Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics

Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of experimental medicine Vol. 218; no. 8
Main Authors: Cheemarla, Nagarjuna R, Watkins, Timothy A, Mihaylova, Valia T, Wang, Bao, Zhao, Dejian, Wang, Guilin, Landry, Marie L, Foxman, Ellen F
Format: Journal Article
Language:English
Published: United States 02.08.2021
Subjects:
ISSN:1540-9538, 1540-9538
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.
AbstractList Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.
Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.
Author Cheemarla, Nagarjuna R
Landry, Marie L
Foxman, Ellen F
Wang, Bao
Mihaylova, Valia T
Watkins, Timothy A
Wang, Guilin
Zhao, Dejian
Author_xml – sequence: 1
  givenname: Nagarjuna R
  orcidid: 0000-0002-8860-2457
  surname: Cheemarla
  fullname: Cheemarla, Nagarjuna R
  organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT
– sequence: 2
  givenname: Timothy A
  orcidid: 0000-0002-1607-1335
  surname: Watkins
  fullname: Watkins, Timothy A
  organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT
– sequence: 3
  givenname: Valia T
  orcidid: 0000-0003-2285-0324
  surname: Mihaylova
  fullname: Mihaylova, Valia T
  organization: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
– sequence: 4
  givenname: Bao
  orcidid: 0000-0002-6472-2307
  surname: Wang
  fullname: Wang, Bao
  organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT
– sequence: 5
  givenname: Dejian
  orcidid: 0000-0002-2105-3799
  surname: Zhao
  fullname: Zhao, Dejian
  organization: Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT
– sequence: 6
  givenname: Guilin
  orcidid: 0000-0002-7835-3186
  surname: Wang
  fullname: Wang, Guilin
  organization: Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT
– sequence: 7
  givenname: Marie L
  orcidid: 0000-0001-5543-8366
  surname: Landry
  fullname: Landry, Marie L
  organization: Department of Internal Medicine, Yale School of Medicine, New Haven, CT
– sequence: 8
  givenname: Ellen F
  orcidid: 0000-0001-9767-9942
  surname: Foxman
  fullname: Foxman, Ellen F
  organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34128960$$D View this record in MEDLINE/PubMed
BookMark eNpNkElLBDEQhYOMOIvePEuOXnrM1kuOw7jCgOCo1yFJVyBjJ9120of-9zYu4KmKx3tfPWqJZqENgNAlJWtKKnFzBL9mhFGSV_wELWguSCZzXs3-7XO0jPFICBUiL87QnAvKKlmQBWpvx6C8M9iFoBJg5_0QAPcQuzZEwDUk6L0LEHEcooEuOe0al0acWrzfvOyzbfuesSluwSTXBqxCjUH1zThBusYZ9a1-TIjkTDxHp1Y1ES5-5wq93d-9bh-z3fPD03azywyvRMpqbqxmvGRFaQXUQkFBtSitzYWuqAbLpTCyFEwZKbQ1IEsqJeRQW6WLyrIVuv7hdn37OUBMB--m-k2jArRDPLBcUM5YOZ1Yoatf66A91Ieud1714-HvSewL2fBtHQ
CitedBy_id crossref_primary_10_1016_j_gene_2022_146550
crossref_primary_10_1016_j_ebiom_2025_105820
crossref_primary_10_1016_j_immuni_2022_08_008
crossref_primary_10_15252_embr_202357912
crossref_primary_10_1016_j_cell_2021_08_016
crossref_primary_10_1084_jem_20230911
crossref_primary_10_1016_j_jinf_2025_106501
crossref_primary_10_1038_s41467_025_57655_3
crossref_primary_10_1093_infdis_jiac357
crossref_primary_10_1038_s41598_025_03640_1
crossref_primary_10_1128_msystems_00095_21
crossref_primary_10_1038_s41467_025_63654_1
crossref_primary_10_1038_s41598_022_10763_2
crossref_primary_10_3390_v14010141
crossref_primary_10_1038_s41592_022_01453_y
crossref_primary_10_1038_s41385_022_00545_4
crossref_primary_10_3390_e25060896
crossref_primary_10_1080_07391102_2023_2242500
crossref_primary_10_1186_s13073_025_01447_3
crossref_primary_10_1038_s41579_025_01225_3
crossref_primary_10_1038_s41592_023_02040_5
crossref_primary_10_1128_spectrum_00221_22
crossref_primary_10_3390_biomedicines10071541
crossref_primary_10_1111_nyas_14958
crossref_primary_10_1084_jem_20241027
crossref_primary_10_3390_ijms222010963
crossref_primary_10_3389_fimmu_2022_886611
crossref_primary_10_1016_S2213_2600_23_00349_1
crossref_primary_10_3390_v14112340
crossref_primary_10_1038_s41467_021_27649_y
crossref_primary_10_3389_fimmu_2022_1048774
crossref_primary_10_1016_j_jbc_2022_101635
crossref_primary_10_1016_j_heliyon_2024_e31987
crossref_primary_10_1016_j_placenta_2025_05_009
crossref_primary_10_1038_s41467_024_50234_y
crossref_primary_10_1055_a_1582_2327
crossref_primary_10_1542_pedsos_2024_000284
crossref_primary_10_3390_v16020246
crossref_primary_10_1371_journal_pone_0265562
crossref_primary_10_1016_j_jped_2022_06_001
crossref_primary_10_1371_journal_ppat_1012466
crossref_primary_10_1038_s43856_022_00195_4
crossref_primary_10_1084_jem_20211862
crossref_primary_10_1097_MOP_0000000000001438
crossref_primary_10_1002_art_42417
crossref_primary_10_1073_pnas_2406303121
crossref_primary_10_3389_fcimb_2022_1009328
crossref_primary_10_3389_fimmu_2023_930086
crossref_primary_10_3390_jcm13010128
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_4049_jimmunol_2300373
crossref_primary_10_1016_j_celrep_2024_115115
crossref_primary_10_3390_ijms232112739
crossref_primary_10_3389_fcimb_2023_1200617
crossref_primary_10_3389_fimmu_2022_952509
crossref_primary_10_3389_fimmu_2024_1424374
crossref_primary_10_1038_s41564_023_01588_4
crossref_primary_10_1016_j_antiviral_2023_105605
crossref_primary_10_3389_fimmu_2024_1363572
crossref_primary_10_1084_jem_20212427
crossref_primary_10_1073_pnas_2122090119
crossref_primary_10_1073_pnas_2204141119
crossref_primary_10_3390_v14020403
crossref_primary_10_1073_pnas_2218083120
crossref_primary_10_1128_spectrum_03563_23
crossref_primary_10_1371_journal_pcbi_1011356
crossref_primary_10_1038_s41586_023_06322_y
crossref_primary_10_1371_journal_ppat_1010821
crossref_primary_10_1016_j_coi_2022_102252
crossref_primary_10_3390_cells13050369
crossref_primary_10_7326_M22_0924
crossref_primary_10_1016_j_it_2021_10_009
crossref_primary_10_1038_s41564_022_01242_5
crossref_primary_10_1016_j_molmed_2023_01_003
crossref_primary_10_3390_v14020395
crossref_primary_10_1186_s40168_024_01855_4
crossref_primary_10_1016_j_biomaterials_2023_122097
crossref_primary_10_1093_infdis_jiad402
crossref_primary_10_3390_v14071349
crossref_primary_10_1128_CMR_00094_21
crossref_primary_10_3390_cells10071756
crossref_primary_10_1038_s41467_021_27318_0
crossref_primary_10_3390_molecules28062641
crossref_primary_10_3389_fimmu_2022_953502
crossref_primary_10_1016_j_jinf_2023_10_009
crossref_primary_10_3390_life12122087
crossref_primary_10_47162_RJME_66_2_06
crossref_primary_10_1128_jvi_00034_22
crossref_primary_10_3390_pathogens12030480
crossref_primary_10_1016_j_jmb_2021_167374
crossref_primary_10_3389_fimmu_2024_1426016
crossref_primary_10_1038_s41467_022_28508_0
crossref_primary_10_1164_rccm_202108_1901OC
crossref_primary_10_1016_j_ijid_2023_06_001
crossref_primary_10_3389_fimmu_2022_873232
crossref_primary_10_1038_s44298_025_00092_2
crossref_primary_10_3389_fpubh_2023_1161881
crossref_primary_10_1080_17460794_2024_2400823
crossref_primary_10_1016_j_celrep_2022_111148
crossref_primary_10_3390_v14050933
crossref_primary_10_3390_ijms231810679
crossref_primary_10_3390_v16091471
crossref_primary_10_1038_s41392_024_02043_4
crossref_primary_10_3389_fimmu_2023_1315602
crossref_primary_10_1093_infdis_jiaf374
crossref_primary_10_1007_s40265_024_02013_8
crossref_primary_10_1073_pnas_2300644120
crossref_primary_10_1084_jem_20211667
crossref_primary_10_1016_j_virol_2025_110556
crossref_primary_10_1038_s41746_022_00561_5
crossref_primary_10_1093_infdis_jiac494
crossref_primary_10_1128_spectrum_03187_24
crossref_primary_10_1016_j_coviro_2021_08_004
crossref_primary_10_1038_s41467_024_48098_3
crossref_primary_10_1038_s41579_022_00839_1
crossref_primary_10_12688_gatesopenres_14155_2
crossref_primary_10_12688_gatesopenres_14155_1
crossref_primary_10_12688_gatesopenres_14155_3
crossref_primary_10_1126_scitranslmed_adq1789
crossref_primary_10_1371_journal_pbio_3001592
crossref_primary_10_1002_iid3_70176
crossref_primary_10_3390_math10173154
crossref_primary_10_1080_17476348_2022_2057299
crossref_primary_10_3201_eid2802_211727
crossref_primary_10_3389_fimmu_2022_1013322
crossref_primary_10_1007_s42770_025_01681_2
crossref_primary_10_1016_j_ebiom_2024_105531
crossref_primary_10_3390_jpm11121253
ContentType Journal Article
Copyright 2021 Cheemarla et al.
Copyright_xml – notice: 2021 Cheemarla et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1084/jem.20210583
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1540-9538
ExternalDocumentID 34128960
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI055403
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIAID NIH HHS
  grantid: T32 AI007019
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
DIK
DU5
E3Z
EBS
ECM
EIF
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
NPM
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
7X8
ID FETCH-LOGICAL-c384t-d3cfb237267f4ed4ae61b47ff54b81bef394c9742ac94bfce97199e5edfab68f2
IEDL.DBID 7X8
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701683800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-9538
IngestDate Sun Nov 09 12:58:26 EST 2025
Mon Jul 21 05:40:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2021 Cheemarla et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-d3cfb237267f4ed4ae61b47ff54b81bef394c9742ac94bfce97199e5edfab68f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-9767-9942
0000-0002-6472-2307
0000-0003-2285-0324
0000-0002-1607-1335
0000-0002-7835-3186
0000-0002-8860-2457
0000-0002-2105-3799
0000-0001-5543-8366
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8210587
PMID 34128960
PQID 2541322737
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2541322737
pubmed_primary_34128960
PublicationCentury 2000
PublicationDate 2021-08-02
PublicationDateYYYYMMDD 2021-08-02
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2021
References 34424267 - J Exp Med. 2021 Oct 4;218(10):e20211667. doi: 10.1084/jem.20211667
33532783 - medRxiv. 2021 Jan 27:2021.01.22.21249812. doi: 10.1101/2021.01.22.21249812
References_xml – reference: 34424267 - J Exp Med. 2021 Oct 4;218(10):e20211667. doi: 10.1084/jem.20211667
– reference: 33532783 - medRxiv. 2021 Jan 27:2021.01.22.21249812. doi: 10.1101/2021.01.22.21249812
SSID ssj0014456
Score 2.668746
Snippet Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Adult
Aged
Aged, 80 and over
Angiotensin-Converting Enzyme 2 - genetics
Case-Control Studies
Chemokine CXCL10 - metabolism
COVID-19 - immunology
COVID-19 - virology
Disease Susceptibility - immunology
Female
Gene Expression Profiling
Host-Pathogen Interactions - physiology
Humans
Immunity, Innate - physiology
Interferons - genetics
Interferons - immunology
Interferons - metabolism
Male
Middle Aged
Nasopharynx - virology
Picornaviridae Infections - immunology
Picornaviridae Infections - virology
SARS-CoV-2 - genetics
SARS-CoV-2 - physiology
Viral Load
Virus Replication
Title Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics
URI https://www.ncbi.nlm.nih.gov/pubmed/34128960
https://www.proquest.com/docview/2541322737
Volume 218
WOSCitedRecordID wos000701683800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXEbwudrPpJjlJqRYvLcWq9LYk2QlUYbd2W8F_72R3a0-C4CW3DUsyM5kv82U-Qm4kc3EsDHqakVHATWgDZTjDwaaI3cBGLV2KTYjBQI7HalhfuBU1rXIZE8tAnebW35HfIpDxwElE4m76EXjVKF9drSU01kkjwlTGW7UYr6oInJfqraEv_iv07Jr43pL89g38M3TEO23fMPC35LI8ZHq7__29PbJTp5e0U9nDPlmD7IBs9esC-iHJ7ysFejrJMswy6cQ_DwE6q5iyQNOaHQMFLRZFSXkp2bNfdJ7TUedpFHTz14DRJYcrozpLKfguyTjJTy2cvuMUvgH0EXnpPTx3H4NacyGwkeTzII2sMywSLBaOQ8o1xKHhwrk2N5jhgosUt4hBmLaKG2dBiVApaEPqtImlY8dkI8szOCW0JbWMMXxqLhgXhiutdCiVjlMHLDSmSa6XS5mgTftChc4gXxTJajGb5KTaj2RaNd9I8NRFjBi3zv7w9TnZ9ntc8vXYBWk49Gi4JJv2cz4pZlelseA4GPa_AWGszOI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+innate+immune+response+determines+susceptibility+to+SARS-CoV-2+infection+and+early+replication+kinetics&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Cheemarla%2C+Nagarjuna+R&rft.au=Watkins%2C+Timothy+A&rft.au=Mihaylova%2C+Valia+T&rft.au=Wang%2C+Bao&rft.date=2021-08-02&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=218&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20210583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon