Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics
Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomi...
Saved in:
| Published in: | The Journal of experimental medicine Vol. 218; no. 8 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
02.08.2021
|
| Subjects: | |
| ISSN: | 1540-9538, 1540-9538 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2. |
|---|---|
| AbstractList | Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2. Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2. |
| Author | Cheemarla, Nagarjuna R Landry, Marie L Foxman, Ellen F Wang, Bao Mihaylova, Valia T Watkins, Timothy A Wang, Guilin Zhao, Dejian |
| Author_xml | – sequence: 1 givenname: Nagarjuna R orcidid: 0000-0002-8860-2457 surname: Cheemarla fullname: Cheemarla, Nagarjuna R organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT – sequence: 2 givenname: Timothy A orcidid: 0000-0002-1607-1335 surname: Watkins fullname: Watkins, Timothy A organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT – sequence: 3 givenname: Valia T orcidid: 0000-0003-2285-0324 surname: Mihaylova fullname: Mihaylova, Valia T organization: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT – sequence: 4 givenname: Bao orcidid: 0000-0002-6472-2307 surname: Wang fullname: Wang, Bao organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT – sequence: 5 givenname: Dejian orcidid: 0000-0002-2105-3799 surname: Zhao fullname: Zhao, Dejian organization: Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT – sequence: 6 givenname: Guilin orcidid: 0000-0002-7835-3186 surname: Wang fullname: Wang, Guilin organization: Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT – sequence: 7 givenname: Marie L orcidid: 0000-0001-5543-8366 surname: Landry fullname: Landry, Marie L organization: Department of Internal Medicine, Yale School of Medicine, New Haven, CT – sequence: 8 givenname: Ellen F orcidid: 0000-0001-9767-9942 surname: Foxman fullname: Foxman, Ellen F organization: Department of Immunobiology, Yale School of Medicine, New Haven, CT |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34128960$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkElLBDEQhYOMOIvePEuOXnrM1kuOw7jCgOCo1yFJVyBjJ9120of-9zYu4KmKx3tfPWqJZqENgNAlJWtKKnFzBL9mhFGSV_wELWguSCZzXs3-7XO0jPFICBUiL87QnAvKKlmQBWpvx6C8M9iFoBJg5_0QAPcQuzZEwDUk6L0LEHEcooEuOe0al0acWrzfvOyzbfuesSluwSTXBqxCjUH1zThBusYZ9a1-TIjkTDxHp1Y1ES5-5wq93d-9bh-z3fPD03azywyvRMpqbqxmvGRFaQXUQkFBtSitzYWuqAbLpTCyFEwZKbQ1IEsqJeRQW6WLyrIVuv7hdn37OUBMB--m-k2jArRDPLBcUM5YOZ1Yoatf66A91Ieud1714-HvSewL2fBtHQ |
| CitedBy_id | crossref_primary_10_1016_j_gene_2022_146550 crossref_primary_10_1016_j_ebiom_2025_105820 crossref_primary_10_1016_j_immuni_2022_08_008 crossref_primary_10_15252_embr_202357912 crossref_primary_10_1016_j_cell_2021_08_016 crossref_primary_10_1084_jem_20230911 crossref_primary_10_1016_j_jinf_2025_106501 crossref_primary_10_1038_s41467_025_57655_3 crossref_primary_10_1093_infdis_jiac357 crossref_primary_10_1038_s41598_025_03640_1 crossref_primary_10_1128_msystems_00095_21 crossref_primary_10_1038_s41467_025_63654_1 crossref_primary_10_1038_s41598_022_10763_2 crossref_primary_10_3390_v14010141 crossref_primary_10_1038_s41592_022_01453_y crossref_primary_10_1038_s41385_022_00545_4 crossref_primary_10_3390_e25060896 crossref_primary_10_1080_07391102_2023_2242500 crossref_primary_10_1186_s13073_025_01447_3 crossref_primary_10_1038_s41579_025_01225_3 crossref_primary_10_1038_s41592_023_02040_5 crossref_primary_10_1128_spectrum_00221_22 crossref_primary_10_3390_biomedicines10071541 crossref_primary_10_1111_nyas_14958 crossref_primary_10_1084_jem_20241027 crossref_primary_10_3390_ijms222010963 crossref_primary_10_3389_fimmu_2022_886611 crossref_primary_10_1016_S2213_2600_23_00349_1 crossref_primary_10_3390_v14112340 crossref_primary_10_1038_s41467_021_27649_y crossref_primary_10_3389_fimmu_2022_1048774 crossref_primary_10_1016_j_jbc_2022_101635 crossref_primary_10_1016_j_heliyon_2024_e31987 crossref_primary_10_1016_j_placenta_2025_05_009 crossref_primary_10_1038_s41467_024_50234_y crossref_primary_10_1055_a_1582_2327 crossref_primary_10_1542_pedsos_2024_000284 crossref_primary_10_3390_v16020246 crossref_primary_10_1371_journal_pone_0265562 crossref_primary_10_1016_j_jped_2022_06_001 crossref_primary_10_1371_journal_ppat_1012466 crossref_primary_10_1038_s43856_022_00195_4 crossref_primary_10_1084_jem_20211862 crossref_primary_10_1097_MOP_0000000000001438 crossref_primary_10_1002_art_42417 crossref_primary_10_1073_pnas_2406303121 crossref_primary_10_3389_fcimb_2022_1009328 crossref_primary_10_3389_fimmu_2023_930086 crossref_primary_10_3390_jcm13010128 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_4049_jimmunol_2300373 crossref_primary_10_1016_j_celrep_2024_115115 crossref_primary_10_3390_ijms232112739 crossref_primary_10_3389_fcimb_2023_1200617 crossref_primary_10_3389_fimmu_2022_952509 crossref_primary_10_3389_fimmu_2024_1424374 crossref_primary_10_1038_s41564_023_01588_4 crossref_primary_10_1016_j_antiviral_2023_105605 crossref_primary_10_3389_fimmu_2024_1363572 crossref_primary_10_1084_jem_20212427 crossref_primary_10_1073_pnas_2122090119 crossref_primary_10_1073_pnas_2204141119 crossref_primary_10_3390_v14020403 crossref_primary_10_1073_pnas_2218083120 crossref_primary_10_1128_spectrum_03563_23 crossref_primary_10_1371_journal_pcbi_1011356 crossref_primary_10_1038_s41586_023_06322_y crossref_primary_10_1371_journal_ppat_1010821 crossref_primary_10_1016_j_coi_2022_102252 crossref_primary_10_3390_cells13050369 crossref_primary_10_7326_M22_0924 crossref_primary_10_1016_j_it_2021_10_009 crossref_primary_10_1038_s41564_022_01242_5 crossref_primary_10_1016_j_molmed_2023_01_003 crossref_primary_10_3390_v14020395 crossref_primary_10_1186_s40168_024_01855_4 crossref_primary_10_1016_j_biomaterials_2023_122097 crossref_primary_10_1093_infdis_jiad402 crossref_primary_10_3390_v14071349 crossref_primary_10_1128_CMR_00094_21 crossref_primary_10_3390_cells10071756 crossref_primary_10_1038_s41467_021_27318_0 crossref_primary_10_3390_molecules28062641 crossref_primary_10_3389_fimmu_2022_953502 crossref_primary_10_1016_j_jinf_2023_10_009 crossref_primary_10_3390_life12122087 crossref_primary_10_47162_RJME_66_2_06 crossref_primary_10_1128_jvi_00034_22 crossref_primary_10_3390_pathogens12030480 crossref_primary_10_1016_j_jmb_2021_167374 crossref_primary_10_3389_fimmu_2024_1426016 crossref_primary_10_1038_s41467_022_28508_0 crossref_primary_10_1164_rccm_202108_1901OC crossref_primary_10_1016_j_ijid_2023_06_001 crossref_primary_10_3389_fimmu_2022_873232 crossref_primary_10_1038_s44298_025_00092_2 crossref_primary_10_3389_fpubh_2023_1161881 crossref_primary_10_1080_17460794_2024_2400823 crossref_primary_10_1016_j_celrep_2022_111148 crossref_primary_10_3390_v14050933 crossref_primary_10_3390_ijms231810679 crossref_primary_10_3390_v16091471 crossref_primary_10_1038_s41392_024_02043_4 crossref_primary_10_3389_fimmu_2023_1315602 crossref_primary_10_1093_infdis_jiaf374 crossref_primary_10_1007_s40265_024_02013_8 crossref_primary_10_1073_pnas_2300644120 crossref_primary_10_1084_jem_20211667 crossref_primary_10_1016_j_virol_2025_110556 crossref_primary_10_1038_s41746_022_00561_5 crossref_primary_10_1093_infdis_jiac494 crossref_primary_10_1128_spectrum_03187_24 crossref_primary_10_1016_j_coviro_2021_08_004 crossref_primary_10_1038_s41467_024_48098_3 crossref_primary_10_1038_s41579_022_00839_1 crossref_primary_10_12688_gatesopenres_14155_2 crossref_primary_10_12688_gatesopenres_14155_1 crossref_primary_10_12688_gatesopenres_14155_3 crossref_primary_10_1126_scitranslmed_adq1789 crossref_primary_10_1371_journal_pbio_3001592 crossref_primary_10_1002_iid3_70176 crossref_primary_10_3390_math10173154 crossref_primary_10_1080_17476348_2022_2057299 crossref_primary_10_3201_eid2802_211727 crossref_primary_10_3389_fimmu_2022_1013322 crossref_primary_10_1007_s42770_025_01681_2 crossref_primary_10_1016_j_ebiom_2024_105531 crossref_primary_10_3390_jpm11121253 |
| ContentType | Journal Article |
| Copyright | 2021 Cheemarla et al. |
| Copyright_xml | – notice: 2021 Cheemarla et al. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1084/jem.20210583 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1540-9538 |
| ExternalDocumentID | 34128960 |
| Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI055403 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIAID NIH HHS grantid: T32 AI007019 |
| GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CGR CS3 CUY CVF D-I DIK DU5 E3Z EBS ECM EIF EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A NPM O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ 7X8 |
| ID | FETCH-LOGICAL-c384t-d3cfb237267f4ed4ae61b47ff54b81bef394c9742ac94bfce97199e5edfab68f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701683800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-9538 |
| IngestDate | Sun Nov 09 12:58:26 EST 2025 Mon Jul 21 05:40:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | 2021 Cheemarla et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-d3cfb237267f4ed4ae61b47ff54b81bef394c9742ac94bfce97199e5edfab68f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0001-9767-9942 0000-0002-6472-2307 0000-0003-2285-0324 0000-0002-1607-1335 0000-0002-7835-3186 0000-0002-8860-2457 0000-0002-2105-3799 0000-0001-5543-8366 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8210587 |
| PMID | 34128960 |
| PQID | 2541322737 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2541322737 pubmed_primary_34128960 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-02 |
| PublicationDateYYYYMMDD | 2021-08-02 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of experimental medicine |
| PublicationTitleAlternate | J Exp Med |
| PublicationYear | 2021 |
| References | 34424267 - J Exp Med. 2021 Oct 4;218(10):e20211667. doi: 10.1084/jem.20211667 33532783 - medRxiv. 2021 Jan 27:2021.01.22.21249812. doi: 10.1101/2021.01.22.21249812 |
| References_xml | – reference: 34424267 - J Exp Med. 2021 Oct 4;218(10):e20211667. doi: 10.1084/jem.20211667 – reference: 33532783 - medRxiv. 2021 Jan 27:2021.01.22.21249812. doi: 10.1101/2021.01.22.21249812 |
| SSID | ssj0014456 |
| Score | 2.668746 |
| Snippet | Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Adult Aged Aged, 80 and over Angiotensin-Converting Enzyme 2 - genetics Case-Control Studies Chemokine CXCL10 - metabolism COVID-19 - immunology COVID-19 - virology Disease Susceptibility - immunology Female Gene Expression Profiling Host-Pathogen Interactions - physiology Humans Immunity, Innate - physiology Interferons - genetics Interferons - immunology Interferons - metabolism Male Middle Aged Nasopharynx - virology Picornaviridae Infections - immunology Picornaviridae Infections - virology SARS-CoV-2 - genetics SARS-CoV-2 - physiology Viral Load Virus Replication |
| Title | Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34128960 https://www.proquest.com/docview/2541322737 |
| Volume | 218 |
| WOSCitedRecordID | wos000701683800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXEbwudrPpJjlJqRYvLcWq9LYk2QlUYbd2W8F_72R3a0-C4CW3DUsyM5kv82U-Qm4kc3EsDHqakVHATWgDZTjDwaaI3cBGLV2KTYjBQI7HalhfuBU1rXIZE8tAnebW35HfIpDxwElE4m76EXjVKF9drSU01kkjwlTGW7UYr6oInJfqraEv_iv07Jr43pL89g38M3TEO23fMPC35LI8ZHq7__29PbJTp5e0U9nDPlmD7IBs9esC-iHJ7ysFejrJMswy6cQ_DwE6q5iyQNOaHQMFLRZFSXkp2bNfdJ7TUedpFHTz14DRJYcrozpLKfguyTjJTy2cvuMUvgH0EXnpPTx3H4NacyGwkeTzII2sMywSLBaOQ8o1xKHhwrk2N5jhgosUt4hBmLaKG2dBiVApaEPqtImlY8dkI8szOCW0JbWMMXxqLhgXhiutdCiVjlMHLDSmSa6XS5mgTftChc4gXxTJajGb5KTaj2RaNd9I8NRFjBi3zv7w9TnZ9ntc8vXYBWk49Gi4JJv2cz4pZlelseA4GPa_AWGszOI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+innate+immune+response+determines+susceptibility+to+SARS-CoV-2+infection+and+early+replication+kinetics&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Cheemarla%2C+Nagarjuna+R&rft.au=Watkins%2C+Timothy+A&rft.au=Mihaylova%2C+Valia+T&rft.au=Wang%2C+Bao&rft.date=2021-08-02&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=218&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20210583&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon |