) 1941; 26
Biermann (ref_20) 2019; 58
Bohgaki (ref_41) 2010; 1
Umbreit (ref_60) 2020; 368
ref_82
Tan (ref_28) 2015; 4
So (ref_51) 2017; 284
Koltsova (ref_69) 2019; 10
Maclachlan (ref_11) 2021; 12
Metzker (ref_1) 2010; 11
Munisha (ref_9) 2021; 106
Klein (ref_78) 2011; 147
Crasta (ref_34) 2012; 482
Thompson (ref_68) 2011; 108
Shoshani (ref_8) 2021; 591
Maher (ref_64) 2012; 148
Scully (ref_86) 2019; 11
Vilenchik (ref_43) 2003; 100
Collins (ref_89) 2017; 36
Rustad (ref_12) 2020; 1
Zhang (ref_33) 2015; 522
Kloosterman (ref_55) 2014; 26
References_xml – volume: 20
  start-page: 3977
  year: 2000
  ident: ref_71
  article-title: Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5′-Phosphorylated DNA Double-Strand Breaks by Replication Runoff
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.11.3977-3987.2000
– volume: 123
  start-page: 90
  year: 2022
  ident: ref_5
  article-title: Chromoanagenesis, the mechanisms of a genomic chaos
  publication-title: Semin Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2021.01.004
– volume: 58
  start-page: 627
  year: 2019
  ident: ref_20
  article-title: Radiation-induced genomic instability in breast carcinomas of the Swedish hemangioma cohort
  publication-title: Genes Chromosom. Cancer
  doi: 10.1002/gcc.22757
– volume: 1
  start-page: 15
  year: 2010
  ident: ref_41
  article-title: DNA double-strand break signaling and human disorders
  publication-title: Genome Integr.
  doi: 10.1186/2041-9414-1-15
– volume: 25
  start-page: 341
  year: 2013
  ident: ref_29
  article-title: Chromothripsis in congenital disorders and cancer: Similarities and differences
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2013.02.008
– volume: 30
  start-page: 625
  year: 1994
  ident: ref_40
  article-title: Cellular radiosensitivity and dna damage in primary human fibroblasts
  publication-title: Int. J. Radiat Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(92)90949-I
– volume: 12
  start-page: 663
  year: 2012
  ident: ref_57
  article-title: Chromothripsis and cancer: Causes and consequences of chromosome shattering
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3352
– volume: 23
  start-page: 2240
  year: 2012
  ident: ref_36
  article-title: Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-11-0926
– volume: 32
  start-page: 643
  year: 2022
  ident: ref_85
  article-title: Somatic structural variant formation is guided by and influences genome architecture
  publication-title: Genome Res.
  doi: 10.1101/gr.275790.121
– volume: 470
  start-page: 476
  year: 2011
  ident: ref_35
  article-title: When catastrophe strikes a cell
  publication-title: Nature
  doi: 10.1038/470476a
– volume: 152
  start-page: 1226
  year: 2013
  ident: ref_4
  article-title: Criteria for inference of chromothripsis in cancer genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.023
– ident: ref_82
  doi: 10.1007/978-3-540-71414-9_11
– volume: 705
  start-page: 60
  year: 2010
  ident: ref_67
  article-title: Genetic activities in micronuclei: Is the DNA entrapped in micronuclei lost for the cell?
  publication-title: Mutat Res.
  doi: 10.1016/j.mrrev.2010.03.004
– volume: 19
  start-page: 68
  year: 2017
  ident: ref_49
  article-title: Selective y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3450
– volume: 27
  start-page: 2513
  year: 2013
  ident: ref_65
  article-title: Chromothripsis and beyond: Rapid genome evolution from complex chromosomal rearrangements
  publication-title: Genes Dev.
  doi: 10.1101/gad.229559.113
– ident: ref_19
  doi: 10.1186/s12885-018-4594-0
– volume: 13
  start-page: 3464
  year: 2022
  ident: ref_23
  article-title: Phasing analysis of lung cancer genomes using a long read sequencer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31133-6
– volume: 36
  start-page: 6
  year: 2017
  ident: ref_89
  article-title: Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome
  publication-title: Genome Biol.
– volume: 7
  start-page: 37608
  year: 2016
  ident: ref_38
  article-title: Immortalization capacity of HPV types is inversely related to chromosomal instability
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8058
– volume: 461
  start-page: 1071
  year: 2009
  ident: ref_42
  article-title: The DNA-damage response in human biology and disease
  publication-title: Nature
  doi: 10.1038/nature08467
– volume: 11
  start-page: 31
  year: 2010
  ident: ref_1
  article-title: Sequencing technologies the next generation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2626
– volume: 368
  start-page: eaba0712
  year: 2020
  ident: ref_60
  article-title: Mechanisms generating cancer genome complexity from a single cell division error
  publication-title: Science
  doi: 10.1126/science.aba0712
– volume: 4
  start-page: e06516
  year: 2015
  ident: ref_28
  article-title: Catastrophic chromosomal restructuring during genome elimination in plants
  publication-title: Elife
  doi: 10.7554/eLife.06516
– volume: 1769
  start-page: 119
  year: 2018
  ident: ref_30
  article-title: Detection of Chromothripsis in Plants
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7780-2_8
– volume: 146
  start-page: 889
  year: 2011
  ident: ref_10
  article-title: Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.042
– volume: 26
  start-page: 5115
  year: 2007
  ident: ref_62
  article-title: Epstein-Barr virus promotes genomic instability in Burkitt’s lymphoma
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210324
– volume: 6
  start-page: e1854
  year: 2016
  ident: ref_31
  article-title: Chromosome Dosage Analysis in Plants Using Whole Genome Sequencing
  publication-title: Bio. Protoc.
  doi: 10.21769/BioProtoc.1854
– volume: 26
  start-page: 234
  year: 1941
  ident: ref_61
  article-title: The Stability of Broken Ends of Chromosomes in Zea Mays
  publication-title: Genetics
  doi: 10.1093/genetics/26.2.234
– volume: 13
  start-page: 11
  year: 2020
  ident: ref_6
  article-title: Copy number variations and constitutional chromothripsis
  publication-title: Biomed. Rep.
– volume: 11
  start-page: 698
  year: 2019
  ident: ref_86
  article-title: DNA double-strand break repair-pathway choice in somatic mammalian cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0152-0
– volume: 12
  start-page: 6489
  year: 2021
  ident: ref_18
  article-title: Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26745-3
– volume: 1786
  start-page: 32
  year: 2008
  ident: ref_66
  article-title: Merotelic kinetochore orientation, aneuploidy, and cancer
  publication-title: Biochim Biophys. Acta
– volume: 80
  start-page: 4918
  year: 2020
  ident: ref_22
  article-title: Chromothripsis in Human Breast Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-20-1920
– volume: 1
  start-page: 648
  year: 2012
  ident: ref_54
  article-title: Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.05.009
– volume: 8
  start-page: e50292
  year: 2019
  ident: ref_73
  article-title: Micronuclei-based model system reveals functional consequences of chromothripsis in human cells
  publication-title: Elife
  doi: 10.7554/eLife.50292
– volume: 54
  start-page: 333
  year: 2019
  ident: ref_72
  article-title: Current insights into the mechanism of mammalian immunoglobulin class switch recombination
  publication-title: Crit Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2019.1659227
– volume: 522
  start-page: 179
  year: 2015
  ident: ref_33
  article-title: Chromothripsis from DNA damage in micronuclei
  publication-title: Nature
  doi: 10.1038/nature14493
– volume: 123
  start-page: 110
  year: 2022
  ident: ref_91
  article-title: Chromothripsis, DNA repair and checkpoints defects
  publication-title: Semin Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2021.02.001
– volume: 17
  start-page: 224
  year: 2016
  ident: ref_27
  article-title: Mechanisms underlying structural variant formation in genomic disorders
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2015.25
– volume: 13
  start-page: 797
  year: 2012
  ident: ref_83
  article-title: Reassessing genomic targeting of AID
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2367
– volume: 255
  start-page: 197
  year: 1975
  ident: ref_46
  article-title: Mutation selection and the natural history of cancer
  publication-title: Nature
  doi: 10.1038/255197a0
– volume: 591
  start-page: 137
  year: 2021
  ident: ref_8
  article-title: Chromothripsis drives the evolution of gene amplification in cancer
  publication-title: Nature
  doi: 10.1038/s41586-020-03064-z
– volume: 10
  start-page: 393
  year: 2019
  ident: ref_69
  article-title: On the complexity of mechanisms and consequences of chromothripsis: An update
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00393
– volume: 9
  start-page: 4760
  year: 2018
  ident: ref_53
  article-title: Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06925-4
– volume: 56
  start-page: 522
  year: 2019
  ident: ref_21
  article-title: Comprehensive identification and characterization of somatic copy number alterations in triple-negative breast cancer
  publication-title: Int. J. Oncol.
– volume: 11
  start-page: 828
  year: 2015
  ident: ref_63
  article-title: A cell-based model system links chromothripsis with hyperploidy
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156505
– volume: 212
  start-page: 399
  year: 2016
  ident: ref_87
  article-title: MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201504005
– volume: 15
  start-page: 907
  year: 1988
  ident: ref_39
  article-title: Faster repair of DNA double-strand breaks in radioresistant human tumor cells
  publication-title: Int. J. Radiat Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(88)90125-3
– volume: 163
  start-page: 1641
  year: 2015
  ident: ref_59
  article-title: Chromothripsis and Kataegis Induced by Telomere Crisis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.054
– volume: 118
  start-page: 675
  year: 2011
  ident: ref_15
  article-title: Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients
  publication-title: Blood
  doi: 10.1182/blood-2011-03-344069
– volume: 100
  start-page: 12871
  year: 2003
  ident: ref_43
  article-title: Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2135498100
– volume: 144
  start-page: 27
  year: 2011
  ident: ref_2
  article-title: Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.055
– volume: 12
  start-page: 5172
  year: 2021
  ident: ref_11
  article-title: Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25469-8
– volume: 130
  start-page: 380
  year: 2019
  ident: ref_25
  article-title: Chromothripsis in an Early Recurrent Chordoid Meningioma
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2019.07.003
– volume: 148
  start-page: 908
  year: 2012
  ident: ref_74
  article-title: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.002
– volume: 44
  start-page: 390
  year: 2012
  ident: ref_52
  article-title: Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2202
– volume: 606
  start-page: 930
  year: 2022
  ident: ref_70
  article-title: Breakage of cytoplasmic chromosomes by pathological DNA base excision repair
  publication-title: Nature
  doi: 10.1038/s41586-022-04767-1
– volume: 162
  start-page: 339
  year: 2004
  ident: ref_81
  article-title: Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays
  publication-title: Radiat Res.
  doi: 10.1667/RR3245
– volume: 47
  start-page: 873
  year: 2012
  ident: ref_84
  article-title: Close Proximity to Igh Is a Contributing Factor to AID-Mediated Translocations
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.036
– volume: 538
  start-page: 378
  year: 2016
  ident: ref_16
  article-title: A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns
  publication-title: Nature
  doi: 10.1038/nature19823
– volume: 52
  start-page: 331
  year: 2020
  ident: ref_26
  article-title: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0576-7
– volume: 18
  start-page: 1630
  year: 2012
  ident: ref_3
  article-title: Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements
  publication-title: Nat. Med.
  doi: 10.1038/nm.2988
– volume: 49
  start-page: 183
  year: 2015
  ident: ref_7
  article-title: Chromothripsis: A New Mechanism for Rapid Karyotype Evolution
  publication-title: Ann. Rev. Genet.
  doi: 10.1146/annurev-genet-120213-092228
– volume: 52
  start-page: 231
  year: 2020
  ident: ref_17
  article-title: Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0566-9
– volume: 108
  start-page: 17974
  year: 2011
  ident: ref_68
  article-title: Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1109720108
– volume: 284
  start-page: 2324
  year: 2017
  ident: ref_51
  article-title: Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells
  publication-title: FEBS J.
  doi: 10.1111/febs.14053
– volume: 123
  start-page: 115
  year: 2022
  ident: ref_13
  article-title: Chromothripsis as a pathogenic driver of multiple myeloma
  publication-title: Semin Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2021.04.014
– volume: 106
  start-page: 103195
  year: 2021
  ident: ref_9
  article-title: Genome maintenance during embryogenesis
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2021.103195
– volume: 1
  start-page: 258
  year: 2020
  ident: ref_12
  article-title: Revealing the Impact of Structural Variants in Multiple Myeloma
  publication-title: Blood Cancer Discov.
  doi: 10.1158/2643-3230.BCD-20-0132
– volume: 1
  start-page: 217
  year: 2015
  ident: ref_50
  article-title: Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2015.10.007
– volume: 49
  start-page: 243
  year: 2015
  ident: ref_45
  article-title: Clusters of Multiple Mutations: Incidence and Molecular Mechanisms
  publication-title: Ann. Rev. Genet.
  doi: 10.1146/annurev-genet-112414-054714
– volume: 19
  start-page: 1363
  year: 2012
  ident: ref_88
  article-title: Mechanism of repair of 5’-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2418
– volume: 7
  start-page: 10182
  year: 2016
  ident: ref_37
  article-title: Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7186
– volume: 147
  start-page: 95
  year: 2011
  ident: ref_78
  article-title: Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.048
– volume: 405
  start-page: 697
  year: 2000
  ident: ref_79
  article-title: Frequent chromosomal translocations induced by DNA double-strand breaks
  publication-title: Nature
  doi: 10.1038/35015097
– volume: 147
  start-page: 107
  year: 2011
  ident: ref_75
  article-title: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.049
– volume: 148
  start-page: 29
  year: 2012
  ident: ref_64
  article-title: Chromothripsis and Human Disease: Piecing Together the Shattering Process
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.006
– volume: 42
  start-page: 8231
  year: 2014
  ident: ref_48
  article-title: The elusive evidence for chromothripsis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku525
– volume: 12
  start-page: 85
  year: 2022
  ident: ref_14
  article-title: Structural variants shape the genomic landscape and clinical outcome of multiple myeloma
  publication-title: Blood Cancer J.
  doi: 10.1038/s41408-022-00673-x
– volume: 482
  start-page: 53
  year: 2012
  ident: ref_34
  article-title: DNA breaks and chromosome pulverization from errors in mitosis
  publication-title: Nature
  doi: 10.1038/nature10802
– volume: 51
  start-page: 975
  year: 2012
  ident: ref_56
  article-title: Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis?
  publication-title: Genes Chromosom. Cancer
  doi: 10.1002/gcc.21981
– volume: 601
  start-page: 191
  year: 2006
  ident: ref_80
  article-title: Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2
  publication-title: Mutat Res.
  doi: 10.1016/j.mrfmmm.2006.07.003
– volume: 113
  start-page: E3649
  year: 2016
  ident: ref_44
  article-title: Defining chromosomal translocation risks in cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602025113
– volume: 349
  start-page: 1483
  year: 2015
  ident: ref_47
  article-title: Somatic mutation in cancer and normal cells
  publication-title: Science
  doi: 10.1126/science.aab4082
– volume: 11
  start-page: 771664
  year: 2021
  ident: ref_24
  article-title: Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.771664
– volume: 26
  start-page: 64
  year: 2014
  ident: ref_55
  article-title: Prevalence and clinical implications of chromothripsis in cancer genomes
  publication-title: Curr. Opin. Oncol.
  doi: 10.1097/CCO.0000000000000038
– volume: 49
  start-page: 623
  year: 2013
  ident: ref_76
  article-title: 53BP1 Alters the Landscape of DNA Rearrangements and Suppresses AID-Induced B Cell Lymphoma
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.029
– volume: 14
  start-page: 305
  year: 2015
  ident: ref_90
  article-title: A decade of structural variants: Description, history and methods to detect structural variation
  publication-title: Brief. Funct. Genom.
  doi: 10.1093/bfgp/elv014
– volume: 375
  start-page: 176
  year: 2012
  ident: ref_77
  article-title: Translocation capture sequencing: A method for high throughput mapping of chromosomal rearrangements
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2011.10.007
– volume: 144
  start-page: 9
  year: 2011
  ident: ref_58
  article-title: Cancer genomes evolve by pulverizing single chromosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.025
– volume: 23
  start-page: 908
  year: 2012
  ident: ref_32
  article-title: Chromothripsis: Chromosomes in Crisis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.10.010
SSID ssj0023259
Score 2.4068162
SecondaryResourceType review_article
Snippet Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 794
SubjectTerms Chromatin
Chromosome Aberrations
Chromothripsis
DNA - genetics
DNA Breaks, Double-Stranded
Humans
Review
Title Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model
URI https://www.ncbi.nlm.nih.gov/pubmed/36614236
https://www.proquest.com/docview/2761981355
https://pubmed.ncbi.nlm.nih.gov/PMC9821053
Volume 24
WOSCitedRecordID wos000910243600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: 7X7
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: BENPR
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: PIMPY
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1422-0067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023259
  issn: 1422-0067
  databaseCode: M2O
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKBhIvE7_pgClIwEsV0cRx4_BWUCdAbVdBh8pT5NiulqlNSpNVg0f-cu7iNE0GSOOBl6hxrLj1fT3fnX3fEfJCRQpZvD0b1sKu7XEV2XyuA5tFnpA0UEoWdE1fhv54zGezYNJq_dzmwmwWfpLwy8tg9V9FDW0gbEyd_QdxVy-FBvgMQocriB2u1xI80t0u0yxdFrT5Yr3G9AGTyIZBcvM4PwNlkcXZ9tBFf1EGBje6M4Beho26wAZWS1vUbdhmELFGPbHcltrtlOtqZa8rjUGuNN8lte927UVyLoQ5YN9fqLTCWQq_MIrNSe4RMgpUWPsIWjzKzKIZJz_qgQuXFoGLWiwTo082rpZmKfpDW6mgTZJ1HYhX9T6lAR6UjM-XGVgo4NGawslNeu3xSXh8OhyG08Fs-mr1zcbKY7hDX5ZhuUH2XZ8FqBn92c5pp25RcK_6YiZ5Agd8XR-uadb85qtcPXJbs2Gmd8hB6XxYfQOau6Slk3vklilH-v0--VyDjtWEjgXQsZrQeWMBcKwacCwAjrUDjlUA5wE5PR5M3723y6IbtqTcy21Yux0lhVZUU-kLd84Uo0p3NePOHBQ8hxnpUioZF47mAtwLh_W0z1wuNXgLPfqQ7CVpoh8TizmaMeEpjRyClOoIzOuo58hoLntdHug26WznLJQlIz0WRlmE4JniDIf1GW6Tl1XvlWFi-Uu_59vpD0FV4v6XSHR6kYUuhuy4AxZ2mzwy4qjeRNFOdWmvTfyGoKoOSMPefJLEZwUde8BdcFLo4TXGfUJu7_4JT8levr7Qz8hNucnjbH1UAK-48iOy_3YwnnyCu5F7AneTD6PJ11-kCrFK
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosomal+Rearrangements+and+Chromothripsis%3A+The+Alternative+End+Generation+Model&rft.jtitle=International+journal+of+molecular+sciences&rft.au=de+Groot%2C+Daniel&rft.au=Spanjaard%2C+Aldo&rft.au=Hogenbirk%2C+Marc+A&rft.au=Jacobs%2C+Heinz&rft.date=2023-01-02&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=24&rft.issue=1&rft_id=info:doi/10.3390%2Fijms24010794&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon